
HAL Id: hal-03740759
https://hal.sorbonne-universite.fr/hal-03740759v1

Submitted on 29 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Dimensional Bayesian Optimization with Kernel
Principal Component Analysis

Kirill Antonov, Elena Raponi, Hao Wang, Carola Doerr

To cite this version:
Kirill Antonov, Elena Raponi, Hao Wang, Carola Doerr. High Dimensional Bayesian Optimization
with Kernel Principal Component Analysis. 17th Proceedings of Parallel Problem Solving from Nature
- (PPSN) 2022, Sep 2022, Dortmund, Germany. pp.118-131, �10.1007/978-3-031-14714-2_9�. �hal-
03740759�

https://hal.sorbonne-universite.fr/hal-03740759v1
https://hal.archives-ouvertes.fr

High Dimensional Bayesian Optimization with
Kernel Principal Component Analysis

Kirill Antonov1,3⋆[0000−0002−8757−8598], Elena Raponi2,4[0000−0001−6841−7409],
Hao Wang3[0000−0002−4933−5181], and Carola Doerr4[0000−0002−4981−3227]

1 ITMO University, Saint Petersburg, Russia,
2 Technical University of Munich, TUM School of Engineering and Design, Munich,

Germany
3 Leiden University, LIACS Department, Leiden, Netherlands

4 Sorbonne Université, CNRS, LIP6, Paris, France

Abstract. Bayesian Optimization (BO) is a surrogate-based global op-
timization strategy that relies on a Gaussian Process regression (GPR)
model to approximate the objective function and an acquisition func-
tion to suggest candidate points. It is well-known that BO does not
scale well for high-dimensional problems because the GPR model re-
quires substantially more data points to achieve sufficient accuracy and
acquisition optimization becomes computationally expensive in high di-
mensions. Several recent works aim at addressing these issues, e.g., meth-
ods that implement online variable selection or conduct the search on a
lower-dimensional sub-manifold of the original search space. Advancing
our previous work of PCA-BO that learns a linear sub-manifold, this
paper proposes a novel kernel PCA-assisted BO (KPCA-BO) algorithm,
which embeds a non-linear sub-manifold in the search space and per-
forms BO on this sub-manifold. Intuitively, constructing the GPR model
on a lower-dimensional sub-manifold helps improve the modeling accu-
racy without requiring much more data from the objective function. Also,
our approach defines the acquisition function on the lower-dimensional
sub-manifold, making the acquisition optimization more manageable.
We compare the performance of KPCA-BO to a vanilla BO and to PCA-
BO on the multi-modal problems of the COCO/BBOB benchmark suite.
Empirical results show that KPCA-BO outperforms BO in terms of con-
vergence speed on most test problems, and this benefit becomes more
significant when the dimensionality increases. For the 60D functions,
KPCA-BO achieves better results than PCA-BO for many test cases.
Compared to the vanilla BO, it efficiently reduces the CPU time re-
quired to train the GPR model and to optimize the acquisition function
compared to the vanilla BO.

Keywords: Bayesian optimization · Black-Box optimization · Kernel principal
component analysis · Dimensionality reduction

⋆ Work done while visiting Sorbonne Université in Paris. Corresponding author,
k.antonov@liacs.leidenuniv.nl

2 Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

1 Introduction

Numerical black-box optimization problems are challenging to solve when the
dimension of the problem’s domain becomes high [1]. The well-known curse of
dimensionality implies that exponential growth of the data points is required to
maintain a reasonable coverage of the search space. This is difficult to accommo-
date in numerical black-box optimization, which aims to seek a well-performing
solution with a limited budget of function evaluations. Bayesian optimization
(BO) [15,18] suffers from high dimensionality more seriously compared to other
search methods, e.g., evolutionary algorithms, since it employs a surrogate model
of the objective function internally, which scales poorly with respect to the di-
mensionality (see Sec. 2 below). Also, BO proposes new candidate solutions by
maximizing a so-called acquisition function (see Sec. 2), which assesses the po-
tential of each search point for making progresses. The maximization task of the
acquisition function is also hampered by high dimensionality. As such, BO is of-
ten taken only for small-scale problems (typically less than 20 search variables),
and it remains an open challenge to scale it up for high-dimensional problems [3].

Recently, various methods have been proposed for enabling high-dimensional
BO, which can be categorized into three classes: (1) variable selection methods
that only execute BO on a subset of search variables [27], (2) methods that
leverage the surrogate model to high dimensional spaces, e.g., via additive mod-
els [6, 7], and (3) conducting BO on a sub-manifold embedded in the original
search space [14, 29]. Notably, in [9], a kernel-based approach is developed for
parametric shape optimization in computer-aided design systems, which is not
a generic approach since the kernel function is based on the representation of
the parametric shape and is strongly tied to applications in mechanical design.
In [21] we proposed PCA-BO, in which we conduct BO on a linear sub-manifold
of the search space that is learned from the linear principal components analysis
(PCA) procedure.

This paper advances the PCA-BO algorithm by considering the kernel PCA
procedure [25], which is able to construct a non-linear sub-manifold of the orig-
inal search space. The proposed algorithm - Kernel PCA-assisted BO (KPCA-
BO) adaptively learns a nonlinear forward map from the original space to the
lower-dimensional sub-manifold for reducing dimensionality and constructs a
backward map that converts a candidate point found on the sub-manifold to
the original search space for the function evaluation. We evaluate the empirical
performance of KPCA-BO on the well-known BBOB problem set [12], focusing
on the multi-modal problems.

