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Abstract

We propose the modeling of contactless switching of a bistable slender beam using Laplace
force actuation. The model beam is based on the elastica approach which allows large am-
plitudes of the cross-section rotation and large elastic transformations. Furthermore, the
extensibility of the elastic beam is accounted for and it plays a crucial role in the switching
process. The study is devoted particularly to the actuation mechanism of the bistable beam
uniformly loaded by a density of lineic force which is permanently perpendicular to the beam
deformation. Such actuation can be produced by the Laplace force due to an electric current
travelling along the beam placed in a magnetic induction. The mechanism of the bistable
switching is analyzed in detail using a variational formulation and stable and unstable equi-
libria are described. We investigate numerically the post-buckling behavior to capture the
exact buckling modes that follow the path in the unstable region. The numerical simulations
are also used to obtain the bistable response in terms of actuating force (or electric current
amplitude), beam end-shortening and mid-point displacement of the beam. We also perform
a finite element computation and provide a validation of the results obtained by solving the
set of equations of the boundary value problem.
The second part of the work is focussed on the experimental validation of the switching mech-
anism of the bistable beam presented in the analytical part. We design an experimental set-up
for the fine measurement of the mid-point displacement of the bistable beam as a function
of the electric current travelling the beam. The region of bistable instability is revealed by
experimental adjustment of the bifurcation point associated with the actuating force. All the
results extracted from experimental tests are compared to those coming from the modeling
investigations, which ascertains with good accuracy the approach of the proposed model for
bistable beam.

Keywords : Bistable mechanism; buckling; snap-through; Laplace force; bifurcation.

1 Introduction

Consider an elastic slender beam. One end of the beam is fixed, the other one undergoes a small
end-shortening caused by a compressive force applied in the direction of the beam axis. As long
as the force is weak, less than a certain critical value, the beam is in compression as predicted by
linear elasticity. As soon as the force exceeds a critical value, the beam is no longer straight, and
undergoes a transverse deformation or deflection (Bazant, Cedolin , 1991; Bigoni , 2012; Dym ,
2002; Thomson and Hunt , 1973). The amplitude of deflection increases with end-shortening as well
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as with compressive force. We are faced with a bifurcation phenomenon, resulting in the buckling
of the beam (Timoshenko and Gere , 1963). The later can deflect either upwards or downwards.
The elastic structure that we are describing is a bistable system and both positions of the beam
(upwards or downwards) are stable states. However, the most interesting aspect of this bistable
system is to be able to switch from one stable state to another regardless of how the transition
is completed. Although a great emphasis has been paid to beam buckling and several studies are
available in the literature, the mechanism of switching between stable positions remains an active
topic of research, especially because a linear model is inadequate and recourse to a nonlinear model
becomes inescapable. Furthermore, some questions are raised such as how does the bistable system
switch between stable positions and what are the buckling modes which are involved in the process?

Actuating a bistable beam to force it to switch can be accomplished using various means. A first
idea is to load laterally the beam with a punctual force at any point of the beam, or with a punctual
moment applied to the beam in the direction perpendicular to plane deformation (Cleary and Su ,
2015). However, the bistable beam response under an applied punctual force depends on the way
of applying the force, more precisely, on whether the force is vertically fixed onto the midpoint
of the elastic beam or if the force stays on a central line between beam ends while the bistable
snaps. Loading a bistable beam with a vertical force which is always fixed onto the beam has been
reported in some studies, among them Pippard (Pippard , 1990) and Patricio (Patricio et al. ,
1998). Nevertheless, this situation is not convenient for experimental considerations. An extensive
study of the actuation of a bistable beam by punctual force along a fixed central line in space (not
necessarily on the midline) has been presented in (Camescasse et al. , 2013) and experimental
validation of the model has been discussed in (Camescasse et al. , 2014). A comparative study
has been proposed by (Chen and Hung , 2011) according to the way of applying the force onto the
beam force while the latter is switched. Then Cheng and Hung examine three cases : (i) the force
is attached onto the beam mid-point, (ii) the force is applied along a fixed central line in space and
(iii) the force is applied by means of a device such that the force is always perpendicular to the
deformed beam and its point of application is allowed to slide on the beam, while staying along
the central line in space.
Switching or snapping-through of bistable systems can be obtained by means of active materials
such as piezoelectric ceramics, shape memory alloys, electroactive polymers or magnetostrictive
materials to cite the most popular. In this situation, the active elements bonded onto the elastic
beam are able to induce local strains or stresses onto the buckled beam to control the switching
process (Maurini et al. , 2007).

In each the above-mentioned situations, the actuation is in contact with the bistable system and
the influence of the actuating mechanism must be accounted for. The present study proposes an
innovative means of actuating a bistable system by a uniform density of lineic force, which is able
to trigger the snap-through of the buckled beam as soon as the density of force is great enough
to make the bistable pass through the zone of instability to reach the other stable position. Here,
the loading mechanism is such that the lineic density of force is permanently fixed onto the beam.
Moreover, when the beam is deformed while switching, the lineic force stays perpendicular to the
beam deformation. Such a loading mechanism can be properly produced by the Laplace force
(Griffiths , 1999; Jackson , 1998). More precisely, this is the force applied to an electrically con-
ductive wire traversed by a volume density of electric current placed in a magnetic induction field.
The elementary force is then perpendicular to the plane formed by the magnetic induction vector
and vector of the electric current density or, in other words, the tangent vector to the deformed
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beam.

