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Adapting to new environments with very different conditions 
represents large evolutionary steps. When successful, habitat 
transitions can be important drivers of evolution and trigger 

radiations1–4. The marine/non-marine boundary5,6—the so-called 
salt barrier—is considered one of the most difficult barriers to cross 
because salinity preference is a complex trait that requires the evolu-
tion of multigene pathways for physiological adaptations7–10. These 
adaptations have been best studied in macro-organisms, for which 
the recorded marine/non-marine transitions are few11–13. Microbes 
(prokaryotic and eukaryotic) are also typically regarded as infre-
quently crossing the salt barrier in spite of much larger population 
sizes and high dispersal ability12,14 but the role of this barrier as an 
evolutionary driver of microbial diversity remains poorly under-
stood. For bacteria, higher habitat transition rates than anticipated 
have been reported15. For microbial eukaryotes, which represent 
the vast majority of eukaryotic diversity, no data exist to infer the 
global patterns and rates of habitat transitions at a broad phyloge-
netic scale. Extant marine and non-marine eukaryotic communi-
ties (here, non-marine encompasses both freshwater and soil5,6) are 
distinct in terms of composition and abundance of taxa6,16, a pat-
tern that has been attributed to rare and ancient transitions between 
these two fundamentally different environments14,17–22. However, 
an increasing number of inferences of recent transitions in specific 
clades such as dinoflagellates suggest that the salt barrier might not 
be as strong as previously envisioned23–26.

In this study, we used a unique hybrid approach combin-
ing high-throughput long-read and short-read environmental 
sequencing to infer habitat evolution across the eukaryotic tree of 

life. We newly generated over 10 million long environmental reads 
(~4,500 base pairs (bp) of the ribosomal DNA (rDNA) operon) 
from 21 samples spanning marine (including the euphotic and 
aphotic ocean layers), freshwater and soil habitats. The increased 
phylogenetic signal of long-reads allowed us to establish, together 
with a set of phylogenomic constraints, a broad evolutionary 
framework for the environmental diversity of eukaryotes. We then 
incorporated existing, massive short-read data (~234 million reads) 
from a multitude of locations around the world to complement the 
taxonomic and habitat diversity of our dataset. With this combined 
dataset, we inferred the frequency, direction and relative timing of 
marine/non-marine transitions during the evolution of eukaryotes; 
we investigated which eukaryotic lineages are more adept at cross-
ing the salt barrier; and finally, we reconstructed the most likely 
ancestral habitats throughout eukaryote evolution, from the root of 
the tree to the origin of all major eukaryotic lineages. Our analy-
ses represent a comprehensive attempt to leverage environmental 
sequencing to infer the evolutionary history of habitat transitions 
across eukaryotes.

Results
Long-read metabarcoding to obtain a comprehensive phylog-
eny of environmental diversity. A range of samples collected 
from marine and non-marine habitats were deeply sequenced with 
PacBio (Sequel II) to obtain a comprehensive long-read metabar-
coding dataset spanning the broad phylogenetic diversity of eukary-
otes. These samples covered several major ecosystems, including 
the marine euphotic and aphotic zones (surface/deep chlorophyll  
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maximum and mesopelagic/bathypelagic, respectively), fresh-
water lakes and ponds as well as tropical and boreal forest soils 
(Supplementary Table 1). In total, we obtained 10.7 million circular 
consensus sequence (CCS) reads spanning ~4,500 bp of the rDNA 
operon, from the 18S to the 28S rDNA genes. After processing, 
sequences were clustered into operational taxonomic units (OTUs) 
within each sample at 97% similarity, resulting in 16,821 high-quality 
OTUs. To assess the potential amplification and sequencing biases 
of long-read metabarcoding, we performed a direct comparison 
with Illumina data (for the V4 and V9 hypervariable regions of the 
rDNA gene and 18S reads extracted from metagenomic data) pre-
viously obtained for the same DNA from three marine samples27. 
This comparison revealed that our long-range PCR assay followed 
by PacBio sequencing retrieved relatively similar eukaryotic com-
munity snapshots. Most groups were detected at comparable abun-
dances, with the exception of the MALV-I group that was detected 
at greater abundances with the long-read approach (Extended Data 
Figs. 1 and 2). The PacBio datasets also contained several taxonomic 
groups, such as diplonemids, kinetoplastids and MAST-25, that are 
absent from the V4 or V9 datasets. Importantly, over 80% of the V4 
sequences were identical to the PacBio OTUs, indicating that our 
protocol for CCS processing generates high-fidelity data compa-
rable to classical short-read metabarcoding (Extended Data Fig. 1).