This paper is organized as follows. In Sec. 2, we will briefly recap Bayesian
optimization and some recent works on alleviating the issue of high dimension
for BO. In Sec. 3, we describe the key components of KPCA-BO in detail. The
experimental setting, results, and discussions are presented in Sec. 4, followed
by the conclusion and future works in Sec. 5.

High Dimensional Bayesian Optimization with Kernel PCA 3

2 Related Work

Bayesian Optimization (BO) [15, 26] is a sequential model-based optimiza-
tion algorithm which was originally proposed to solve single-objective black-box
optimization problems that are expensive to evaluate. BO starts with sampling
a small initial design of experiment (DoE, obtained with e.g., Latin Hypercube
Sampling [24] or low-discrepancy sequences [20]) X ⊆ S. After evaluating f(x)
for all x ∈ X, it proceeds to construct a probabilistic model P(f | X,Y) (e.g.,
Gaussian process regression, please see the next paragraph). BO balances explo-
ration and exploitation of the search by considering, for a decision point x, two
quantities: the predicted function value f̂(x) and the uncertainty of this pre-
diction (e.g., the mean squared error E(f(x)− f̂(x))2). Both of them are taken
to form the acquisition function α : S → R used in this work, i.e., the expected
improvement [15], which quantifies the potential of each point for making pro-
gresses. BO chooses the next point to evaluate by maximizing the acquisition
function. After evaluating x∗, we augment the data set with (x∗, f(x∗)) and
proceed with the next iteration.
Gaussian Progress Regression (GPR) [22] models the objective function f
as the realization of a Gaussian process f ∼ gp(0, c(·, ·)), where c : S ×S → R is
the covariance function, also known as kernel. That is, ∀x,x′ ∈ S, it holds that
Cov{f(x), f(x′)} = c(x,x′). Given a set X of evaluated points and the corre-
sponding function values Y, GPR learns a posterior Gaussian process to predict
the function value at each point, i.e., ∀x ∈ S, f(x) | X,Y,x ∼ N (f̂(x), ŝ2(x)),
where f̂ and ŝ2 are the posterior mean and variance functions, respectively. When
equipped with a GPR and the expected improvement, BO has a convergence rate
of O(n−1/d) [4], which decreases quickly when the dimension increases.
High-dimensional Bayesian optimization. High dimensionality negatively
affects the performance of BO in two aspects, the quality of the GPR model and
the efficiency of acquisition optimization. For the quality of the GPR model,
it is well-known [4] that many more data points are needed to maintain the
modeling accuracy in higher dimensions. Moreover, acquisition optimization is a
high-dimensional task requiring more surrogate evaluations to obtain a reason-
able optimum. Notably, each surrogate evaluation takes O(d) time to compute,
making the acquisition optimization more time-consuming.

Depending on the expected structure of the high-dimensional problem, vari-
ous strategies for dealing with this curse of dimensionality have been proposed
in the literature, often falling into one of the following classes:

1. Variable selection or screening. It may be the case that a subset of parameters
does not have any significant impact on solutions’ quality, and it is convenient
to identify and keep only the most influential ones. Different approaches may
be considered: discarding variables uniformly [17], assigning weights to the
variables based on the dependencies between them [27], identifying the most
descriptive variables based on their length-scale value in the model [2], etc.

2. Additive models. They keep all the variables but limit their interaction as
they are based on the idea of decomposing the problem into blocks. For

4 Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

example, the model kernels can be seen as the sum of univariate ones [6, 7],
the high-dimensional function can decompose as a sum of lower-dimensional
functions on subsets of variables [23], or the additive model can be based on
an ANOVA decomposition [10,19].

3. Linear/nonlinear embeddings. They are based on the hypothesis that a large
percentage of the variation of a high-dimensional function can be captured
in a low-dimensional embedding of the original search space. The embedding
can be either linear [21,29] or nonlinear [9, 11].

We point the reader to [3] for a comprehensive overview of the state-of-the-art
in high-dimensional BO.

3 Kernel-PCA assisted by Bayesian Optimization

In this paper, we deal with numerical black-box optimization problems f : S ⊆
Rd → R, where the search domain is a hyperbox, i.e., S = [l1, u1] × [l2, u2] ×
· · · × [ld, ud]. We reduce the dimensionality of the optimization problem on-the-
fly, using a Kernel Principal Component Analysis (KPCA) [25] for learning,
from the evaluated search points, a non-linear sub-manifold M on which we
optimize the objective function. Ideally, such a sub-manifold M should capture
important information of f for optimization. In other words, M should “tra-
verse” several basins of attractions of f . Loosely speaking, in contrast to a linear
sub-manifold (e.g., our previous work [21]), the non-linear one would solve the
issue that the correlation among search variables is non-linear (e.g., on multi-
modal functions), where it is challenging to identify a linear sub-manifold that
passes through several local optima simultaneously. KPCA tackles this issue by
first casting the search points to a high-dimensional Hilbert space H (typically
infinite-dimensional), where we learn a linear sub-manifold thereof. We consider
a positive definite function k : S × S → R, which induces a reproducing kernel
Hilbert space (RKHS) H constructed as the completion of span{k(x, ·) : x ∈ S}.
The function ϕ(x) := k(x, ·) maps a point x from the search space to H, which
we will refer as the feature map. An inner product on H is defined with k, i.e.,
∀x,x′ ∈ S, ⟨ϕ(x), ϕ(x′)⟩H = k(x,x′), known as the kernel trick.
The KPCA-BO algorithm. Fig. 1 provides an overview of the proposed
KPCA-BO algorithm. We also present the pseudo-code of KPCA-BO in Alg. 1.
Key differences to our previous work that employs the linear PCA method [21]
are highlighted. Various building blocks of the algorithm will be described in
the following paragraphs. Notably, the sub-routine kpca indicates performing
the standard kernel PCA algorithm, which returns a set of selected principal
components, whereas, gpr represents the training of a Gaussian process regres-
sion model. In the following discussion, we shall denote by X = {xi}ni=1 and
Y = {f(xi)}ni=1 the set of the evaluated points and their function values, respec-
tively.
Rescaling data points. As an unsupervised learning method, KPCA disre-
gards the distribution of the function values if applied directly, which contra-
dicts our aim of capturing the objective function in the dimensionality reduc-

