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A CONVERGENT DEEP LEARNING ALGORITHM FOR
APPROXIMATION OF POLYNOMIALS

BRUNO DESPRÉS
Abstract. We start from the contractive functional equation proposed in [4], where it was
shown that the polynomial solution of functional equation can be used to initialize a Neural
Network structure, with a controlled accuracy. We propose a novel algorithm, where the
functional equation is solved with a converging iterative algorithm which can be realized as
a Machine Learning training method iteratively with respect to the number of layers. The
proof of convergence is performed with respect to the L∞ norm. Numerical tests illustrate the
theory and show that stochastic gradient descent methods can be used with good accuracy
for this problem.

1. Introduction

Neural Networks representations of real monovariate polynomials defined on the
closed segment x ∈ I = [0, 1] play a central role in the numerical analysis of Neural
Networks (one can refer to [11, 13, 12, 4, 9, 2]). A central result is the Yarostky
Theorem [15] which provides an approximation result of general functions, by means
of a specific Neural Network approximation of the polynomial x 7→ x2 where the
activation function is ReLU R(x) = max(0, x). This specific Neural Network can
have an arbitrary large number of hidden layers, so it provides a simple example of
a Deep Neural Network with perfectly known coefficients.

However, as pointed out by Ronald DeVore in 2019 [5], the stability of the
approximation of polynomial functions by Deep Neural Networks (i.e. with many
hidden layers) is not addressed in the current theory [7]. In particular it is already
not the case for the Deep Neural Network which approximates the polynomial
x 7→ x2. To the best of the understanding of the author of this Note, it is because all
recent developments are devoted to abstract approximation theory and are scarcely
related to constructive algorithms.

The present Note provides a positive answer to the Ronald DeVore’s remark, by
showing that there exists an algorithm with the following properties:
- the algorithm constructs a series of functions which intend to approximate given
real polynomials in the reference segment I.
- under conditions, the algorithm is proved to be convergent in the L∞ norm.
- it can be implemented in a Neural Networks/Machine Learning platform. The it-
erations of the algorithm directly corresponds to the number of hidden layers. The
number of neurons which are trained per iteration of the algorithm is constant.
- numerical tests implemented in Tensorflow/Keras/Python [1] for very simple poly-
nomials confirm the theoretical properties in terms convergence and stability.

Even if restricted to academic extremely simple functions, the Deep Learning
algorithm presented in this Note seems the first one with a proof of convergence
in L∞ norm, where the iteration parameter is identical to the layer index. The
reason is that the proposed formulation is not doomed with the curse of non convex
optimization problems. Instead it solves a series of convex minimization problems.
In the language of Neural Networks/Machine Learning, this Deep Network is trained
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by means of a series of Shallow Networks. The convergence is insured due to the
underlying contractive structure explained in [4].

The Note is organized as follows. The setting of the problem is presented in
Section 2. Discussion of a sharper contraction constant is the matter of Section 3.
Section 4 is the core of the Note where we define a specific Machine Learning algo-
rithm as a series of convex minimization problems. In Section 5, we show with an
example that both contraction constants of Section 2 and 3 are non optimal. Final
Section 6 is devoted to numerical tests which illustrate the theoretical properties.
A discussion of the complexity of the algorithm and the presentation of some open
problems are proposed at the end.

2. A functional equation

The notations and results are borrowed from a previous work [4]. They form the
foundations on which the algorithm will be developed and justified.

The set of real polynomials is Pn = {p of degree ≤ n}. The set of contin-
uous functions C0(I) over I is equipped with the maximal norm ‖f‖L∞(I) =
maxi∈I |f(x)|. We consider a subdivision in m ≥ 1 subintervals [xj , xj+1] where
0 = x0 < x1 < · · · < xj < · · · < xm = 1 where xj = j∆x with ∆x = 1/m. The set
of continuous piecewise linear functions is

Vh =
{
u ∈ C0(I), u|(xj ,xj+1) ∈ P 1 for all 0 ≤ j ≤ m− 1

}
.

As in [4], we define the subset Eh ⊂ Vh
Eh = {u ∈ Vh : u(I) ⊂ I, u is non constant on exactly one subinterval} .

Functions in this set are called basis functions because of their central role, even if
they are not classical Finite element basis functions. Finite Elements in Vh or in
Eh are easy to implement with ReLU (R(x) = max(0, x)) and with TReLU (ReLU
with threshold) activation functions.
Once a real polynomial function H ∈ Pn is given, the following problem is consid-
ered [4].