All PacBio OTUs were labelled with appropriate taxonomic 
information using a phylogeny-aware method28 (Methods) and 
used to reconstruct a eukaryotic phylogeny of environmental diver-
sity (Fig. 1, Supplementary Fig. 1 and Supplementary Note 1). We 
refer to this phylogeny as the global long-read eukaryotic phylogeny 
as it contains almost all known major eukaryotic lineages (Fig. 1); 
the main missing groups represent large multicellular organisms or 
protists found in specific environments not sampled here (for exam-
ple, anoxic environments; Supplementary Table 2). We also uncov-
ered a proportion of novel diversity; that is, OTUs highly dissimilar 
to reference sequences that are typically difficult to confidently 
assign to taxonomic groups. Long-read metabarcoding alleviates 
the issue of taxonomic assignment of highly diverging sequences; 
for example, we found 863 sequences with <85% similarity to refer-
ences in the protist ribosomal reference (PR2) database that were 
attributed a taxonomy on the basis of their position in the tree, 
mostly belonging to apicomplexan parasites, fungi and amoebozo-
ans (Fig. 1a and Extended Data Fig. 3). To allow for transition rate 
calculations within a guiding taxonomic framework (see later), the 
major eukaryotic groups shown in Fig. 1a were constrained to be 
monophyletic on the basis of established relationships derived from 
phylogenomic inferences (reviewed in ref. 29). These major lineages 
were defined as rank 4 in the taxonomic scheme of an in-house 
database derived from the PR2 database30 called PR2-transitions31.

Detection of a salty divide in microbial eukaryotes. The global 
phylogeny in Fig. 1 shows habitat preferences across the eukary-
otic tree of life. Overall, we observed a clear phylogenetic distinc-
tion between marine and non-marine lineages, with almost no OTU 
overlap between these two communities (Fig. 1b,c; Unifrac dis-
tance = 0.959, P < 0.001). Within each side of the salt barrier, soil and 

freshwater communities were found to be more distinct from each 
other (Unifrac distance = 0.76, P < 0.001) than the marine eupho-
tic and aphotic communities (Unifrac distance = 0.64, P < 0.001) 
(Fig. 1b and Supplementary Fig. 2). However, we detected several 
sequences with high identity (>97% similar) present in the marine 
euphotic and aphotic samples (854 OTUs) and in the soil and fresh-
water samples (771 OTUs), suggesting that some taxa may be gener-
alists in these subhabitats (Fig. 1c and Supplementary Fig. 3).