High Dimensional Bayesian Optimization with Kernel PCA 5

Start
Sampling
plan (DoE)

Evaluation of
design(s)

Best design
update: (x*,y*)

Stop
criterion
fulfilled?

First
iteration
or y*≤ P20

End

Centering and
rescaling points

Kernel
optimization

KPCA and forward
map construction

Forward map

GPR model in
reduced space

Acquisition
function

optimization

Backward map
of the new point

Yes

No No

Yes

Kernel PCA

Fig. 1: Flowchart of the KPCA-BO optimization algorithm with detailed graph-
ical representation of the KPCA subroutine.

tion. To mitigate this issue, we apply the weighting scheme proposed in [21],
which scales the data points in S with respect to their objective values. In de-
tail, we compute the rank-based weights for all points: wi is proportional to
lnn − lnRi, i = 1, . . . , n, where R1, R2, . . . , Rn are the rankings of points with
respect to Y in increasing order (minimization is assumed). Then we rescale each
point with its weight, i.e., xi = wi(xi−n−1

∑n
k=1 xk), i = 1, . . . , n. It is necessary

to show that the feature map ϕ respects the rescaling operation performed in S.
For any stationary and monotonic kernel (i.e., k(x,y) = k(DS(x,y)) (DS is a
metric in S) and k decreases whenever DS(x,y) increases), for all x,y, c ∈ X it
holds that DS(x, c) ≤ DS(y, c) implies that DH(ϕ(x), ϕ(c)) ≤ DH(ϕ(y), ϕ(c)).
Consequently, the point pushed away from the center of the data in X will still
have a large distance to the center of the data in H after the feature map. The
rescaling (or alternatives that incorporate the objective values into the distribu-
tion of data points in the domain) is an essential step in applying PCA to BO.
On the one hand, DoE aims to span the search domain as evenly as possible
and thereby the initial random sample from it has almost the same variability
in all directions, which provides no information for PCA to learn. On the other
hand, new candidates are obtained by the global optimization of the acquisition
function in each iteration, which is likely to produce multiple clusters and/or
isolated points that are not meaningful to the PCA procedure. This is in con-
trast to the direct application of PCA to evolutionary algorithms [16], where we
apply PCA to the current population. Since the population is usually generated

6 Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

Algorithm 1 KPCA-assisted Bayesian Optimization. Highlighted are those
lines in which KPCA-BO differs from the linear PCA method [21]

1: procedure kpca-bo(f, S) ▷ f : objective function, S ⊆ Rd: search space
2: Create X = {x1,x2, . . . ,xn0} ⊂ S with Latin hypercube sampling
3: Y ← {f(x1), . . . , f(xn0)}, n← n0

4: while the stop criteria are not fulfilled do
5: if n = n0 or y∗ ≤ 20%-percentile of Y then
6: R1, R2, . . . , Rn are the rankings of points in X w.r.t. Y (increasing order)
7: x′

i ← xi − n−1 ∑n
k=1 xk, i = 1, . . . , n ▷ centering

8: x′
i ← wix

′
i, wi ∝ lnn− lnRi, i = 1, . . . , n ▷ rescaling

9: γ∗ ← optimize-rbf-kernel({x′
i}ni=1) ▷ Eq. (2)

10: end if
11: v1, . . . , vr ← kpca({x′

i}ni=1, γ
∗) ▷ r < d≪ n

12: construct the forward map F from span{v1, . . . , vr}. ▷ Eq. (1)
13: zi ← F(xi), i = 1, . . . , n ▷ map the data to T := span{v1, . . . , vr}
14: f̂ , ŝ2 ← gpr({zi}ni=1,Y) ▷ Gaussian process regression
15: z∗ ← argmaxz∈T EI(z; f̂ , ŝ2)

16: y∗ ← f(x∗),x∗ ← B(z∗) ▷ the backward map; Eq.(4)
17: X← X ∪ {x∗}, Y ← Y ∪ {y∗}, n← n+ 1
18: end while
19: end procedure

from a unimodal mutation distribution, it is well-suited for applying the PCA
procedure.
Dimensionality reduction in Hilbert spaces. After the rescaling operation
in X, we map the points to the feature space H: ϕ(X) = {ϕ(xi)}i, 1 = 1, . . . , n.
After centering the feature points in H, i.e., ϕ̃(xi) = ϕ(xi)−n−1

∑n
i=1 ϕ(xi), we

express the sample covariance5 of the feature points: C = n−1
∑n

i=1 ϕ̃(xi)ϕ̃(xi)
⊤.

