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Abstract. Algorithm selection wizards are effective and versatile tools
that automatically select an optimization algorithm given high-level in-
formation about the problem and available computational resources, such
as number and type of decision variables, maximal number of evaluations,
possibility to parallelize evaluations, etc. State-of-the-art algorithm se-
lection wizards are complex and difficult to improve. We propose in this
work the use of automated configuration methods for improving their
performance by finding better configurations of the algorithms that com-
pose them. In particular, we use elitist iterated racing (irace) to find
CMA configurations for specific artificial benchmarks that replace the
hand-crafted CMA configurations currently used in the NGOpt wizard
provided by the Nevergrad platform. We discuss in detail the setup of
irace for the purpose of generating configurations that work well over the
diverse set of problem instances within each benchmark. Our approach
improves the performance of the NGOpt wizard, even on benchmark
suites that were not part of the tuning by irace.

Keywords: Algorithm Configuration · Algorithm Selection · Black-box
Optimization · Evolutionary Computation

1 Introduction

In the context of black-box optimization, the use of a portfolio of optimization
algorithms [23], from which an algorithm is selected depending on the features
of the particular problem instance to be solved, is becoming increasingly pop-
ular. The algorithm that encapsulates the selection rules and the portfolio of
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algorithms is sometimes referred as a “wizard” [20]. Algorithm selection wizards
provide versatile, robust and convenient tools, particularly for black-box opti-
mization, where problems that arise in practice show a large variety of different
requirements, both with respect to problem models, but also with respect to the
(computational) resources that are available to solve them.

Building a competitive algorithm selection wizard is not an easy task, because
it not only requires devising the rules for selecting an algorithm for a given
problem instance, but also configuring the parameters of the algorithms to be
selected, which is a difficult task by itself [3]. Although there are examples of
wizards that were build automatically for SAT problems [29], many algorithm
selection wizards are still hand-crafted. An example of a successful hand-crafted
algorithm selection wizard is NGOpt [20], provided by the optimization platform
Nevergrad [22].

NGOpt was designed by carefully studying the performance of tens of opti-
mizers on a wide range of benchmark suites to design hand-crafted rules that
aim to select the best optimizer for particular problem features. Through an
iterative improvement process, new versions of NGOpt are designed by refining
the hand-crated rules and replacing optimizers by others that lead to a better
performance of the new NGOpt version. The result is a complex algorithm se-
lection wizard that outperforms many well-known stand-alone optimizers on a
wide range of benchmark suites.

In this work, we attempt to investigate the potential of improving NGOpt via
automated algorithm design techniques. Rebuilding NGOpt from scratch using
automated methods is a daunting task that would waste the knowledge already
encoded in it and the human effort already invested in its creation. Instead, we
examine how automatic algorithm configuration (AC) methods may be used in
a judicious manner to improve NGOpt by focusing on improving one of its most
critical underlying optimizers.

AC methods such as irace [16], aim to find a configuration, i.e., a setting
of the parameters of an algorithm, that gives good expected performance over
a large space of problem instances by evaluating configurations on a training
subset from such space. AC methods, including irace, are typically designed to
handle categorical and numerical parameter spaces and stochastic performance
metrics, not only due to the inherent stochasticity of randomized optimization
algorithms but also because the training instances represent a random sample
of the problems of interest. Traditionally, AC methods have been used to tune
the parameters of specific algorithms [3], however, more recently, they have been
used to automatically design algorithms from flexible frameworks [1, 12, 18, 19]
and to build algorithm portfolios [28]. For more background on AC, we refer the
interested reader to two recent surveys [8, 25].

As mentioned above, we do not wish to re-build nor replace NGOpt but,
instead, iteratively improve it. To do so, we first answer the question of whether
the hand-crafted NGOpt may be further improved by replacing some of its com-
ponents by algorithm configurations obtained from the application of an AC
method, in particular, irace. When applied to a complex algorithm selection
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wizard such as NGOpt and a diverse black-box optimization scenario, such as
the one tackled by NGOpt, the correct setup of an AC method is crucial. We
discuss in detail our approach here, which we believe is applicable to other simi-
lar scenarios. Our results show that our proposed approach clearly improves the
hand-crafted NGOpt, even on benchmark suites not considered in the tuning
process by irace.