Problem 1. Find (e0, e1, . . . , er, β1, . . . , βr) ∈ Vh×(Eh)r×Rr such that the identity
below holds

H(x) = e0(x) +
r∑
i=1

βiH ◦ ei(x), x ∈ I, (2.1)

with the contraction condition

K < 1, K =
r∑
i=1
|βi|. (2.2)

If n = 1 the problem becomes trivial. That is why we only consider n ≥ 2.
The classical example [8, 15, 2] is H(x) = x(1− x) which satisfies H(x) = 1

4g(x) +
1
4H(g(x)) where g is the normalized finite element function: g(x) = 2x for 0 ≤
x ≤ 1

2 and g(x) = 2(1 − x) for 1
2 ≤ x ≤ 1. Set e1(x) = min(2x, 1) and e2(x) =

min(2(1 − x), 1) with e1, e2 ∈ Eh for h = 1/2. One obtains H(x) = e0(x) +
1
4H(e1(x)) + 1

4H(e2(x)) where e0(x) = 1
4g(x). The contraction property (2.2) is

satisfied with a constant
∑
|βi| = 1

4 + 1
4 = 1

2 .
Contrary to [4], we now completely specify the basis functions in order to opti-

mize some approximations property and to explicit further implementation. We use
a double index notation where es = ej,k for 1 ≤ s ≤ r, 1 ≤ j ≤ m and 1 ≤ k ≤ n−1
(necessarily r = mn). The basis functions are translated one from the other (this
property was already stated in [4])

ej+1,k(x) = ej,k(x−∆x),
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so the basis functions are completely determined by basis functions e1,k. For 1 ≤
k ≤ n− 1 we take in this work

e1,k(x) = k−1
2(n−1) , 0 ≤ x,

e1,k(x) = nm
2(n−1)x+ k−1

2(n−1) , 0 ≤ x ≤ 1/m
e1,k(x) = n+k−1

2km , 1/m ≤ x.
(2.3)

Lemma 2.1. For all possible indices 1 ≤ j ≤ m and ≤ 1 ≤ k ≤ n − 1, one has
ej,k ∈ Eh.
Proof. Once the claim is proved for e1,k, it will be generalized by translation to
the other basis functions. By construction e1,k is continuous and piecewise affine.
The left value is non negative e1,k(0) = k−1

2(n−1) ≥ 0. The right value is e1,k(1/m) =
nm

2(n−1) ×
1
m + k−1

2(n−1) = n+k−1
2(n−1) ≤

n+n−2
2(n−1) ≤ 1. Therefore x 7→ e1,k(x) takes its values

between 0 and 1, which shows the claim. �

We remind the fundamental result proved recently in [4].
Theorem 2.1. Let H ∈ Pn with more precisely deg(H) = n. There exists a
threshold value m∗ such that the functional equation (2.1) has a solution with the
contraction property (2.2) for all m ≥ m∗.
Proof. For sake of completeness, we provide a short proof adapted to the new
notations.
• Consider the difference q = H −

∑m
j=1

∑n−1
k=1 βj,kH ◦ ej,k where the coefficients

are still unknowns at this stage. The second derivative of H is noted p = H ′′. In
all intervals, one can calculate the second derivative q′′ ∈ Pn−1. In the interval
Ij = [j/m, (j + 1)/m] one has

q′′ = p−
n−1∑
k=1

βj,k

(
nm

2(n− 1)

)2
p ◦ ej,k

The objective is to find coefficients βj,k such that q′′ = 0 in Ij .
• The equality q′′ = 0 in Ij is equivalent to dr

dxr q
′′(xj) = 0 for r = 0, . . . , n − 2,

because q′′ is a polynomial of degree n− 2 in Ij . It yields a square linear system
n−1∑
k=1

[(
nm

2(n− 1)

)2+r
p(r)

(
k − 1

2(n− 1)

)]
βj,k = p(r)(xj), 0 ≤ r ≤ n− 2.