One of the main purposes of the present study is to investigate the bistable buckled beam on the
basis of the elastica model, especially because a rather small disturbance of the actuating work
can produce displacement and cross-section rotation of the beam of relatively large amplitudes.
Bistable buckled beam modeling is subject of numerous research studies which can be divided in
different approaches according to the starting hypothesis. Elastica model has been extended to
elastic arches loaded at its center by Pippard (Pippard , 1990). Vangbo (Vangbo , 1998) inves-
tigated the switching response of a bistable beam including the compressive effect by using an
expansion of the solution to the beam equation on the buckling modes. In the framework of modal
formulation, the detailed behavior of the stable and unstable branches of the bistability response
under loading has been proposed by (Cazottes et al. , 2010). These authors have examined on the
basis of a similar modeling, that is, buckling modal formulation, the actuation of a bistable buckled
beam subject to a moment (Cazottes et al. , 2008). Beside the elastica beam theory, some weakly
nonlinear approches are often considered. In particular, a theory accounting for extensibility of the
beam leads to geometric nonlinearity combining bending and stretching deformations. This kind
of approach has been developed by Nayfeh and Enam (Nayfeh and Enam , 2008) for a buckled
beam and by Pinto and Gonçalves (Pinto and Gonçalves , 2002) for a simply supported shallow
elastic arch. The weakly nonlinear approach has been considered also for both static and dynamic
snap-through of bistable structures by Chandra et al. (Chandra et al. , 2013). The present work
is devoted to the bistable beam but we also mention some extensions of bistability effect and even
tristability to elastic thin plates or shells. Such studies have been conducted by Schultz et al.
(Schultz et al. , 2006) for bistability control of composite plates using piezoelectric actuators, or
by Vidoli and Maurini (Vidoli and Maurini , 2008) for tristability of thin orthotropic shells, or by
Fernandes et al. (Fernandes et al , 2010) for the study of shape control of bistable composite plates.

One of the most attractive development of bistable systems (or multistable systems by extension)
is their ability to be miniaturized from millimeter scale to dimensions of the order of the micron.
Such bistable systems become particularly interesting to design microelectromechanical devices
(MEMS). At the microscopic scale, the actuation making use of Lorentz force is quite attractive.
According to the Lorentz theory of electrons, the force on an electric punctual charge consists of
two parts. The first part is a force produced by an electric field on an electric charge (electrostatic
force). The second part is the force applied to a moving electric charge placed in a magnetic
induction. When the material deals with a continuum of density (per unit of volume or mass)
of electric charge, the Lorentz force becomes a kind of effective Lorentz force. Subsequent use of
Lorentz force leads to the notion of a so-called ponderomotive force or electromagnetic force. More
precisely, the latter force is deduced by applying the classical Lorentzian (space) averaging proce-
dure to an assembly of electric punctual charge contained within a microelement of volume ∆V

(Maugin , 1988). The macroscopic quantities thus obtained by this spatial averaging procedure are
considered to be sufficiently smooth functions of space and time. Now, going back to our problem,
if the charges are travelling in a conductive wire placed in a magnetic induction, the force acting
on the wire is called the Laplace force (Griffiths , 1999; Jackson , 1998). Obviously, we then have a
contactless actuation of the bistable system. Moreover, such electromagnetic actuations are easily
controlled using electronic circuits.
Electromechanical system technology presents important advantages including, small size, light
weight, limited energy consumption and integrated electronic components. Electrostatic force has
been exploited to excite sensors at their resonant frequencies, based on bistable concept (Herrera-
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May et al. , 2009). The actuation of a micro-arch subject to electrostatic force due to a difference
of electric potential between a semi-infinite rigid electrode and the initially curved beam has been
analyzed for applications to MEMS (Das and Batra , 2009; Pane and Asano , 2008; Williams et al.
, 2012). Park and Hah (Park and Hah , 2008) present a study of the actuation of pre-shaped beam
controlled by electromagnetic force and experimental validation of the snap-through mechanism of
the bistable micro-beam is also conducted. Some other interesting works concerning micro-systems
based on bistable beam have been conducted mainly by Buchaillot et al. (Buchaillot et al. , 2008),
Krylov and Dick (Krylov and Dick , 2010) or Krylov et al. (Krylov et al. , 2011).

Actuating a bistable beam by means of active materials is an interesting development in order to
control the stability of the bistable beam during the snap-through process by using electric field,
gradient of temperature or magnetic induction. Such materials induce local strains leading to trig-
ger switching the bistable beam as soon as the strain is large enough to enter the unstable zone.
Electrostatically actuated bistable systems are well adapted for controlling the bistability and they
are perfectly designed for MEMS (Krylov et al. , 2011; Medina et al. , 2018). Deformation of
a bistable beam bonded with a piezoelectric element is induced by elongation or compression in
the piezoelectric layer by means of the application of an appropriate electric field. Aimmanee
and Tichakorn (Aimmanee and Tichakorn , 2018) have proposed such an actuation of a bistable
beam using smart materials. A study of distributed multiparameter actuation for the buckling
and snap-through control of a pinned elastic beam was reported in (Maurini et al. , 2007). There,
the authors propose an elastic beam sandwiched by two pairs of piezoelectric actuators driven by
two differences of electric potential. An extension to the bistable shell made of magnetic rubber
composite using the magnetic actuation of the shell cap has been conducted by (Seffen and Vidoli
, 2016).