This paper is structured as follows. Section 2 gives an introduction to the
concept of algorithm selection wizard and describes, in particular, the one used
in our experiments, NGOpt. Section 3 presents the experimental setup and the
benchmark suites used for tuning the target algorithm. In Section 4 we present
the integration of the tuned algorithms into the new algorithm selection wizard.
The evaluation results are presented in Section 5. Section 6 concludes the paper.

2 Preliminaries

Algorithm Selection Wizards. Modern algorithm selection wizards make use
of a number of different criteria to chose which algorithm(s) are executed on
a given problem instance, and for how long. Algorithm selection wizards take
into account a priori information about the problem and the resources that are
available to solve it. Using this information, the algorithm selection wizards
recommend one or several algorithms to be run, along with a protocol to assign
computational budget to each of these.

NGOpt is built atop of several dozens of state-of-the-art algorithms that have
been added to Nevergrad over the last years. However, NGOpt does not only
select which algorithms to execute on which problem instances, but it also com-
bines algorithms in several ways, e.g., by enriching classic approaches with local
surrogate models. Since all algorithms submitted to Nevergrad are periodically
run on all fitting benchmark problems available within the environment, a very
large amount of performance data is available. In light of this rich data set,
and in light of the tremendous performance gains obtained through automated
algorithm designs [2, 12, 21] and selection rules [11], it is therefore surprising
that both the decision rules of NGOpt and the configuration of the algorithms
available in Nevergrad are hand-picked.

CMA. Among the algorithms that compose NGOpt, a key component is
CMA, an instance of the family of covariance matrix adaptation evolution strate-
gies (CMA-ES [7]). In Nevergrad’s CMA implementation, the following param-
eters are explicitly exposed, making them straightforward candidates for the
configuration task. The scale parameter controls the scale of the search of the
algorithm in the search domain: a small value leads to start close to the center.
The elitist parameter is a Boolean variable that can have values ‘True’ or
‘False’ and it represents a switch for elitist mode, i.e., preserving the best indi-
vidual even if it includes a parent. The diagonal parameter is another Boolean
setting that controls the use of diagonal CMA [24]. Finally, the population
size is another crucial parameter that is usually set according to the dimen-
sion of the problem. Instead of setting its value directly, we decided to create



4 Trajanov, Nikolikj, Cenikj et al.

a higher-level integer parameter popsize factor and let the population size be
⌊4+ popsize factor · log d⌋, where d is the problem dimension. The parameter
search space of CMA is shown in Table 3.

Automated Algorithm Configuration. Given a description of the param-
eter space of a target algorithm, a class of problems of interest, and a computa-
tional budget (typically measured in target algorithm runs), the goal of an AC
method is to find a parameter configuration of the target algorithm that is ex-
pected to perform well on the problem class of interest. Due to the stochasticity
of randomized algorithms and the fact that only a limited sample of (training)
problem instances can be evaluated in practice, specialized methods for AC have
been developed in recent years [8, 9, 25] that try to avoid inherent human biases
and limitations in manual parameter tuning. We have selected here the elitist
iterated racing algorithm implemented by the irace package [16], since it has
shown good performance for configuring black-box optimization algorithms in
similar scenarios [13, 14, 15, 17].

3 Experimental Setup

To show the influence of the parameter tuning of the CMA included in NGOpt [22],
we have performed several parameter tuning experiments using irace. The setup
and results of this process are described in this section.