KPCA essentially computes the eigenvalues and eigenfunctions of C, namely ∀i ∈
[1..n], Cvi = λivi, vi ∈ H, ||vi||H = 1, and ⟨vi, vj⟩H = 0, if i ̸= j. Note that (1) C
is positive semi-definite; (2) since rank(C) ≤

∑n
i=1 rank(ϕ̃(xi)ϕ̃(xi)

⊤) = n, there
are maximally n nonzero eigenvalues and eigenfunctions; (3) the eigenfunction
takes the following form vi =

∑n
j=1 a

(i)
j ϕ̃(xj), a

(i)
j ∈ R and thereby all eigenfunc-

tions can be represented by a matrix V = (a
(i)
j)ij . Assume the eigenvalues are

ordered in the decreasing manner (i.e., λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Eigenfunctions
are sorted accordingly). It is not hard to show that the variance of ϕ(X) along
vi is exactly λi: n−1

∑n
k=1⟨ϕ̃(xk), vi⟩2H = ⟨vi, n−1

∑n
k=1[ϕ̃(xk)ϕ̃(xk)

⊤]vi⟩H = λi.
Therefore, the eigenvalues can be used to select a linear subspace of H which
keeps the majority of the variability of ϕ(X). Specifically, we choose a subspace
T := span{v1, . . . , vr} ⊂ H as the reduced search space of BO, where r is cho-
sen as the smallest integer such that the first-r eigenvalues explain at least
η percent of the total variability (we use η = 90% in our experiments). For

5 The outer product is a linear operator defined as ∀h ∈ H, [ϕ(x)ϕ(x)⊤](h) : h 7→
⟨ϕ(x), h⟩Hϕ(x). Hence, the sample covariance is also a linear operator C : H → H.

High Dimensional Bayesian Optimization with Kernel PCA 7

a point x ∈ S, we can formulate a forward map that projects ϕ(x) onto the
reduced space T : F : x 7→

∑r
i=1⟨ϕ̃(x), vi⟩Hvi. Let gi(x) = ⟨ϕ̃(x), ϕ̃(xi)⟩H =

k(x,xi) − n−1
∑n

j=1 k(x,xj) − n−1
∑n

j=1 k(xi,xj) + n−2
∑n

i=1

∑n
j=1 k(xi,xj),

the forward map can be re-expressed as

F : x 7→ Vg(x), g(x) = (g1(x), . . . , gn(x))
⊤. (1)

Computationally, the eigenfunction representation V can be calculated via eigen-
decomposition of the Gram matrix (Gij = ⟨ϕ̃(xi), ϕ̃(xj)⟩H, i.e., G = V⊤DV,
D is a n× n diagonal matrix with the eigenvalues of C on its nonzero entries.
Learning the forward map. We use the radial basis function (RBF,
a.k.a. Gaussian kernel) for KPCA in this paper. The RBF kernel k(x,x′) =

exp(−γ ∥x− x′∥22), contains a single length-scale hyperparameter γ ∈ R>0. To
determine this length-scale, we minimize the number of eigenvalues/functions
chosen to keep at least η percent of the variance, which effectively distributes
more information of ϕ(X) on the first few eigenfunctions and hence allows for
constructing a lower-dimensional space T . Also, we reward γ values which choose
the same number of eigenfunctions and also yield a higher ratio of explained vari-
ance. In all, the cost function for tuning γ is:

γ∗ = argmin
γ∈(0,∞)

r −
∑r

i=1 λi∑n
i=1 λi

, r = inf

{
k ∈ [1..n] :

k∑
i=1

λi ≥ η

n∑
i=1

λi

}
. (2)

This equation is solved numerically, using a quasi-Newton method (the L-BFGS-
B algorithm [5]) with γ ∈ [10−4, 2] and maximally 200d iterations. It is worth
noting that we do not consider anisotropic kernels (e.g., individual length-scales
for each search variable) since such a kernel increases the number of hyperpa-
rameters to learn.

Also, note that the choice of the kernel can affect the smoothness of the
manifold in the feature space H, e.g., the Matérn 5/2 kernel induces a C2 atlas
for the manifold ϕ(S). We argue that the smoothness of ϕ(S) is less important to
the dimensionality reduction task, comparing to the convexity and connectedness
thereof. In this work, we do not aim to investigate the impact of the kernel on
the topological properties of ϕ(S). Therefore, we use the RBF kernel for the
construction of the forward map for its simplicity.
Learning the backward map. When performing the Bayesian optimization in
the reduced space T , we need to determine a “pre-image” of a candidate point z ∈
T for the function evaluation. To implement such a backward map B : T → S, we
base our construction on the approach proposed in [8], in which the pre-image of
a point z ∈ T is a conical combination of some points in S:

∑d
i=1 wipi, wi ∈ R>0.