The present work is based on an extensible elastica beam model. We describe the beam deformation
by two strain measures which are the extension strain along the beam axis and the beam curvature.
The beam kinematic is presented in the next section (Section 2). Both descriptions in the fixed
frame and local frame attached to the beam deformation are given in that section. We then
derive the equations of the buckled beam from the virtual work principle. Section 3 is devoted
to this task. Moreover, the boundary conditions - clamped-clamped beam - are specified in the
same section. Section 4 deals with the numerical study of the set of nonlinear boundary value
problems. The numerical problem thus stated relies on the model equations based on the shooting
method associated with a numerical procedure to capture the unknown shooting parameters. In
the same section we compare the solutions derived from the model equations to those obtained
with the help of the finite element method. One of the main results coming from the numerical
investigations is the bistable response, that is, the actuating driving force (or the electric current)
as a function of the beam mid-point displacement. The results are discussed according to the
chosen parameters (geometry of the beam, the end-shortening). A part of the work is devoted to
the experimental validation of the proposed model (Section 5). We report the investigation of the
experimental measurements in Section 5 and discuss the results thus obtained and compare them
to those deduced from the model and numerical simulations.
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2 Description of the bistable system

2.1 Kinematics

We consider an elastic beam clamped at each of its ends and having length L0 at rest. The left end
is fixed while the right end is subject to an end-shortening of small amount ∆L. The cross-section
of the beam is homogeneous and rectangular with a width b and thickness h. A fixed Cartesian
reference frame {A; e1, e2, e3} is attached to the structure in its initial configuration R0. The
reference frame is such that the unit vector e1 lies in the direction of the beam axis. Due to the
end-shortening, the distance between clamps becomes L = L0 −∆L. The elastic beam is initially
straight and free of stress (see Fig.1.a for a sketch). The beam undergoes a buckling caused by
the imposed end-shortening at the right end which is the current configuration. A compressive
force P is associated to the end-shortening and it can be viewed as the conjugate variable of the
end-shortening ∆L. This force will be determined once the problem is completely solved. The
beam in the reference configuration is described by the set

R0 = {OG0 = q0(s) = s e1, with s ∈ [0, L0]} (1)

where s is the abscissa along the beam axis and q0(s) is the position vector of the material point
G0. The deformed beam in the current configuration is a smooth curve (see Fig.1.b). The point
G0 in the initial configuration is then transformed into the material point G of the deformed beam
given by

OG = q(s) = x(s) e1 + y(s) e2 , s ∈ [0, L0] . (2)

(a) (b)

P

Figure 1: Clamped-clamped elastic beam: (a) Beam in the reference configuration at rest (no load)
(b) Beam in its buckled configuration.

We denote by τ the unit vector tangent to the curve describing the deformed beam at the point
G(s). The tangent vector is defined by

τ =
dq

ds̄
, (3)

where s̄ is the curvilinear coordinate measured along the deformed beam. In addition, we introduce
Λ = ds̄

ds , the ratio of the length of differential line element of the beam in the deformed configuration
to that of the undeformed configuration. The parameter Λ measures the extensibility of the beam.
The normal unit vector n is perpendicular to the tangent vector τ . Accordingly, the set of orthog-
onal unit vectors {τ ,n, e3} forms the local frame attached to the deformed beam at the curvilinear
abscissa s̄. These vectors can be written in the reference frame {A; e1, e2, e3} using the following
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transformation

τ (s) = cos θ(s) e1 + sin θ(s) e2 , (4a)

n(s) =− sin θ(s) e1 + cos θ(s) e2 , (4b)

where the angle of rotation θ is θ = (̂e1, τ ).

T (s)n
N (s) τ

R (s)

F (s)n

M (s)

e1

e2

Figure 2: A part of the beam
in the deformed configuration:
(i) Internal actions (force and
moment) at the material point
G (s), (ii) Fixed and local frames.

The reader is referred to Fig.2 for the sketch of different vectorial variables used in the forthcoming
sections. The gradient of the beam transformation characterized by the vector q(s) can be easily
obtained from Eqn. (3) accounting for the extensibility Λ of the beam and it can be written down
as

q′ = Λτ , (5)

where the prime is the derivative with respect to the curvilinear abscissa s.
The extensional strain ε and the beam curvature κ are chosen as the two strain measures. They
are given by

ε = Λ− 1 , (6)

κ = θ,s̄ =
dτ

ds̄
· n =

1

Λ
θ,s . (7)

The vector position in the current configuration of the beam is written in the local frame {G; τ ,n, e3}
given by

q(s) = qT (s) τ + qN (s) n , (8)

which can be compared to that of given by Eqn. (2). Consequently, we have the choice to com-
pute the beam transformation either in the reference frame {A; e1, e2, e3} or in the local frame
{G; τ ,n, e3} by sake of convenience. The formulation from one frame to the other can be obtained
by using Eqn. (4). The geometric relations Eqn. (5) become

q′T − θ′qN = Λ , (9a)

q′N + θ′qT = 0 . (9b)

In the forthcoming sections, especially for the variational formulation, the use of variables defined
in the local frame will be most useful.
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2.2 Constitutive equations of the beam

The beam cross-section is rectangular and homogeneous and it undergoes internal resultants in force
and moment which is defined as distributor of the internal actions given by the set {R(s),M(s)}.
The force and moment read

R(s) = Rx(s) e1 +Ry(s) e2 = N(s) τ + T (s) n , (10a)

M(s) = M(s) e3 . (10b)

The quantity N is the axial (perpendicular to the cross-section) force along the beam axis, T is
the shear force and M is the bending moment with respect to the e3 direction. The resultants in
force and moment acting on the beam cross-section are functions of the strain measures defined in
the above section. The elastic behavior of the beam is assumed to be linear with respect to the
strain measures. Accordingly, the constitutive equations are stated as

N(s) = EA ε(s) , (11a)

M(s) = EIκ(s) , (11b)

where E is the Young modulus, A the area of the cross-section (in the present case A = b h) and
I is the moment of inertia of the cross-section with respect to the e3 direction. In addition, EA
and EI are the axial beam and bending stiffnesses, respectively.