3.1 Setup of Irace for Tuning CMA

A training instance is defined by a benchmark function, a dimension, a rotation
and the budget available to CMA. We also define “blocks” of instances: all
instances within a block are equal except for the benchmark function and there
are as many instances within a block as benchmark functions. We setup irace so
that, within each race, the first elimination test (FirstTest) happens after seeing
5 blocks and subsequent elimination tests (EachTest) happen after each block.
Moreover, configurations are evaluated by irace on blocks in order of increasing
budget first and increasing dimension second, such that we can quickly discard
poor-performing configurations on small budgets and only good configurations
are evaluated on large ones [26]. The performance criterion optimized by irace is
the objective value of the point recommended by CMA after it has exhausted its
budget. Since Nevergrad validates performance according to the mean loss (as
explained later), the elimination test used by irace is set to t-test. Finally, we
set a maximum of 10 000 individual runs of CMA as the termination criterion
of each irace run. By parallelizing each irace run across 4 CPUs, the runtime of
a single run of irace was around 8 hours.

3.2 Benchmark Suites Used for Tuning

Nevergrad contains a very large number of benchmark suites. Each suite is a
collection of benchmark problems that share some common properties such as
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Table 1. Artificial benchmarks used as training instances by irace. The third column
gives the name of the CMA variant obtained by irace on that particular benchmark
(for the parameter values, see Table 4). The detailed code can be found in [22].

Benchmark name Context Optimized CMA

yabbob dimension ∈ [2, 50], budget ∈ [50, 12800] CMAstd
yasmallbbob Budget < 50 CMAsmall
yatuningbbob Budget < 50 and dim ≤ 15 CMAtuning
yaparabbob Num-workers=100 CMApara

yaboundedbbob Box-constrained, budget ≤ 300, dim ≤ 40 CMAbounded

similar domains or constraints, similar computational budgets, etc. A large num-
ber of different academic and real-world problems are available. We selected five
suites (yabbob, yasmallbbob, yatuningbbob, yaparabbob, and yabound-
edbbob) as training instances for irace, all of them derived from the BBOB
benchmark suite [5] of the COCO benchmarking environment [6]. See Table 1
for their various characteristics. We ran irace once for each benchmark suite sepa-
rately, by setting up their problem instances as described above. All runs of irace
used the parameter space of CMA shown in Table 3. For each benchmark suite,
we selected one CMA configuration from the ones returned by irace by doing 10
validation runs using the best configurations obtained by irace and the default
CMA configuration. Each run consisted of running each CMA configuration on
the whole instance space. For each instance we declared a winner configuration
that yielded the smallest result. Using majority vote then we determined a winner
from the 10 validation runs. The optimized configurations selected are named
CMAstd for yabbob, CMAsmall for yasmallbbob, CMAtuning for yatun-
ingbbob, CMApara for yaparabbob, and CMAbounded for yaboundedbbob
(Table 1). Their parameter values are shown in Table 4.

Table 2. Artificial and real-world benchmarks used for testing. The detailed code can
be found in [22].

Type Name Context

Artificial yabigbbob Budget 40000 to 320000
yaboxbbob Box constrained
yahdbbob Dimension 100 to 3000
yawidebbob Different settings (multi-objective, noisy, discrete. . . )
Deceptive Hard benchmark, far from yabbob

Real-world SeqMLTuning Hyperparameter tuning for SciKit models
SimpleTSP Traveling Salesman Problem, black-box
ComplexTSP Traveling Salesman Problem, black-box, nonlinear terms

UnitCommitment Unit Commitment for power systems
Photonics Simulators of nano-scale structural engineering

GP Gym environments used in [27].
007 Game simulator for the 007 game
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Algorithm 1 Pseudocode for MetaCMA.

1: procedure MetaCMA(budget, dimension, num workers, fully bounded)
2: if fully bounded then return CMAbounded ▷ All variables have bounded

domain.
3: if budget < 50 then
4: if dimension ≤ 15 then return CMAtuning else return CMAsmall

5: if num workers > 20 then return CMApara else return CMAstd

Table 3. Search space for the tuning of CMA by irace.