The system is reorganized as
n−1∑
k=1

p(r)
(

k − 1
2(n− 1)

)
βj,k =

(
2(n− 1)
nm

)2+r
p(r)(xj), 0 ≤ r ≤ n− 2. (2.4)

• The matrix of the linear system (2.4) is of Vandermonde type. Since the deriva-
tives on the left hand side of (2.4) run for r = 0 to r = n−1, and the n−1 different
evaluation points run for 0 to 1

2 , it is a classical matter that the matrix is invertible.
Since the matrix does not depend on the interval index j, one obtains the bound

max
k
|βj,k| ≤ C/m2 uniformly with respect to j. (2.5)

Therefore

K =
m∑
j=1

n−1∑
k=1
|βj,k| ≤ C(n− 1)/m, (2.6)

which yields the contraction property for m ≥ m∗ high enough.
• With these coefficients, the difference q is a continuous function with vanishing
second derivatives in all Ij . Therefore one can write q = −e0 ∈ Vh and the claim is
proved. �
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What distinguishes the family (2.3) with the more general family considered in
[4][Theorem 1] is that the slope of the basis functions is always > 1. Indeed the
slope nm

2(n−1) is by construction the same for all basis functions (2.3), so since m ≥ 2
the property is evident. Considering (2.4), the greater the slope the smaller the
right hand side of the linear system. This is a reason why it is possible to think
that the family (2.3) provides better control of the coefficients βj,k, so ultimately
is optimal to obtain a smaller contraction constant K, see (2.6).

3. A sharper contraction constant

The right hand side operator (2.1) written for the new basis functions is{
H : L∞(I) → L∞(I)

G 7→
∑m
j=1

∑n−1
k=1 βj,kG ◦ ej,k.

(3.1)

It is endowed with the contraction property (2.2)

‖HG‖L∞(I) ≤ K‖G‖L∞(I), K =
m∑
j=1

n−1∑
k=1
|βj,k| < 1. (3.2)

Such property is central for the justification of the Deep Learning algorithm of this
Note.

The purpose in this Section is to present a sharper bound. Let us define

K̃ = 2
(

mmax
j=1

n−1∑
k=1
|βj,k

)
.

Lemma 3.1. One has the general bound: infe∈Vh
‖H(G)−e‖L∞(I) ≤ K̃‖G‖L∞(I).

Remark 3.1. The new contraction constant is sharper asymptotically for large m,
because the sum with respect to m in (3.2) is removed. Using (2.5), one gets the
bound K̂ ≤ C(n− 1)/m2 which is better than (2.6).

Proof. We write 1j the indicatrix function of the interval Ij , that is 1j(x) = 1 for
(j − 1)/m < x < j/m and 1j(x) = 0 for x < (j − 1)/m or j/m < x.
Let xj+ 1

2
= (j + 1

2 )/m be the central point in the interval Ij . One can write

H(G) =
∑
j

∑
k

βj,kG ◦ ej,k × 1j +
∑
j

Cj1j

where
Cj =

∑
i<j

∑
k

βi,kG ◦ ei,k(xj+ 1
2
) +

∑
j<i

∑
k

βi,kG ◦ ei,k(xj+ 1
2
). (3.3)

Let e ∈ Vh. A triangular inequality yields that

‖H(G)− e‖L∞(I) ≤

∥∥∥∥∥∥
∑
j

∑
k

βj,kG ◦ ej,k × 1j

∥∥∥∥∥∥
L∞(I)

+

∥∥∥∥∥∥
∑
j

Cj1j − e

∥∥∥∥∥∥
L∞(I)

. (3.4)

The first term is bounded as∥∥∥∥∥∥
∑
j

∑
k

βj,kG ◦ ej,k × 1j

∥∥∥∥∥∥
L∞(I)

≤

(
mmax
j=1

n−1∑
k=1
|βj,k

)
‖G‖L∞(I). (3.5)

To bound the second term, we design a piecewise affine function e ∈ Vh as follows

e(x0) = C1, e(xj) = Cj + Cj+1

2 for 1 ≤ j ≤ m1, e(xm) = Cm.
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A proof by drawing shows that∥∥∥∑Cj1j − e
∥∥∥
L∞(I)

≤ m−1max
j=1

|Cj+1 − Cj |
2 . (3.6)

The definition of the constants Cj and Cj+1 yields that

Cj+1 − Cj =
∑
i<j

∑
k βi,kG ◦ ei,k(xj+ 3

2
) +

∑
k βj,kG ◦ ej,k(xj+ 3

2
) +

∑
j+1<i

∑
k βi,kG ◦ ei,k(xj+ 3

2
)

−
∑
i<j

∑
k βi,kG ◦ ei,k(xj+ 1

2
)−

∑
k βj+1,kG ◦ ej+1,k(xj+ 1

2
)−

∑
j<i

∑
k βi,kG ◦ ei,k(xj+ 1

2
).