3 Variational formulation for the buckling bistable beam

3.1 Principle of virtual work

To obtain the beam equations, we adopt the principle of virtual work. The principle for the present
model of beam and configuration is stated as follows (in the static case)

δS = δWi + δWe = 0 . (12)

The different contributions to the principle are Wi for the work of internal forces, We for the work
of the applied actions.

The virtual work of internal forces of an elastic beam takes on the general form (the details of the
algebraic manipulation can be found in (Camescasse et al. , 2013))

δWi = −
∫ L0

0

{R(s) · δq′(s) + M(s) · δp′(s)− (q′(s)×R(s)) δp(s)} ds (13)

where "×" denotes the vector product. We recall that the vector q(s) is the position vector of
the material point G (s) (see Eqn. (2)) and p = θ e3 is the vector rotation of the beam cross-section.

The bistable beam is subject to a lineic density of force applied into the beam staying in (e1, e2)-
plane. The virtual work of this density of force reads

δWe =

∫ L0

0

F(s) · δq(s)ds (14)

where δq(s) is the virtual displacement of the material point G(s) belonging to the deformed beam.
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3.2 Dimensionless equations

For the sake of consistency and in order to highlight some key parameters, we introduce dimen-
sionless variables and parameters, defined by

• lengths (S,Q,∆`) = (s,q,∆L) /L0 , (15a)

• Forces and moments (N,T,P,M) = (N/F0, T/F0, P/F0,M/M0) , (15b)

• Density of forces F = FL0/F0 , (15c)

• Energy E = Etot/E0 , (15d)

where the reference parameters have been defined as F0 = EAk, M0 = EI/L0 and E0 = F0L0.
Moreover, the following key parameter has been introduced

k =
I

AL2
0

(16)

which characterizes the ratio of the compression energy over the bending energy. The parameter
k ∝ (h/L0)

2 where L0/h is the slenderness ratio of the beam. Now, with the new dimensionless
variables the position vector takes the form

Q(S) = QX(S) e1 +QY (S) e2 = QT (S) τ +QN (S) n (17)

which is the position vector of any material point of the beam at the curvilinear abscissa S written
either in the fixed frame or in the local frame. The different coordinates in Eqn. (17) satisfy the
dimensionless definitions introduced in Eqn. (15).
We now propose a new form for the variational equation Eqn. (12). However, the variational
equation is written with the variables defined in the local frame. It reads as

δS[Q, θ] =

∫ 1

0

{(N′ − θ′T) (δQT −QNδθ) + (θ′N + T′ − F) (δQN +QT δθ)}dS

+

∫ 1

0

{M′ + (1 + ε)T}δθdS = 0 . (18)

It has been assumed here that F = Fn, that is, every element of force density is perpendicular
to the deformed bistable beam. Obviously, in the algebraic manipulations leading to Eqn. (18),
we accounted for the boundary conditions at the end of the beam. In particular, for clamped
boundary conditions we have δθ = 0 and δQ = 0, because the displacement and the rotation of
the beam at its ends are given.

3.3 Equations for the bistable buckled beam

The variational equation Eqn. (18) must be satisfied for any arbitrary variation δQ and δθ which
meets the boundary conditions at S = 0 and S = 1 (clamped-clamped beam). We deduce the
equations of the bistable beam as

N′ − θ′T = 0 , (19a)

θ′N + T′ − F = 0 , (19b)

M′ + (1 + ε)T = 0 . (19c)
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Along with the above equations the associated boundary conditions read as

Q (0) = 0, Q (1) = XB e1, θ (0) = 0, θ (1) = 0 . (20)

In the second boundary equation Eqn. (20), XB denotes the abscissa of the right end of the
beam due to the end-shortening of the clamp B. With the view of completing the above differential
equations, it is convenient to write the geometrical equations Eqns. (9) in non-dimensional notation

Q′
T − θ′QN = 1 + ε , (21a)

Q′
N + θ′QT = 0 . (21b)

A similar transformation holds for equations Eqns. (5). Their form using the non-dimensional
notation introduced in Eqn. (15) can be obtained easily.

Now, we have almost all the ingredients to solve the problem of a bistable buckled beam subject to
a density of lineic force. It is worth noting that each elementary lineic force is always perpendicular
to the deformed beam while the beam is snapping.
At first sight, we have a set of nonlinear differential equations with given boundary conditions.
This kind of problem is not trivial because first of all, there exist unstable equilibrium regions
spanned while the beam switches from one stable state to the other one. In addition, the classical
method cannot capture the configuration of the beam in the unstable region. The second difficulty
is that at each step of the process method, the configuration of the lineic density force is modified
because the density force is always normal to the deformed beam which is an unknown of the
problem. Therefore, a more sophisticated algorithm to solve the problem becomes necessary.

4 Numerical analysis and results

4.1 Problem statement

This section is devoted to the numerical investigation of the nonlinear boundary value problem
governing the snap-through of the bistable buckled beam. The equations to be solved were ob-
tained in the previous Section. More precisely, they are the equations of the beam equilibrium
Eqns. (19) and the geometric relationships Eqns. (21).