Parameter Default value Domain

scale 1 (0.1, 10) ⊂ R
popsize-factor 3 [1, 9] ⊂ N

elitist False {True, False}
diagonal False {True, False}

4 MetaCMA and its Integration in Nevergard

The CMA configurations found by irace were further combined into a new algo-
rithm selection wizard. For this purpose, we propose MetaCMA (Algorithm 1),
a deterministic ensemble for noiseless single-objective continuous optimization
that, based on deterministic rules, switches between different tuned CMA con-
figurations. For problems where all variables have bounded domain, MetaCMA
selects CMAbounded. Otherwise, for low budget (function evaluations) avail-
able, the MetaCMA model selects either the CMAtuning configuration (for low
dimension) or the CMAsmall configuration (otherwise). If number of workers is
more than 20, then the MetaCMA uses the CMApara. If neither of the above-
mentioned rules is met, the MetaCMA will switch to CMAstd, which was tuned
on yabbob.

Given that NGOpt considers many more cases than MetaCMA, we have to
integrate it inside NGOpt so that we have both the improved performance of
our MetaCMA and the generality of NGOpt. NGTuned corresponds to NGOpt
with all instances of CMA in NGOpt replaced by MetaCMA.

5 Experimental Results

To evaluate the performance of the MetaCMA model and its integration in
NGOpt (NGTuned), we compared it with the previous variant of NGOpt and
other state-of-the-art algorithms in three different scenarios. The first scenario
consists of the benchmark suites that were used by irace during tuning. All
algorithms have been rerun independently of the tuning process. The second
scenario involves artificial benchmark suites whose problem instances were not
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Table 4. Best parameters found by irace for each benchmark suite.

CMAstd CMAsmall CMAtuning CMApara CMAbounded
Parameter (Yabbob) (Yasmallbbob) (Yatuningbob) (Yaparabbob) (Yaboundedbbob)

scale 0.3607 0.4151 0.4847 0.8905 1.5884
popsize-factor 3 9 1 8 1

elitist False False True True True
diagonal False False False True True

Fig. 1. Results on yabbob: suite used in the tuning, moderate dimension and budget.

Fig. 2. Results on yasmallbbob: benchmark suite used in the tuning, low budget.

Fig. 3. Results on yatuningbbob: benchmark suite used in the tuning, counterpart of
yabbob with low budget and low dimension.

used in the tuning process. The third scenario involves real-world problems not
presented in the tuning process of irace. Details about these benchmark suites
are given in Table 1.

The selection of algorithms involved in the evaluation for each benchmark
suite differ because each suite has its own set of state-of-the-art algorithms.
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Fig. 4. Results on yaparabbob: benchmark suite used in the tuning, parallel case.

Fig. 5. yaboundedbbob: suite used in the tuning, bounded domain.