By definition (2.3), the basis functions are constant on the left and on the right of
the interval where they vary linearly. Therefore∑

i<j

∑
k

βi,kG ◦ ei,k(xj+ 3
2
)−

∑
i<j

∑
k

βi,kG ◦ ei,k(xj+ 1
2
) = 0

and ∑
j+1<i

∑
k

βi,kG ◦ ei,k(xj+ 3
2
)−

∑
j<i

∑
k

βi,kG ◦ ei,k(xj+ 1
2
) = 0.

So one deduces that

|Cj+1 − Cj | =
∣∣∣∑k βj,kG ◦ ej,k(xj+ 3

2
) −

∑
k βj+1,kG ◦ ej+1,k(xj+ 1

2
)
∣∣∣

≤
∑
k |βj,k|‖G‖L∞(I) +

∑
k |βj+1,k|‖G‖L∞(I)

(3.7)
which turns into

|Cj+1 − Cj | ≤ 2
(

mmax
j=1

n−1∑
k=1
|βj,k

)
‖G‖L∞(I). (3.8)

The claim is a consequence of (3.4-3.8). �

4. A Deep Machine Learning algorithm

This Section comes to the core of this Note since by presenting an abstract Deep
Machine Learning algorithm endowed with a proof of convergence with respect to
the number of layers (so the name Deep Learning). This Deep Learning algorithm
can be implemented in one of the Neural Networks/Machine Learning softwares
freely available such as Tensorflow/Keras [1], Scikit-Learn (Inria1), Pytorch (Face-
book2), Julia (MIT licence3). This list is not exhaustive.
It is sufficient for this presentation to consider that Neural Networks/Machine
Learning softwares have two features: a) they manipulate functions assembled with
ReLU like activation functions and composition of functions, b) they perform nu-
merical optimisation to fit the coefficients, in particular with stochastic gradient
descent methods [7, 3].

We assume that a certain number of basis functions e1, . . . , er are decided. The
basis functions are assembled with the ReLU activation functions and alike. In the
context of this work, a natural choice is to take the basis functions defined by (2.3).
We will write β = (β1, . . . , βr) ∈ Rr. For (e0, β, f) ∈ Vh×Rr×L∞(I), we will write
g(e0, β, f) ∈ L∞(I) the function defined by

g(e0, β, f) = e0 +
r∑
i=1

βif ◦ ei.

1https://scikit-learn.org/stable/
2https://pytorch.org
3https://julialang.org

https://scikit-learn.org/stable/
https://pytorch.org
https://julialang.org
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Let us decide of a given polynomial H ∈ Pn. One constructs a cost function where
the main variables to optimize are e0 and β and the parameters are the functions
f and H

J(e0, β : f,H) = ‖g(e0, β, f)−H‖L∞(I)

The algorithm below defines a sequence of functions (fk)k∈N as the solution of
minimization problems.

• Initialization: The seed is the null function
f0(x) = 0 for all x ∈ I. (4.1)

• Iterations on k: The next function is fk+1 = g(e0, β, fk) where (ek0 , βk)
is any solution of the minimization problem

(ek0 , βk) = arg min
(d0,α)∈Vh×Rr

‖g(d0, α, fk)−H‖L∞(I). (4.2)

After comments on the Neural Network implementation of (4.1-4.2) , we will
show the convergence fk → H in the L∞ norm.

Lemma 4.1. The number of hidden layers in a Neural Network implementation of
fk is k − 1.

Proof. Since f0 = 0 then f1 = g(e1
0, β

1, 0) ∈ Vh. Then f2 = g(e2
0, β

2, f1) can be
implemented in a Neural Network with one hidden layer. Then f3 = g(e3

0, β
3, f2)

can be implemented in a Neural Network with two hidden layers, and so one and
so forth. �

The algorithm is correctly defined as shown by the next result.

Lemma 4.2. The minimization problem is convex (but not strictly convex), and
has always at least one solution. For any (f,H) ∈ L∞(I) × L∞(I), there exists a
minimizer (e0, β) ∈ Vh × Rr such that

J(e0, β : f,H) ≤ J(d0, α : f,H) for all (d0, α) ∈ Vh × Rr.
The minimizer (e0, β) is a priori non unique.