We recall that the axial strain and bending moment satisfy the constitutive equations Eqns (11)
written in dimensionless form as

ε = kN, M = θ′. (22)

Note that at the ends A and B of the beam we have τ = e1 and n = e2. In the set of equations
Eqns. (19), Eqns. (21) have been included to compute the local displacement QN and QT as
function of θ and N and boundary conditions concern those displacements. The set of equations
that meets the boundary conditions (clamped-clamped beam) reads as
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• At the A end (S = 0)

θ (0) = 0 , (23a)

QT (0) = 0 , (23b)

QN (0) = 0 . (23c)

• At the B end (S = 1)

θ (1) = 0 , (24a)

QT (1) = XB , (24b)

QN (1) = 0 . (24c)

τ

B

BdF

dF

j

Figure 3: Clamped-clamped buckled elastic beam: the Laplace force acting on the deformed beam
and detail of an element of beam undergoing Laplace force produced by a volume density of moving
electric charges placed in a magnetic induction.

Figure 3 shows the sketch of the clamped-clamped buckled beam for a given density of lineic
force while switching. The detail of the lineic density produced by Laplace force is also shown,
especially the induction field and the vector of electric current density par unit of area. In classical
electrodynamics, the Laplace force acting on a small part of elementary volume dv of the beam is
given by (Jackson , 1998)

dF = j×B dv (25)

where j is the density of electric current per volume unit such that dv = Ad` (A = b h being the
beam cross-section area). On introducing the electric current per unit of length i τ = A j where τ

is the unit vector tangent to the deformed beam, the Laplace force acting on a piece of the beam
of length d` is then

dF = i d` τ ×B . (26)

The beam is placed between two magnets producing the magnetic induction B assumed to be
uniform in the volume between the two magnets. For a given magnetic induction B, the only free
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parameter is the electric current. It will be the control parameter.

4.2 Algorithm for solving the switching bistable beam problem

To solve the set of nonlinear equations Eqns. (19) using an algorithm based on a Runge-Kutta
method, we need the initial values for N, θ, M and T at S = 0. At first sight, the values N (0) = NA,
M (0) = MA and T (0) = TA which are the clamping efforts are not known. Accordingly, a numer-
ical shooting algorithm must be used (see (Ascher et al. , 1987) for the implementation method).
The input parameters of the method are given by boundary condition Eqns. (23) and we start with
an initial guess for the set of parameters {NA,TA,MA = θ′A}. The objective parameters are given
by Eqns. (24). Moreover, we do not know the buckling force P = NA since only the end-shortening
of the right end of the beam is given. The buckling force P is therefore obtained by solving the
buckled beam problem with loading set to zero (F = 0).
The boundary value problem to be solved is not trivial since we are faced with unstable branches
of solution while the beam is switching from one stable state to the other one. To avoid the diver-
gence of the algorithm and discrepancy of the final results, we control the vertical displacement of
the material point of the beam at the curvilinear abscissa SC such that QX (SC) = (1−∆`) /2.
The idea is to increment the mid-point by a very small amount at each value QY (SC) = YC that
corresponds to an unique deformed beam, while a same density of lineic actuating force can pro-
duce, a priori, different beam deformations.

A second numerical method is proposed to ascertain the first one, based on the finite element
method. More precisely, we take the advantage of the FEniCS numerical libraries (Logg , 2012).
The numerical code deals with the minimization of the total potential energy associated to the
bistable beam and its actuating energy. The problem at hand is to find the equilibrium con-
figurations, as with the first method. The difficulty is that for a given loading, different beam
deformations can be obtained. We must have recourse to a more sophisticated algorithm using a
so-called deflated continuation method by varying iteratively the loading parameter (Farrel , 2016)
in order to capture the successive bifurcation points and the associated beam equilibria that can
be either stable or unstable.

4.3 Results and comments

The forthcoming results have been obtained for a thin elastic beam made of amagnetic stainless
steel A316L with a Young modulus of E = 207 GPa, length of 60 mm, width of 5 mm and thick-
ness of 0.05 mm. The average magnetic induction between both magnets is about 0.3 Tesla. One
of the first numerical results is the beam response under the density of lineic force produced by
the Laplace force. Using the numerical method we compute the actuating force or, more conven-
tently, the electric current, as function of the mid-point displacement of the beam. For a given
end-shortening, the vertical displacement at the material point SC of the beam is controlled step
by step by varying the vertical position YC from the upper stable position to the lower one and vice
versa. The numerical algorithm enables us to compute the corresponding actuating lineic density
of follower force. Using the Laplace force equation Eqn. (26) we deduce the corresponding electric
current in the beam.

The electric current as function of the mid-point beam displacement ym = YC L0 is shown in
Fig.4. A classical N-shaped curve is obtained for three different end-shortenings: (i) weak (small
end-shortening 0.3% of the beam length), (ii) intermediate (end-shortening of 1%) and (iii) rather
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Figure 4: Bistable response: electric current as function of the beam mid-point displacement for
three different values of the beam end-shortening (in solid line: the elastica model, small triangles
and diamonds: FE results).

large (large end-shortening of the order of 3% or great buckling deflection). At first sight, the
curves are quite similar in shape. The present results can be compared to those obtained with a
punctual force actuation (Camescasse et al. , 2013). The part of the force-displacement diagram
which is almost a line corresponds to the unstable region. Note that all the curves pass through
zero (ym = 0, i = 0), and are symmetric with respect to the origin. Moreover, all the curves dis-
play a negative slope between extrema, which means that the bistable system possesses a negative
stiffness on this part of the branch, which corresponds to instability. An important comment from
the present results is that both numerical methods give quite similar results, which confirms the
robustness of the modeling of the bistable buckled beam based on elastica theory. The results are
applied not only for weak buckling deflection but also for rather large deflection in comparison to
the beam slenderness. The concept of Laplace force is not so easy to handle. A question which
could be raised is what would be the bistable response if the Laplace force is replaced by vertically
fixed force? This point is discussed in Appendix A.