5.1 Evaluation on Artificial Benchmark Suites Presented in the
Tuning Process of Irace

Figures 1, 2, 3, 4, and 5 present results on benchmark suites used for running
irace. On the left side of each figure is a robustness heatmap, where the rows and
columns represent different algorithms, and the values of the heatmap reflect the
number of times the algorithm in each row outperforms the algorithm in each
column. We use mean quantiles over multiple settings (compared to other opti-
mization methods) in an anytime manner, meaning that all budgets are taken
into account, not only the maximum one. This is robust to arbitrary scalings of
objective functions. The algorithms’ global score, defined as their mean scores
(the number of times it performs better than the other algorithms), is used for
ranking the rows and columns. The six best-performing algorithms are listed as
rows and sorted by their mean score, while the columns contain all of the algo-
rithms involved in the algorithm portfolio. The labels in the columns contain the
mean score of each algorithm. For instance, in Figure 1, the label for NGTuned
is “1/18:76.1% +- 0.4”, meaning that it was ranked first, out of 18 evaluated al-
gorithms, and its mean score is 76.1%, which is the mean number of times it per-
formed better than the rest of the algorithms, on all problems and all budgets in
the benchmark suite. On the right side of each figure, we present the algorithms’
performance with different budgets. The x-axis represents the budget, while the
y-axis represents the rescaled losses (normalized objective value, averaged over
all settings), for a given budget, and linearly normalized in the range [0, 1]. Apart
from the algorithm name, the label of each algorithm in the legend contains two
values in brackets. The first one denotes the mean loss achieved by the algorithm
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for the maximum budget (after the losses for each problem have been normalized
in the range [0, 1]), while the second one denotes the mean loss for the second
largest budget. Figure 1 features the results on the yabbob benchmark suite.
The heatmap (left) shows that NGTuned outperforms the other algorithms, fol-
lowed by MetaCMA, while NGOpt is in the 7th position.Figure 2 features the
results on the yasmallbbob benchmark suite. The best results are obtained by
NGTuned, followed by MetaCMA, while NgOPt is ranked in the 6th position.
In addition, with regard to different budgets, MetaCMA outperforms NGOpt by
obtaining lower losses. In Figure 3, the results from the evaluation on yatun-
ingbbob benchmark suite are presented. It follows the trend of NGTuned being
the best performing algorithm. Comparing NGTuned and NGOpt according to
the convergence it seems that till 2×101, both achieved similar loss, but later
on for budgets above 2×101, NGOpt can provide better losses. The comparison
between the left and the right plot (keeping the rescaling in mind) suggests that
NGTuned has a better rank than NGOpt, but that the rescaled loss is better
for NGOpt. The results for yaparabbob benchmark suite are presented in Fig-
ure 4. In terms of mean scores obtained across all budgets, MetaCMA is the
best algorithm, followed by NGTuned. In terms of the loss achieved for differ-
ent budgets, NGTuned and MetaCMA provide similar results, with the biggest
difference being in the largest budget, where NGTuned achieves a lower loss.
Due to rescalings and the difference criteria (ranks on the left, normalized loss
on the right) the visual comparison between algorithms can differ. Both out-
perform NGOpt. On the yaboundedbbob benchmark suite (Figure 5), NGOpt
achieves better performance than NGTuned. Here, several algorithms from [10]
have been tested: the low budget makes them relevant. The best results are
achieved by NLOPT LN BOBYQA [4], closely followed by MetaCMA, with a
difference of 0.4% in the average quantiles referring to the number of times they
outperform other methods. From the line plot on the right of the figure, we can
see that MetaCMA consistently provides the lowest normalized loss, for different
budgets.

5.2 Evaluation on Benchmark Suites Not Used for Tuning

Artificial Benchmarks. Figures 6, 7, 9, 8, and 10 present results on benchmark
suites related to yabbob though with different configurations. The problem in-
stances used were not used in the tuning process.

Figure 6 shows the results on the yabigbbob benchmark suite, which con-
sists of the same problem instances as the yabbob benchmark suite with longer
budgets. Here, NGOpt achieves the best performance, while NGTuned is second
ranked. From the line plot on the right of Figure 6, we can see that NGOpt
and NGTuned are better than the other algorithms over all budgets. The re-
sults for the yaboxbbob benchmark suite (box-constrained and low budget) are
presented in Figure 7. In this case, all of the proposed algorithms appear as
top ranked, with MetaCMA being the best performing one. As for budget up
to around 103, MetaCMA performs the best, and is later outperformed by NG-
Tuned, which uses the MetaModel on top of MetaCMA. The yahdbbob bench-
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Fig. 6. Results on yabigbbob: longer budgets than for BBOB. Not used in the irace
trainings, but same functions as yabbob.

Fig. 7. Results on yaboxbbob: box-constrained and low budget: not used in the irace
training but has similarities.

Fig. 8. yahdbbob: high-dim. counterpart of yabbob, not used for training.

mark suite is a high-dimensional counter part of yabbob. On it, NGTuned is
selected as the best algorithm in Figure 8, followed by NGOpt with 0.7% dif-
ference referring to the % of times they outperform other algorithms. The right
subplot shows that these algorithms together with MetaCMA achieved the best
losses, across all budgets.

Figure 9 shows results on the yawidebbob benchmark suite, which is con-
sidered to be specially difficult and covers many different test problem instances
(continuous, discrete, noisy, noise-free, parallel or not, multi-objective or not).
On yawidebbob, NGTuned is selected as the best algorithm, followed by NGOpt,
with a difference of 1.7% in the average score related to the number of times
they outperform the other algorithms. MetaCMA is ranked as third. From the
line plot we can see that these algorithms achieved lowest losses, however the
behavior is not stable over different budgets. We need to point out here that
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Fig. 9. Results on yawidebbob: this benchmark matters particularly as it covers
many different test cases, continuous, discrete, noisy, noise-free, parallel or not, multi-
objective or not. It is designed for validating algorithm selection wizards. The different
problems have different budgets, so that it is not surprising that the curve is not de-
creasing.