In this paper, the points {pi}di=1 are taken as a random subset of the data points
{xi}ni=1. The conical weights are determined by minimizing the distance between
z and the image of the conical combination under the forward map:

w∗
1 , . . . , w

∗
d = argmin

{wi}d
i=1⊂Rd

>0

∥∥∥∥∥z−F

(
d∑

i=1

wipi

)∥∥∥∥∥
2

2

+Q

(
d∑

i=1

wipi

)
, (3)

8 Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

Q(x) = exp

(
d∑

i=1

max(0, li − xi) + max(0, xi − ui)

)
.

where the function Q penalizes the case that the pre-image is out of S. As with
Eq. (2), the weights are optimized with the L-BFGS-B algorithm (starting from
zero with 200d maximal iterations). Taking the optimal weights, we proceed to
define the backward map: ∀z ∈ T ,

B : z 7→ CLIP

(
d∑

i=1

w∗
i pi

)
, (4)

where the function CLIP(x) cuts off each component of x at the lower and upper
bounds of S, which ensures the pre-image is always feasible.
Remark. The event that {pi}di=1 contains a co-linear relation is of measure zero
and the conical form can procedure pre-images outside S, allowing for a complete
coverage thereof. There exist multiple solutions to Eq. (3) (and hence multiple
pre-images) since the forward map F contains an orthogonal projection step,
which is not injective. Those multiple pre-images can be obtained by randomly
restarting the quasi-Newton method used to solve Eq. (3). However, since those
pre-images do not distinguish from each other for our purpose, we simply take
a random one in this work.
Bayesian optimization in the reduced space. Given the forward and back-
ward maps, we are ready to perform the optimization task in the space T . Es-
sentially, we first map the data set X ⊂ S to T using the forward map (Eq. (1)):
F(X) = {F(xi)}ni=1, which implicitly defines the counterpart f ′ := f ◦ B of the
objective function in T . Afterwards, we train a Gaussian process model with the
data set (F(X),Y) to model f ′, i.e., ∀z ∈ T, f ′(z) | F(X),Y, z ∼ N (f̂(z), ŝ2(z)).
The search domain in the reduced space T is determined as follows. Since the
RBF kernel monotonically decreases w.r.t. the distance between its two input
points, we can bound the set ϕ(X) by first identifying the point xmax with the
largest distance to the center of data points c and secondly computing the dis-
tance r between ϕ(xmax) and ϕ(c) in the feature space H. Since S is a hyperbox
in Rd, we simply take an arbitrary vertex of the hyperbox for xmax. Note that, as
the orthogonal projection (from H to T) does not increase the distance, the open
ball B := {z ∈ T : ∥z∥2 < r} always covers F(X). For the sake of optimization
in T , we take the smallest hyperbox covering B as the search domain in T .

After the GPR model is created on the data set (F(X),Y), we maximize the
expected improvement function EI(z; f̂ , ŝ) = ŝ(z)uCDF(u) + ŝ(z) PDF(u), u =

(minY − f̂(z))/ŝ(x) to pick a new candidate point z∗, where CDF and PDF
stand for the cumulative distribution and probability distribution functions of a
standard normal random variable, respectively. Due to our construction of the
search domain in T , it is possible that the global optimum z∗ of EI is associated
with an infeasible pre-image in S. To mitigate this issue, we propose a multi-
restart optimization strategy for maximizing EI (with different starting points
in each restart), in which we only take the best outcome (w.r.t. its EI value)
whose pre-image belongs to S. In our experiments, we used 10 random restarts

High Dimensional Bayesian Optimization with Kernel PCA 9

of the optimization. Also, it is unnecessary to optimize kernel’s hyperparameter
γ in each iteration of BO since the new point proposed by EI would not make
a significant impact on learning the feature map, if its quality is poor relative
to the observed ones in Y (and hence assigned with a small weight). Therefore,
it suffices to only re-optimize γ whenever we find a new point whose function
value is at least as good as the 20% percentile of Y. Also, the 20% threshold is
manually chosen to balance the convergence and computation time of KPCA-
BO, after experimenting several different values on BBOB test problems.

4 Experiments

Experimental Setup. We evaluate the performance of KPCA-BO on ten
multi-modal functions from the BBOB problem set [12] (F15 - F24), which
should be sufficiently representative of the objective functions handled in real-
world applications. We compare the experimental result of KPCA-BO to stan-
dard BO and the PCA-BO in our previous work [21] on three problem di-
mensions d ∈ {20, 40, 60} with the evaluation budget in {100, 200, 300}, re-
spectively. We choose a relatively large DoE size of 3d, to ensure enough in-
formation for learning the first sub-manifold. On each function, we consider
five problem instances (instance ID from 0 to 4) and conduct 10 independent
runs of each algorithm. We select the Matérn 5/2 kernel for the GPR model.
The L-BFGS-B algorithm [5] is employed to maximize the likelihood of GPR
as well as the EI acquisition function at each iteration. We add to our com-
parison results for CMA-ES [13], obtained by executing the pycma package
(https://github.com/CMA-ES/pycma) with 16 independent runs on each prob-
lem. The implementation of BO, PCA-BO, and KPCA-BO can be accessed at
https://github.com/wangronin/Bayesian-Optimization/tree/KPCA-BO.
Results. All our data sets are available for interactive analysis and visualiza-

tion in the IOHanalyzer [28] repository, under the bbob-largescale data sets of
the IOH repository. In Fig. 2, we compare the convergence behavior of all four
algorithms, where we show the evolution of the best-so-far target gap (fbest−f∗)
with respect to the iteration for each function-dimension pair. In all dimensions,
it is clear that both KPCA-BO and PCA-BO outperform BO substantially across
functions F17 - F20, while both KPCA-BO and PCA-BO exhibit about the same
convergence with BO on F23, and are surpassed by BO significantly on F16. The
poor performance of PCA-BO and KPCA-BO on the Weierstrass function (F16)
can be attributed to the nature of its landscape, which is highly rugged and mod-
erately periodic with multiple global optima. Therefore, a basin of attraction is
not clearly defined, which confuses both PCA variants. On functions F17, F19,
and F24, we observe that KPCA-BO is outperformed by PCA-BO in 20D, while
as the dimensionality increases, KPCA-BO starts to surpass the convergence
rate of PCA-BO. For functions F21 and F22, KPCA-BO’s performance is in-
distinguishable from PCA-BO in 20D, and in higher dimensions, the advantage
of KPCA-BO becomes prominent. For the remaining function-dimension pairs,
KPCA-BO shows a comparable performance to PCA-BO. Compared to CMA-

https://github.com/CMA-ES/pycma
https://github.com/wangronin/Bayesian-Optimization/tree/KPCA-BO