We next sought to increase the number of samples and diversity 
by taking advantage of the massive available short-read metabar-
coding datasets. We gathered data from 22 studies conducted glob-
ally (including marine and non-marine ecosystems), amounting 
to 234 million reads in total after processing (Supplementary Fig. 
4 and Supplementary Table 3). We opted to use only the V4 region 
(~380 bp) of the 18S rDNA gene as it was shown to have a greater 
phylogenetic signal than the V9 region32. The V4 reads were clus-
tered into OTUs at 97% similarity for the marine euphotic (9,977 
OTUs), marine aphotic (2,518 OTUs), freshwater (3,788 OTUs) and 
soil (11,935 OTUs) environments (Supplementary Table 4). These 
short-read OTUs were then phylogenetically placed onto the global 
long-read eukaryotic phylogeny using the evolutionary placement 
algorithm (EPA)33 (Extended Data Fig. 4), for which we compared 
the placement distributions for each subhabitat. Interestingly, most 
placements occurred close to the tips of the reference tree, indicat-
ing that our long-read dataset adequately represents the diversity 
recovered by short-read metabarcoding (Extended Data Fig. 4). 
Furthermore, the placement distributions for each habitat are con-
sistent with our results based on the long-reads only, namely that 
marine and non-marine communities are distinct and, at a finer 
level, soil and freshwater communities are more different from each 
other than communities in the surface and deep ocean (soil–fresh-
water earth mover’s distance = 1.14, marine euphotic–aphotic earth 
mover’s distance = 0.809; Supplementary Fig. 5).

Habitat transition rates vary across major eukaryotic clades. 
The above results confirm that the salt barrier leads to phyloge-
netically distinct eukaryotic communities. We next asked (1) how 
often have transitions between marine and non-marine habitats 
occurred during evolution, (2) which eukaryotic lineages have 
crossed this barrier more frequently and (3) in which direction? To 
answer these questions, we calculated habitat transition rates across 
the global eukaryotic phylogeny by performing Bayesian ancestral 
state reconstructions using continuous-time Markov models34. We 
first tested a homogenous model, where a single pattern of tran-
sition rates from marine to non-marine habitats (qM–NM) and vice 
versa (qNM–M) was estimated across all eukaryotes. The homogenous 
model returned a posterior density of log-likelihoods with a mean 
of −2,008.45 and transitions from marine to non-marine habi-
tats were found to be just as likely as the opposite direction across 
the tree (qM–NM = qNM–M = 0.19 transitions per substitution per site; 
Extended Data Fig. 5). However, the assumption of the homogenous 
model of uniform transition rates across the tree may be violated if 
there are large variations in habitat transition rates between groups. 
Indeed, a heterogenous model where we estimated qM–NM and qNM–M 

Fig. 1 | Global eukaryotic 18S–28S phylogeny from environmental samples and the distribution of habitats. a, This tree corresponds to the best 
maximum-likelihood tree inferred using an alignment with 7,160 sites and the GTRCAT model in RAxML99. The tree contains 16,821 OTUs generated 
from PacBio sequencing of 21 environmental samples (no reference sequences were included). Ring no. 1 around the tree indicates taxonomy of the 
environmental sequences, with all major eukaryotic lineages considered in this study labelled. Ring no. 2 depicts percentage similarity with the references in 
the PR2 database as calculated using BLAST and was set with a minimum of 70% with the two black lines in the middle indicating 85% and 100% similarity 
levels. Ring no. 3 depicts the habitat origin of each OTU. b, Hierarchical clustering of the four habitats based on a phylogenetic distance matrix generated 
using the unweighted UniFrac method (n = 7, n = 5, n = 4 and n = 5 samples for soil, freshwater, marine euphotic and marine aphotic, respectively). All 
communities were found to differ significantly from each other using Monte Carlo simulations (Bonferroni-adjusted P < 0.001). c, Stacked density plot of 
branch lengths between taxa pairs from the same or different habitats (n = 14,977,604 taxa pairs with a maximum patristic distance of 1.5 substitutions/
site). Note that this plot should be interpreted with caution as taxa pairs do not represent independent datapoints due to phylogenetic relatedness.
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separately for each major eukaryotic clade, presented a much bet-
ter fit (log-likelihood score of −1,819.91; log Bayes factor = 269.3; 
Extended Data Fig. 5), indicating that habitat transition rates vary 
strongly across the tree.