Fig. 10. Deceptive functions: this benchmark [22] is quite orthogonal to the ya*bbob
benchmarks, and very hard (infinitely many local minima arbitrarily close to the opti-
mum / infinite condition number / infinitely tiny path to the optimum) .

NGTuned is not using CMA for multi-objective problems, so that some parts of
yawidebbob are not modified by our work. The results indicate that the auto-
mated configuration that is performed for such benchmark suites also helps to
improve the performance of the NGOpt on benchmark suites that contain a mix
of different problem instances. The results for the Deceptive functions bench-
mark suite are presented in Figure 10, where NGTuned is the winning algorithm
in terms of the number of times it performs better than the other algorithms and
the mean loss achieved for different budgets over all settings. This benchmark
suite is quite orthogonal to the yabbob variants and very hard to optimize, since
the deceptive functions contain infinitely many local minima arbitrarily close to
the optimum or have an infinite condition number or have an infinite tiny path
to the optimum.

Real-world Problems. We also tested our algorithms on some of the real-
world benchmark suites presented in Nevergrad. Due to length constraints, the
figures displaying these results are available only in the full version of this paper.
On the SimpleTsp benchmark suite, NGTuned outperforms NGOpt in terms of
the average frequency of winning over other algorithms and mean loss achieved
for different budgets over all settings. On the SeqMlTuning benchmark NG-
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Tuned appears among the best-performing algorithms with rank six. It outper-
forms NGOpt and MetaCMA which do not appear in the set of best performing
algorithms. On the ComplexTSP problem, NGTuned is found to be the best
performing algorithm. It also surpasses NGOpt. With regard to mean perfor-
mance per budget, they are very similar and consistently better than the other
algorithms. On the Unit Commitment benchmark suite, NGTuned is the third
ranked algorithm. It outperforms NGOpt but not enough for competing with the
best variants of DE. According to the convergence analysis, it seems that NG-
Tuned and NGOpt have similar behavior. On the Photonics problem, NGOpt
and NGTuned appear between the top ranked algorithms showing very simi-
lar performance. On th benchmark suite (GP), which is a challenge in genetic
programming, NGOpt and NGTuned show almost identical but very bad per-
formance overall: it is mentioned in [22] that NGOpt has counterparts dedicated
to neural reinforcement learning (MixDeterministic RL and ProgNoisyRL) that
perform better: we confirm this. On the 007 benchmark suite, NGTuned is the
best performing algorithm. Regarding the mean loss achieved for different bud-
gets, NGTuned shows similar performance to NGOpt.

6 Conclusion

We have shown in this paper how automated algorithm configuration methods
like irace may be used to improve an algorithm selection wizard like NGOpt.
NGTuned was better than NGOpt in most benchmark suites, included those
not used for tuning our MetaCMA. Our results improve the algorithm selection
wizard not only for the benchmark suites used during the tuning process but
also for a wider set of benchmark suites, including real-world test cases. Given
the complexity of NGOpt, we have an impact on few cases, so that the overall
impact on NGOpt across all Nevergrad suites remains moderate: in some cases,
NGTuned is equivalent to NGOpt, and in some cases (in which CMA is crucial) it
performs clearly better. In some cases, the differences between the two algorithms
are small. If we consider only clear differences, we have gaps for YABBOB, 007,
YASMALLBBOB, YAPARABBOB, YABOXBBOB, SimpleTSP, and Deceptive:
in all these cases, NGTuned performs better than NGOpt.

Our tuning process still contains a few manual steps that require an expert,
such as deciding which benchmark suites to use for tuning, as well as the inte-
gration of the tuned CMA configurations into NGOpt. Our ultimate goal is to
automatize all steps of the process, and to also tune other base components as
well as the decision rules that underlie the NGOpt algorithm selection process.
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