The second result extracted from the numerical simulations is the compressive force P applied at
the right end of the beam in order to maintain a given end-shortening as function of the displace-
ment computed at the beam mid-point. The results for three different values of the end-shortening
are reported on Fig.5.

We observe that, for each curve, the compressive force for null loading corresponds to the buckling
critical force depending on the chosen end-shortening. As soon as the electric current is switched on
and it begins to increase, the compressive force increases rapidly as well until it reaches a plateau.
As in the previous results the comparison of both numerical approaches gives very close results,
which confirms, once more, the reliability of the present modeling based on elastica beam theory.
Instructive results can be obtained by computing the total potential energy. We recall that the
numerical using FE method is based on the minimization of the total potential energy of the
system. The latter reads as

E =

∫ 1

0

(
1

2
Mκ+

1

2k
Nε

)
dS . (27)

The first term on the right hand side in Eqn. (27) represents the density of bending energy and
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Figure 5: Bistable response: compressive force or buckling loading as function of the beam mid-
point displacement for three different values of the beam end-shortening (in solid line: the elastica
model, small triangles and diamonds: FE results).

the second term is the energy density of compression. The potential energy is computed using the
results from the numerical simulations of the model equations (see Eqns. (19)) for each configuration
of the deformed beam while the beam is snapping. Figure 6 shows the variations of the total
potential energy as function of the beam deflection at the beam mid-point from the upper stable
position to lower one and vice versa. The FE results have been superposed to the results of the first
method in Fig.6. It worth noticing that the potential energy possesses two minima corresponding
to the stable positions of the bistable beam. The relative error between both numerical results is
less than 0.4%.
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Figure 6: Bistable response: Total potential energy as function of the beam mid-point displacement
for three different values of the beam end-shortening (in solid line: the elastica model, small triangle
and diamonds: FE results).

One of the advantages of the elastica model and the path-following technique used to solve the
nonlinear boundary value problem is that we are able to capture with enough accuracy the beam
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deformation when passing through the zone of instability of the bistable system. However, for
rather small end-shortening, the beam cross-section rotation and displacements have small ampli-
tudes. Therefore, the equations for the bistable beam can be linearized. More precisely, the set of
equations Eqns. (19 and 21) are linearized with zero actuating loading (F = 0) around the critical
buckling force Pc for P > Pc. Trivial algebraic manipulations lead to the following equation for
the beam deflection

Q
(4)
Y + P (1− kP)Q′′

Y = 0 . (28)

Here we recover the classical Euler equation for a buckling beam; however, in Eqn. (28) the buckling
force P is altered by the factor (1− kP) accounting for the compressibility of the beam in the pre-
buckling regime. We point out that the deflection of the beam QY has been chosen instead of
the rotation θ because the deflection must satisfy four boundary conditions at the ends of the
beam, which not the case for the rotation. Eqn. (28) possesses two kinds of solution (symmetric
and asymmetric modes) satisfying the boundary conditions for clamped-clamped beam, namely
QY (0) = 0, Q′

Y (0) = 0, QY (1) = 0, Q′
Y (1) = 0. Appendix B provides the buckling mode solutions

to Eqn. (28) along with the associated boundary conditions. Going back to the solution deduced
from the numerical simulations of the boundary value problem, we can write the solution as an
expansion of the buckling modes

QY (S) =

J∑
j=1

AjYj (S) (29)

where Yj (S) are the buckling modes (see Appendix B for their exact forms). The factors Aj

correspond to the contribution of the modes. The first derivatives (and also the second derivatives)
form an orthogonal vectorial base. Therefore, by multiplying the derivative of the expansion
Eqn. (29) with respect to S by the j’s buckling mode, we arrive at

Aj =
〈
Q′

Y (S) , Y ′
j (S)

〉
(30)

where 〈·, ·〉 is the scalar product in the functional space L2[0, 1].
The result of the computation is shown in Fig.7 for the first five modes. We observe that the
first mode is predominant in the vicinity of the stable positions, and that its influence decreases
rapidly when the bistable is switching as the second buckling mode takes over from the first one.
When the bistable passes through a zero deflection at the mid-point of the beam, the second mode
prevails, and the bistable is in the region of instability. Fig.7 gives interesting information about
the buckling mode contribution, especially the third mode, which is an even mode. It plays a
significant role in the switching process since 30 per cent are involved in the snapping scenario.
The other modes, the fourth and fifth are not really significant, as their contributions are less
then 4%. This result demonstrates that if we want to use a reduced model, the first three buckling
modes should be enough to describe the beam switching in the framework of small end-shortenings.
Fig. 8 summarizes the beam deflection at the different step of the snapping process.