Proof. Such a proof is standard in convex analysis in finite dimension [10].
The dimension of the linear space Vh is equal to m + 1, so any function h0 ∈ Vh
admits the linear expansion h0 =

∑m+1
p=1 δpϕp where the coefficients of the linear

expansion are δp ∈ R and Vh = Span(ϕp)1≤p≤m+1. Then one can write

g(h0, γ, f) =
m+1∑
p=1

δpϕp +
r∑
i=1

βif ◦ ei (4.3)

which shows that g(h0, γ, f) belongs to the linear subspace of L∞(I) generated by
the (ϕp)p and the (f ◦ei)i. Let us take a linear basis in the vectorial space, the basis
has a dimension m+ 1 ≤ q ≤ m+ 1 + r, so the sum can be recovered in function on
q coefficients only. It is a classical exercice (not reproduced here) to show that the
cost function J(f0, γ : f,H) is coercive with respect to these q coefficients: that is
the cost function tends to +∞ as a norm of these q coefficients tends to +∞. Since
the cost function is bounded from below, then it has a minimum. Finally it is a
standard matter that the L∞ norm does not bring strict coercivity so uniqueness
is not guaranteed. �

As a consequence the sequence defined by the sequence of minimization problems
(4.2) is a priori non unique. Nevertheless it is convergent.

Theorem 4.1. Assume (2.1-2.2). Then a series (4.1-4.2) converges with the bound

‖fk −H‖L∞(I) ≤ K̂k‖H‖L∞(I), K̂ = min(K, K̃).
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Proof. By (4.2) one has the bound ‖fk+1−H‖L∞(I) ≤ ‖d0 +
∑r
i=1 αifk ◦ ei −H‖L∞(I)

for all d0 ∈ Vh and all α = (α1, . . . , αr) ∈ Rr.
• Let us take (d0, α) = (e0, β) in accordance with the representation (2.1-2.2). One
deduces the inequality

‖fk+1 −H‖L∞(I) ≤ ‖e0 +
∑r
i=1 βifk ◦ ei − e0 −

∑r
i=1 βiH ◦ ei‖L∞(I)

≤ ‖
∑r
i=1 βi(fk −H) ◦ ei‖L∞(I)

≤
∑r
i=1 |βi|‖fk −H‖L∞(I)

≤ K‖fk −H‖L∞(I).

• One can also take (d0, α) = (e0 − e, β) where e ∈ Vh is arbitrary. One obtains

‖fk+1 −H‖L∞(I) ≤ ‖e0 − e+
∑r
i=1 βifk ◦ ei − e0 −

∑r
i=1 βiH ◦ ei‖L∞(I)

≤ ‖H(fk −H)− e‖L∞(I)
≤ K̃‖fk −H‖L∞(I)

by virtue of (3.2) and Lemma 3.1.
• So ‖fk+1 −H‖L∞(I) ≤ K̂‖fk −H‖L∞(I). Since f0 = 0, the claim is obtained by
iteration on k. �

5. Non optimality of K̂

An elementary exemple that will be used for the numerical tests is the following.
For this example one can check that K̂ > 1. However we will see that a sharper
value constant exists at the end of the Section.

Lemma 5.1. Take the third order Tchebycheff polynomial rescaled in [0, 1], that is
H(x) = T3(2x− 1) = 32x3 − 48x2 + 18x− 1. Take m = 3 and n = 3.
Then there exists e0 ∈ Vh such that H = e0 +

∑3
j=1

∑2
k=1 βj,kH ◦ ej,k with

β1,1 = β3,2 = 25

34 −
26

36 , β1,2 = β3,1 = 27

36 −
25

34 , β2,1 = β2,2 = 25

36 .

Proof. The difference q = H−
∑2
j=1

∑2
k=1 βj,kH◦ej,k is a continuous function. It is

a polynomial of degree at most 3 in the three intervals I1 = [0, 1/3], I2 = [1/3, 2/3]
and I3 = [2/3, 1].
• In I1 one has

e1,1(x) = 9
4x, e1,2(x) = 9

4x+ 1
4 , e2,1, e2,2, e3,1 and e3,2 are constant.

Then H(e1,1(x)) = 32
( 9

4x
)3 − 48

( 9
4x
)2 + h1x + h2 and H(e1,2(x)) = 32

( 9
4x
)3 −

24
( 9

4x
)2 + h3x + h4. Making vanish in I1 the coefficients of the third order and

second order monomials in q yields the system{
β1,1 + β1,2 =

( 4
9
)3 = 26

36 ,

2β1,1 + β1,2 = 2
( 4

9
)2 = 25

34 .