10 Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

480
560
640
720
800
880
960

1040
F15

35

36

37

38

39

40

41
F16

12

14

16

18

20

22

24 F17

42
48
54
60
66
72
78
84
90
96

F18

10
12
14
16
18
20
22

F19

60 70 80 90 100
8000

16000
24000
32000
40000
48000
56000
64000

F20

60 70 80 90 100
62
64
66
68
70
72
74
76
78

F21

60 70 80 90 100
70
72
74
76
78
80
82

F22

60 70 80 90 100
5.10
5.25
5.40
5.55
5.70
5.85
6.00
6.15 F23

60 70 80 90 100
300
325
350
375
400
425
450
475
500
525

F24

f -
 f*

 in
 2

0D

BO PCA-BO KPCA-BO CMA

1050
1200
1350
1500
1650
1800
1950

F15

42
43
44
45
46
47
48

F16

12
13
14
15
16
17
18
19

F17

44
48
52
56
60
64
68
72
76 F18

9
12
15
18
21
24
27
30

F19

120 140 160 180 200
15000
30000
45000
60000
75000
90000

105000
120000
135000

F20

120 140 160 180 200
68
70
72
74
76
78
80
82
84

F21

120 140 160 180 200
72
74
76
78
80
82
84

F22

120 140 160 180 200
5.92
6.00
6.08
6.16
6.24
6.32
6.40
6.48
6.56
6.64

F23

120 140 160 180 200
640
720
800
880
960

1040
1120
1200

F24

f -
 f*

 in
 4

0D

1600
1800
2000
2200
2400
2600
2800
3000
3200

F15

44
45
46
47
48
49
50
51 F16

13
14
15
16
17
18
19
20
21

F17

52
56
60
64
68
72
76
80

F18

9
12
15
18
21
24
27
30
33

F19

180 200 220 240 260 280 300
30000
60000
90000

120000
150000
180000
210000
240000

F20

180 200 220 240 260 280 300
68
70
72
74
76
78
80
82
84

F21

180 200 220 240 260 280 300
70
72
74
76
78
80
82
84

F22

180 200 220 240 260 280 300
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
7.0

F23

180 200 220 240 260 280 300
900

1050
1200
1350
1500
1650
1800
1950

F24

f -
 f*

 in
 6

0D

iteration

Fig. 2: The best-so-far target gap (fbest − f∗) against the iteration for CMA-
ES (purple), BO (red), PCA-BO (blue), and KPCA-BO (green) is averaged
over 50 independent runs on each test problem. We compare the algorithms in
three dimensions, 20D (top), 40D (middle), and 50D (bottom). The shaded area
indicates the standard error of the mean target gap. CMA-ES data is obtained
from running the pycma package with the same evaluation budgets as BO.

ES, both KPCA-BO and PCA-BO either outperform CMA-ES or show roughly
the same convergence except on F21 and F22 in 20D. In higher dimensions, al-
though KPCA-BO still exhibits a steeper initial convergence rate (before about
200 function evaluations in 60D), CMA-ES finds a significantly better solution

High Dimensional Bayesian Optimization with Kernel PCA 11

F15 F16 F17 F18 F19 F20 F21 F22 F23 F24

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

B
O

K
P

C
A

−
B

O

P
C

A
−

B
O

0

50

100

150
C

P
U

 ti
m

e
(s

)

Acquisition optimization GPR training

Fig. 3: Mean CPU time taken by training the GPR model (dark cyan) and max-
imizing the EI acquisition function (red) in 60D for BO, PCA-BO, and KPCA-
BO, respectively. In general, training the GPR model takes the majority of CPU
time and both PCA-BO and KPCA-BO manages to reduce it significantly.

after the first 3d evaluations (the DoE phase of the BO variants), leading to
better overall performance.

Also, we observe that KPCA-BO shows better relative performance when
the dimensionality increases (e.g., on F18 and F22 across three dimensions), im-
plying that the kernelized version is better suited for solving higher-dimensional
problems. Interestingly, KPCA-BO shows an early faster convergence on F21
and F22 compared to PCA-BO and is gradually overtaken by PCA-BO, im-
plying that KPCA-BO stagnates earlier than PCA-BO. We conjecture that the
kernel function of KPCA-BO (and consequently the sub-manifold) stabilizes
much faster than the linear subspace employed in PCA-BO, which might at-
tribute to such a stagnation behavior. Therefore, KPCA-BO is more favorable
than PCA-BO in higher dimensions (i.e., d ≥ 60), while in lower dimensions
(d ≈ 20), it is competitive to PCA-BO when the budget is small for most test
cases (it only loses a little to PCA-BO on F24).

In Fig. 3, we depict the CPU time (in seconds) taken to train the GPR model
as well as maximize EI in 60D. As expected, the majority of the CPU time is
taken by the training of the GPR model. PCA-BO and KPCA-BO achieve sub-
stantially smaller CPU time of GPR training than the vanilla BO with exception
on F19, F20, and F24, where KPCA-BO actually takes more time. In all cases,
the CPU time for maximizing EI is smaller for KPCA-BO and PCA-BO than
for BO.