On using the path-following procedure with the control parameter defined by vertical coordinate
of the crossing point of the beam with the vertical line fixed at the mid-point between both
clamps, we are able to capture, step by step, the beam deformation. More precisely, when the
bistable is switching, the crossing point moves along the vertically fixed line. To each crossing
point corresponds a unique beam deformation. Accordingly, the switching scenario can be seen
as follows : (a) when the actuating force is zero the bistable beam deformation corresponds to
the first buckling mode; (b) when the electric current increases, the beam mid-point increases as
well; however, for a strong enough lineic force, the beam starts snapping, accordingly the beam
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Figure 7: Contributions of the first five buckling modes in the snap-through process (in percent)
for an end-shortening of 1% of the total length.
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Figure 8: Switching scenario of the bistable beam, (a) beam at the lower stable position, (b)
region of instability, combination of buckling modes, (c) second buckling mode, (d) beam profile
symmetrically inverted with respect to that at (b), (e) beam at the upper stable position.

profile is mainly a combination of the first three buckling modes with the mode contribution given
in Fig.7; (c) the bistable beam is passing through the domain of instability, the electric current
must be decreased, the beam mid-point passes through zero, the second buckling mode is therefore
predominant; (d) the beam mid-point continues to increase and we recover the profile of the beam
at point (b), but symmetrically inverted and finally; the beam ends its running at the upper stable
position (e) and we recover the first buckling mode, but upside down.

5 Experimental validations

This section reports an effort to bridge the modeling approach presented in the above sections with
experimental observations. The emphasis is placed on the validation of the bistable response in
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electric current (lineic density of force) as function of the mid-point vertical displacement of the
beam subject to electromagnetic Laplace force. Comparisons of the proposed experimental results
to those derived from the bistable beam based on elastica theory will be discussed. A thin elastic
beam having the same dimensions and material properties as used in the analytical and numerical
studies was fabricated for the experiment (see Section 4.3).

5.1 Description of the experimental set up and process of measures

The thin elastic beam is manufactured from a sheet of amagnetic stainless steel A316L using
electro-eroding process. Several test beams have been cut with an accuracy of less than 1/100 mm.
Particular attention is paid to obtaining a high quality planar beam with a minimum of residual
stress. The beam is thus subject to metallurgical process consisting in heating at 5000C in an
oven for few hours and maintained absolutely planar and then in cooling gradually to the ambiant
temperature.
The thin beam is placed between two clamps which maintain the beam ends very tightly. Fig.9
shows the photos of the complete experimental set-up. The test set-up is equipped with a micro-
metric translator at one of the beam ends. The translator allows us to control the displacement of
the beam ends (the right end) while the other is fixed. Using travel translator stage we are able
to monitor the end-shortening of the beam with 10µm adjustment (see Fig.9). Moreover, a digital
micrometer with an accuracy of 1µm is used in order to control the displacement of the platform
of the moving clamp.

Figure 9: Photos of the experimental set-up: (a) the
global view of the different apparatus, (b) the detail
showing the beam placed between both magnets and
(c) the measurement of the mid-point beam displace-
ment owing the laser profilometer.

The beam is placed between two magnets of neodyme type (NdFeB alloy) length of 80 mm, height
of 17 mm and thickness of 5 mm. The gap between both magnets is 8 mm. The magnetic induction
has been measured with the help of Gaussmeter equipped with a Hall effect probe. The magnetic
induction is about 0.3 Tesla. In addition an electric current supply provides a given stable electric
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current through the beam, in series with a power resistor in order to dissipate the electric power
into heat.
A schematic diagram of the experiment set-up is shown in Fig.10. The measurement process
begins by applying a given end-shortening using the travel translator stage. The end-shortening
for the tests is controlled thanks to a digital comparator measuring the exact displacement of the
moving clamp. For a given end-shortening the electric current is monitored by a computer and
it is increased step by step from zero until the electric current produces a strong enough lineic
density of force to trigger the beam snap-through. The bistable beam reaches the lower stable
position. A Keyence ultra-high speed laser profilometer model LJ-V7060 (blue semi-conductor
laser of wavelengh 505 nm, output power of 10 mW, measurement range in Z-axis (heigh) : ±8

mm, in X-axis (width) : 13.5 mm) enable to measure the variation of the vertical displacement at
the mid-point beam. Both evolutions of the electric current travelling the beam and the mid-point
beam displacement are correlated and sent to a computer. The process is stopped immediately
after the snap-through has been detected. The profiler signal is sent out to the computer in order
to analyze the digital signal and convert it into an analogic displacement of the beam center. The
process is repeated for switching from bottom stable position of the beam to the top one.

Clamp Clamp

0.015

DC electric 

current supply
Computer

Electric current

Laser beam

Micrometer

translator

    Laser 

profilometer

Magnetic induction

ΔL : end-shortening

Digitamic indicator

Buckled beam

Beam mid-point

B

Figure 10: Diagram of the experimental set-up showing the principal experimental apparatus.

5.2 Experimental measurement and discussion of the results

Bifurcation diagram. One of the first experimental results concerns the bifurcation diagram,
namely, the beam deflection at its center as function of the end-shortening when actuation is
set to zero. On using the travel translator we impose the desired end-shortening at the right end of
the beam. The end-shortening is read directly on the digital comparator. The beam deflection at
its center is measured thanks to the laser profilometer and the value is transmitted to the computer.
Accordingly, by varying the axial translation we obtain first, the value of the end-shortening and
then, the corresponding deflection of the beam. Figure 11 shows the bifurcation diagram. The ex-
perimental data are depicted by small red points and they are superimposed to the result deduced
from the numerical simulations (the curve in solid line). We notice a strong fit between the model
and experimental data. Obviously, because of the high slenderness ratio of the beam L

h = 12000,
the pre-buckling zone is so tiny that it is not observable.
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Bistable response to applied Laplace actuation. The experimental results are depicted in Fig.12.
The experimental data are superimposed to the analytical results; the continuous lines correspond
to the stable phase and the unstable region is plotted in dashed line. This part of the bistable
response region cannot be experimentally characterized. Referring to the results given by the
bifurcation diagram (Fig.11), we choose different interesting values of the end-shortening and we
identify the corresponding beam center deflections. The experimental data are marked by small
symbols (small circles, triangles or squares). First of all, we observe that experimental points
are very close to the analytical results, yielding a strong validation of the present model. This is
true for different end-shortening values. The error between the results coming from the numerical
simulations of the model equations and the experimental data stays within a segment of less than
2%.
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Figure 12: Bistable response: experimental results superposed onto the numerical simulations of
the bistable beam model.
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6 Discussion and concluding remarks