The solution is β1,1 = 25

34 − 26

36 and β1,2 = 27

36 − 25

34 .
• Concerning I3 one notices that the third order Tchebycheff is antisymmetric with
respect to the center x = 1/2. It explains why β1,1 = β3,2 and β1,2 = β3,1. These
values can also be obtained after lengthy but elementary calculations.
• In I2 one has

e2,1(x) = 9
4x−

3
4 , e2,2(x) = 9

4x−
1
2 , e1,1, e1,2, e3,1 and e3,2 are constant.
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One checks that H(e2,1(x)) = 32
( 9

4x
)3 − 120

( 9
4x
)2 + h5x + h6 and H(e2,2(x)) =

32
( 9

4x
)3− 96

( 9
4x
)2 + h7x+ h8. The linear system which corresponds to the annu-

lation in q of the monomials x3 and x2 can be written{
β2,1 + β2,2 =

( 4
9
)3 = 26

36 ,

120β2,1 + β2,2 = 48
( 4

9
)2
.

The solution is β2,1 = β2,2 = 25

36 .
• Therefore q is continuous and piecewise affine. One can write q = −e0 ∈ Vh. �

Remark 5.1. A numerical application shows that β1,1 = β3,2 = 0.3072 . . . , β1,2 =
β3,1 = −0.2194 . . . and β2,1 = β2,2 = 0.0438 . . . With these values K > K̃ > 1.
However the passage in the proof from estimate (3.7) to estimate (3.8) is non optimal
because it looses the fact that (3.7) concerns two consecutive indices. For m = 3,
two consecutive indices can be either (j, j + 1) = (1, 2) or (j, j + 1) = (2, 3). Then,
for the third order rescaled Tchebycheff polynomial, one gets the sharper bound

K = |β1,1|+|β1,2|
1
2 (|β1,1|+ |β1,2|+ |β2,1|+ |β2,2|) = 3

2 (|β1,1|+ |β1,2|)+|β2,1| = 0.8340 . . .
(5.1)

Now K < 1. This bound will be invoked to justify the numerical convergence in
test #2.

6. Numerical tests and discussion

Algorithm (4.1-4.2) has been implemented in Tensorflow/Keras [1] for the pur-
pose of numerical illustrations. The softwares Branch_data.py (training) and
Branch_gene.py (data generation) written for the tests are available at the Git
repository https://github.com/despresbr/NNNA. The minimisation problems
(4.2) are performed with the ADAM algorithm which is a stochastic descent gra-
dient method with batches. A dataset is created with oversampling and the cost
function in the L∞(I) norm is defined by creating a user-made loss function. The
function g(e0, β, fk) is assembled by using the concatenation-of-layers technique
[1][page 243]. The CPU cost of the learning stage is the same for all iterations k
since the number of free parameters (i.e. the number of neurons in this case) is the
same at each stage of the algorithm because we ask for the same number of epochs
and the same size of the batches. We use a trick which is classical for algorithms
which have inner loops (new training) inside a global exterior loop (iteration on
k). That is the starting point for a new training is the end point of the previous
training. It helps to save computational efforts. We also follow the prescription
[14, 3] where a decrease of the gradient length (i.e. the learning rate in Machine
Learning language) is advocated.

The minimization in the L∞ norm is performed approximatively because it is
not the objective of stochastic gradient descent algorithms to calculate global min-
ima with sharp accuracy. In particular we do not know precisely the influence of
the batches on the accuracy of the minimization procedure. Despite this fact, we
observe strong convergence in the tests below where the error εk = ‖fk −H‖L∞(I)
is reported in function of the iteration index k. The tests below have been calcu-
lated on a GPU node at SCAI-Sorbonne university4. They show convergence of
algorithm (4.1-4.2) in accordance with the main Theorem of convergence 4.1.

4https://scai.sorbonne-universite.fr

https://github.com/despresbr/NNNA
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6.1. Test #1. The polynomial is H(x) = x − x2. The training dataset is made
with 4000 pairs (xs, ys = H(xs))1≤s≤4000 where xs is sampled uniformly between
0 and 1. Around 20% of the pairs are taken outside for validation. The batches
are made with 128 pairs. The error at iteration k is ε0 = 0.0377, ε1 = 0.00806,
ε2 = 0.00238, ε3 = 0.000521, ε4 = 0.000165, ε5 = 3.66e− 5 then ε6 = 9.97e− 6− 5.
The numerical rate of convergence, that is the numerical contraction constant, is
Knum ≈ 1

4 which is better than the theoretical one.
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Figure 6.1. Display of the function calculated by the algorithm
versus the objective H. The four plots corresponds to 0 ≤ k ≤ 3.
One observes numerical convergence.