5 Conclusions

In this paper, we proposed a novel KPCA-assisted Bayesian optimization algo-
rithm, the KPCA-BO. Our algorithm enables BO in high-dimensional numerical

12 Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

optimization tasks by learning a nonlinear sub-manifold of the original search
space from the evaluated data points and performing BO directly in this sub-
manifold. Specifically, to capture the information about the objective function
when performing the kernel PCA procedure, we rescale the data points in the
original space using a weighting scheme based on the corresponding objective
values of the data point. With the help of the KPCA procedure, the training
of the Gaussian process regression model and the acquisition optimization – the
most costly steps in BO – are performed in the lower-dimensional space. We
also implement a backward map to convert the candidate point found in the
lower-dimensional manifold to the original space.

We empirically evaluated KPCA-BO on the ten multimodal functions (F15-
F24) from the BBOB benchmark suite. We also compare the performance of
KPCA-BO with the vanilla BO, the PCA-BO algorithm from our previous work,
and CMA-ES, a state-of-the-art evolutionary numerical optimizer. The results
show that KPCA-BO performs better than PCA-BO in capturing the contour
lines of the objective functions when the variables are not linearly correlated.
The higher the dimensionality, the more significant this better capture becomes
for the optimization of functions F20, F21, F22, and F24. Also, the mean CPU
time measured in the experiments shows that after reducing the dimensionality,
the CPU time needed to train the GPR model and maximize the acquisition is
greatly reduced in most cases.

The learning of the lower-dimensional manifold is the crux of the proposed
KPCA-BO algorithm. However, we observe that this manifold stabilizes too
quickly for some functions, leading to unfavorable stagnation behavior. In further
work, we plan to investigate the cause of this premature convergence and hope to
identify mitigation methods. Since the manifold is learned from the data points
evaluated so far, a viable approach might be to use a random subset of data
points to learn the manifold, rather than taking the entire data set.

Another future direction is to improve the backward map proposed in this
paper. Since an orthogonal projection is involved when mapping the data to
the manifold, the point on the manifold has infinitely many pre-images. In our
current approach, we do not favor one direction or another, whereas it might
be preferable to bias the map using the information of the previously sampled
points. For example, the term to minimize (to exploit) or maximize (to explore)
the distance between the candidate pre-image point and the lower-dimensional
manifold can be added to the cost function used in the backward map. These
two approaches can be combined or switched in the process of optimization.

Acknowledgments. Our work is supported by the Paris Ile-de-France re-
gion (via the DIM RFSI project AlgoSelect), by the CNRS INS2I institute (via
the RandSearch project), by the PRIME programme of the German Academic
Exchange Service (DAAD) with funds from the German Federal Ministry of
Education and Research (BMBF), and by RFBR and CNRS, project number
20-51-15009.

High Dimensional Bayesian Optimization with Kernel PCA 13

References

1. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966).
https://doi.org/10.1126/science.153.3731.34

2. Ben Salem, M., Bachoc, F., Roustant, O., Gamboa, F., Tomaso, L.: Sequential
dimension reduction for learning features of expensive black-box functions (2019),
https://hal.archives-ouvertes.fr/hal-01688329, preprint

3. Binois, M., Wycoff, N.: A survey on high-dimensional Gaussian process modeling
with application to Bayesian optimization. arXiv:2111.05040 [math] (Nov 2021)

4. Bull, A.D.: Convergence Rates of Efficient Global Optimization Algorithms. J.
Mach. Learn. Res. 12, 2879–2904 (2011), http://dl.acm.org/citation.cfm?id=
2078198

5. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for
bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995).
https://doi.org/10.1137/0916069

6. Delbridge, I., Bindel, D., Wilson, A.G.: Randomly Projected Additive Gaussian
Processes for Regression. In: Proc. of the 37th International Conference on Machine
Learning (ICML). pp. 2453–2463. PMLR (Nov 2020)

7. Duvenaud, D.K., Nickisch, H., Rasmussen, C.: Additive Gaussian Processes. In:
Advances in Neural Information Processing Systems. vol. 24. Curran Associates,
Inc. (2011)

8. García-González, A., Huerta, A., Zlotnik, S., Díez, P.: A kernel principal component
analysis (kpca) digest with a new backward mapping (pre-image reconstruction)
strategy. CoRR abs/2001.01958 (2020)

9. Gaudrie, D., Riche, R.L., Picheny, V., Enaux, B., Herbert, V.: Modeling and
Optimization with Gaussian Processes in Reduced Eigenbases – Extended Ver-
sion. Structural and Multidisciplinary Optimization 61(6), 2343–2361 (Jun 2020).
https://doi.org/10.1007/s00158-019-02458-6

10. Ginsbourger, D., Roustant, O., Schuhmacher, D., Durrande, N., Lenz, N.:
On ANOVA decompositions of kernels and Gaussian random field paths.
arXiv:1409.6008 [math, stat] (Oct 2014)

11. Guhaniyogi, R., Dunson, D.B.: Compressed gaussian process for manifold regres-
sion. Journal of Machine Learning Research 17(69), 1–26 (2016), http://jmlr.
org/papers/v17/14-230.html

12. Hansen, N., Auger, A., Ros, R., Mersmann, O., Tušar, T., Brockhoff, D.: COCO: A
platform for comparing continuous optimizers in a black-box setting. Optimization
Methods and Software pp. 1–31 (2020)

13. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation 9(2), 159–195 (2001).
https://doi.org/10.1162/106365601750190398, https://doi.org/10.1162/
106365601750190398

14. Huang, W., Zhao, D., Sun, F., Liu, H., Chang, E.: Scalable Gaussian process re-
gression using deep neural networks. In: Proc. of the 24th International Conference
on Artificial Intelligence (IJCAI). pp. 3576–3582. AAAI Press (2015)

15. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient Global Optimization of Expen-
sive Black-Box Functions. Journal of Global Optimization 13(4), 455–492 (1998).
https://doi.org/10.1023/A:1008306431147

16. Kapsoulis, D., Tsiakas, K., Asouti, V., Giannakoglou, K.C.: The use of ker-
nel PCA in evolutionary optimization for computationally demanding engi-
neering applications. In: 2016 IEEE Symposium Series on Computational In-
telligence, SSCI 2016, Athens, Greece, December 6-9, 2016. pp. 1–8. IEEE

https://doi.org/10.1126/science.153.3731.34
https://hal.archives-ouvertes.fr/hal-01688329
http://dl.acm.org/citation.cfm?id=2078198
http://dl.acm.org/citation.cfm?id=2078198
https://doi.org/10.1137/0916069
https://doi.org/10.1007/s00158-019-02458-6
http://jmlr.org/papers/v17/14-230.html
http://jmlr.org/papers/v17/14-230.html
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1023/A:1008306431147

14 Kirill Antonov, Elena Raponi, Hao Wang, and Carola Doerr

(2016). https://doi.org/10.1109/SSCI.2016.7850203, https://doi.org/10.1109/
SSCI.2016.7850203

17. Li, C., Gupta, S., Rana, S., Nguyen, V., Venkatesh, S., Shilton, A.: High dimen-
sional bayesian optimization using dropout. In: Proc. of the 26th International
Joint Conference on Artificial Intelligence (IJCAI). p. 2096–2102. AAAI Press
(2017)

18. Mockus, J.: On Bayesian Methods for Seeking the Extremum. In: Marchuk,
G.I. (ed.) Optimization Techniques, IFIP Technical Conference, Novosibirsk,
USSR, July 1-7, 1974. LNCS, vol. 27, pp. 400–404. Springer (1974).
https://doi.org/10.1007/3-540-07165-2_55

19. Muehlenstaedt, T., Roustant, O., Carraro, L., Kuhnt, S.: Data-driven Kriging mod-
els based on FANOVA-decomposition. Statistics and Computing 22(3), 723–738
(May 2012). https://doi.org/10.1007/s11222-011-9259-7

20. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. Journal of number
theory 30(1), 51–70 (1988)

21. Raponi, E., Wang, H., Bujny, M., Boria, S., Doerr, C.: High Dimensional Bayesian
Optimization Assisted by Principal Component Analysis. In: Proc. of Parallel
Problem Solving from Nature (PPSN). LNCS, vol. 12269, pp. 169–183. Springer
(2020). https://doi.org/10.1007/978-3-030-58112-1_12

22. Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning.
Adaptive computation and machine learning, MIT Press (2006), https://www.
worldcat.org/oclc/61285753

23. Rolland, P., Scarlett, J., Bogunovic, I., Cevher, V.: High-Dimensional Bayesian Op-
timization via Additive Models with Overlapping Groups. In: Proc. of the Twenty-
First International Conference on Artificial Intelligence and Statistics. pp. 298–307.
PMLR (Mar 2018)

24. Santner, T.J., Williams, B.J., Notz, W.I.: The Design and Analysis of Computer
Experiments. Springer (2003). https://doi.org/10.1007/978-1-4757-3799-8

25. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear Component Analysis as
a Kernel Eigenvalue Problem. Neural Computation 10(5), 1299–1319 (1998).
https://doi.org/10.1162/089976698300017467

26. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the
IEEE 104(1), 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218

27. Ulmasov, D., Baroukh, C., Chachuat, B., Deisenroth, M., Misener, R.: Bayesian
optimization with dimension scheduling: Application to biological systems. Com-
puter Aided Chemical Engineering 38 (11 2015). https://doi.org/10.1016/B978-0-
444-63428-3.50180-6

28. Wang, H., Vermetten, D., Ye, F., Doerr, C., Bäck, T.: IOHanalyzer: Performance
analysis for iterative optimization heuristic. ACM Transactions on Evolutionary
Learning and Optimization (2022). https://doi.org/10.1145/3510426

29. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., De Freitas, N.: Bayesian optimiza-
tion in a billion dimensions via random embeddings (2016)

https://doi.org/10.1109/SSCI.2016.7850203
https://doi.org/10.1109/SSCI.2016.7850203
https://doi.org/10.1109/SSCI.2016.7850203
https://doi.org/10.1007/3-540-07165-2_55
https://doi.org/10.1007/s11222-011-9259-7
https://doi.org/10.1007/978-3-030-58112-1_12
https://www.worldcat.org/oclc/61285753
https://www.worldcat.org/oclc/61285753
https://doi.org/10.1007/978-1-4757-3799-8
https://doi.org/10.1162/089976698300017467
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1016/B978-0-444-63428-3.50180-6
https://doi.org/10.1016/B978-0-444-63428-3.50180-6
https://doi.org/10.1145/3510426

	High Dimensional Bayesian Optimization with Kernel Principal Component Analysis