The main objective is to develop and analyze a model for bistable buckled beam based on an elas-
tica approach of beam, including extensibility. On using the complete model that is, by considering
rotations and displacements of large amplitudes, we examine in detail the switching process of the
bistable beam. The beam actuation is produced by a lineic density of uniform force. This means
that the force configuration follows the beam deformation variation while the bistable transits from
one stable position to the other one. As a matter of fact such an actuating force can be produced
by an electromagnetic Laplace force. The latter is due to the electric current travelling in the beam
placed in a magnetic induction.

The most pertinent results describing the switching process of the bistable buckled beam are
obtained first with the use of semi-analytical solution by solving the nonlinear boundary value
problem. At last, experimental validation of the bistable beam actuated by an electromagnetic
Laplace force is proposed and confirms with a high quality of accuracy the present model, which
demonstrates that this apparently simple bistable system actuated by a contactless process is rich
enough to provide particularly interesting comments :

• The bistable modeling in the elastica theory framework allows us to write down the govern-
ing beam equation for transformation of large amplitudes. The equations of the nonlinear
boundary value problem are deduced from a variational formulation. Moreover, the equa-
tions of the bistable beam are written in the local referential frame attached to the actual
configuration of the beam (deformed beam).

• Important results concern the response of the bistable beam to the Laplace force. The re-
sponses have been computed for several end-shortening values and they describe the evolution
of the electric current (through the computed applied lineic force) as function of the vertical
displacement of the beam mid-point. The response exhibits an N-shaped curve. The nu-
merical algorithm is efficient enough, which allows us to capture the beam configurations at
each step of the vertical increment, even for unstable branches. A second numerical investi-
gation based on the FE method and path following procedure is also reported. The results
of the second numerical method confirms perfectly the first numerical results, especially the
robustness of the beam modeling based on elastica beam theory.
Among the results which can be extracted from both numerical investigations, we have exam-
ined (i) the bistable response, the electric current as function of the displacement of the beam
mid-point, (ii) the buckling loading applied to one of the beam ends to maintain the given
end-shortening, (iii) the total potential energy exhibiting minima at the each stable position
of the buckled beam (upward and downward) and (iv) the analysis of buckling modes and
their precise contribution to the snapping process.

• Finally, a section is devoted to experimental tests which have ascertained the validity of
the model. The comparisons between the experimental tests and numerical results are quite
good, with very small discrepancies. In short, a good correspondance is observed between the
bistable response modeling prediction and experimental results, which establishes a reliable
validation of the present model.

All the results presented in this study are good reasons to undertake complementary and forth-
coming works, on the nonlinear dynamics of the bistable beam in the post-buckling regime when
applying time-dependent electric current through the beam. Experimental investigations will have
to be considered to confirm the model predictions. The model along with the obtained results
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opens new views to design innovative devices in the area of micro-robotics, medical engineering,
etc.

Appendix A Comparison with bistable switching by means

of a lineic density of vertically fixed force.

A question that we might ask ourselves is what would the bistable beam response be if the Laplace
force was replaced by a lineic density of force with fixed vertical direction. Would there be a
noticeable difference? To understand the problem better, we performed a numerical simulation of
the bistable response subject to a lineic fixed force. The result is illustrated in Fig.13. The curves
are superposed for the same end-shortening of 3 % and for the same order of lineic density of
force. A difference is clearly observed, as the maximum of lineic density of follower force actuation
is little bit greater than that of the vertically fixed force. In addition, the relative difference be-
tween maxima have been computed and presented in Fig.14. The relative difference is defined by
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Figure 13: Lineic density of force as function of the beam mid-point displacement. Comparison
between bistable actuations by means of lineic density of Laplace force and vertically fixed force.
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20



δF =
(
F

(max)
L − F (max)

V

)
/F

(max)
L where FV is for the vertical force and FL referred to the Laplace

force. We notice that δF increases with the end-shortening. For instance, an end-shortening of
the order of 5% gives rise to a relative difference between both kinds of actuation of about 5.4%.
Accordingly, we cannot reasonably use the lineic density of vertically fixed force as an approxima-
tion of the Laplace force.

Appendix B Buckling modes for a clamped-clamped beam

The buckling modes are obtained by solving Eqn. (28), accounting for the boundary conditions for
a clamped-clamped beam. The solution splits into two kinds of modes.
(i) The symmetric buckling modes read as

Yj (S) = Aj (1− cos (αjS)) (B.1)

with
αj = 2jπ (B.2)

Moreover, we have set α2 = P (1− kP) in Eqn. (B.1).
(ii) The antisymmetric modes are given by

Yj (S) = Aj

{
1− cos (αjS) − 2

αj
(αjS − sin (αjS))

}
(B.3)

where now the values of αj are the solutions to the implicit equation

tan
(αj

2

)
=
(αj

2

)
(B.4)

In Eqns (B.1) and (B.3) Aj is an amplitude that we have at hand to be adjusted in order that the
mode is normalized.
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