6.2. Test #2. The polynomial is the rescaled Tchebycheff polynomial of Lemma
5.1: H(x) = 32(2x − 1)3 − 48(2x − 1)2 + 18x − 1. Theoretical convergence is
guaranteed by means of the estimate of Remark 5.1. We take the same parameters
as in the previous test except that m = 3 and n = 2. The error at iteration k is
ε0 = 0.459, ε1 = 0.179, ε2 = 0.0834, ε3 = 0.0409, ε4 = 0.0109, then ε5 = 0.00471.
The numerical convergence is observed. It is compatible with the fact that K < 1
(see (5.1)). However K is quite close to 1, so it cannot explain the observed fast
convergence with a factor ≈ 1/2.

6.3. Test #3. We perform the same test as in the previous one, except that now
m = 5 and n = 3. We report only the accuracy of the first four iterations of the
algorithm, because the computational cost related to the manipulation of functions
increases for k = 5. The accuracy is ε0 = 0.201, ε1 = 0.027, ε2 = 0.0057 and
ε3 = 0.00103. One observes a more pronounced rate of convergence, in accordance
with bound (2.6) and Lemma 3.1.
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6.4. Test #4. Finally we consider the fifth order rescaled Tchebycheff polynomial:
H(x) = 16(2x− 1)5 − 20(2x− 1)3 + 5(2x− 1), and we take m = 9 and n = 5. The
errors are ε0 = 0.379, ε1 = 0.0625, ε2 = 0.0318 and ε3 = 0.00947. A comparison of
the exact solution and the numerical solution at step k = 3 is proposed in Figure
6.2.

-1

-0.5

 0

 0.5

 1

 1.5

 0  0.2  0.4  0.6  0.8  1

k=3
H(x)

Figure 6.2. Fifth order rescaled Tchebycheff polynomial: numer-
ical solution (cross) versus exact function (solid line).

6.5. Discussion. We discuss the complexity of the method and present three open
problems.

6.5.1. Complexity. The complexity of the algorithm can be defined as the relation
between the accuracy and the cost in the asymptotic range k >> 1. We present
hereafter simple bounds.
• As a consequence of Theorem 4.1, the accuracy in L∞ norm naturally scales like

ε = O(Kk)
where we remind that k is the number of layers and K < 1 is the contraction
constant.
• The cost can be estimated in two ways. Either the cost is estimated as the
number of neurons to train, equal to the number of free parameters in (4.3) times
the number of layers. Since r = m(n− 1), one obtains C = O(mnk). It yields the
complexity scaling

C = O (| log ε|) (6.1)
which is similar to the one of the Yarotsky Theorem [15].
• Or the cost is estimated is the number of calculations to perform to calculate one
function fk. Due to the hierarchical structure of the whole method, it scales like
C = O((mn)k). It yields the complexity scaling

C = O

(
1

ε
log mn
| log K|

)
(6.2)

which is of course much worse than (6.1). For a practical calculation, the relation
cost/accuracy is a compromise between these two bounds, depending on the parts
which are the most costly. However the numerical experiments clearly show that
the scaling (6.2) is the issue.
• A related problem is that the scaling (mn)k may induce an important CPU
cost, independently of the level of accuracy. This is related to the technology
for hierarchical declaration of functions used in Machine Learning softwares. It is
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possible that this computational cost is lessen by using a different implementation,
but it is not clear and so far this is a huge concern. We have observed that a way
to get a control on it and to obtain reasonable accuracy at reasonable cost is to
take m large and k ≤ 3 (as in test #4).

6.5.2. Three open problems. An open mathematical problem is to understand how
to recover an optimal contraction/approximation constant in maximal norm, using
perhaps technics from Constructive Approximation theory [6].

An open numerical problem left for further research is the optimization basis
functions.

A more general problem is to determine if there could be a way to extrapolate the
approach used in this Note for the approximation of more general non polynomial
functions in higher dimensions. Any progress in this direction would be of critical
importance for the numerical analysis of Machine Learning techniques applied to
real life problems. So far, it is a completely open axis of research.
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