To investigate in more detail the rate of habitat transition within 
each major eukaryotic group, we inferred taxon-rich clade-specific 
phylogenies by combining short-read data with the backbone phy-
logenies obtained from long-read data (with average SH-like support 
values varying between 72 and 85). Incorporating these short-read 
data allowed us to detect additional transition events that would have 
otherwise been missed with the long-read data alone (Extended Data 
Fig. 6). We modelled habitat transition rates along clade-specific 
phylogenies containing both marine and non-marine taxa that were 
sufficiently large (at least 50 tips) to get precise estimates. We also 
excluded discobid excavates and discosean amoebozoans because 
preliminary analyses showed ambiguous transition rate estimates 
owing to large phylogenetic uncertainty. Fungi were found to have by 
far the highest number of transitions per unit of evolutionary change; 
we estimated around 90 expected transition events along a branch 
length of one substitution/site (but see Supplementary Note 2). These 
results indicate that habitat shifts are associated with very little evo-
lutionary change in the rDNA sequences (Fig. 2a). After fungi, cryp-
tophytes and gyristans (ochrophyte algae, oomycete parasites and 
several free-living flagellates) had the highest global rates (around 8.2 
and 3.4 expected transitions per substitution per site).

At a finer phylogenetic resolution, several subclades within stra-
menopiles, ciliates and dinoflagellates, seem particularly adept at 
crossing the salt barrier, especially chrysophytes, diatoms and spiro-
trich ciliates (11.8, 8.7 and 3.8 expected transition events per substi-
tution per site respectively; Extended Data Fig. 7 and Supplementary 
Figs. 6 and 7). At the other extreme, groups such as bigyrans (het-
erotrophic stramenopiles related to gyristans) and apicomplexans 
(a group of parasites including the malaria pathogen) displayed 
the lowest habitat transition rates (around 0.4 expected transitions 
for every substitution per site). These results were further con-
firmed with sequence similarity network analyses, which showed 
high assortativity between marine and non-marine sequences for 
bigyrans and apicomplexans (meaning that non-marine and marine 
sequences formed distinct clusters at varying similarity thresholds), 
as opposed to gyristans and fungi, which showed low assortativity 
(Supplementary Fig. 8).

Within each major eukaryotic group, we next inferred the fre-
quency for each direction of the transitions between marine to 
non-marine habitats. We found that all clades investigated had 
non-null transition rates in both directions, with the exception 
of centrohelids for which a model with a non-marine coloniza-
tion rate set to zero was sampled 73% of the time (Fig. 2b). These 
results indicate that in nearly all major eukaryotic lineages contain-
ing non-marine and marine taxa, transitions have occurred in both 
directions. Some clades had symmetrical transition rates, indicating 
that the tendency to colonize marine environments was not signifi-
cantly different from the tendency to colonize non-marine environ-
ments; this was, for example, the case for apicomplexans, bigyrans, 
chlorophytes, cryptophytes, haptophytes and choanoflagellates (Fig. 
2b). However, some groups showed marked directionality prefer-
ences. Dinoflagellates, for example, show a much greater transition 
rate for colonizing marine habitats (about 31 times more likely). On 
the other hand, transitions to non-marine environments were sig-
nificantly more likely than the reverse direction for fungi and cer-
cozoans (about 21.5 and 7.2 times more likely, respectively). These 
trends in directionality were largely robust to variations in sampling 
efforts with the exception of ciliates, where subsampling marine 
euphotic taxa resulted in symmetrical transition rates and gyristans, 
for which subsampling marine euphotic taxa changed transition pat-
terns from symmetrical to asymmetrical (towards non-marine habi-
tats) in some cases (Supplementary Fig. 9). Finally, the directionality  

of habitat transition appears to be heterogeneous also within the 
major eukaryotic groups (Supplementary Figs. 10–13). Indeed, for 
some selected subclades such as ascomycetes and basidiomycetes 
within fungi, the transition rates to marine environments were 
higher as compared to non-Dikarya fungi (qNM–M = 8.47 versus 1.65, 
respectively; Supplementary Fig. 13), although fungi as a whole 
showed a marked tendency to colonize non-marine habitats.

Finally, we estimated the number of transition events within 
each clade by generating discrete habitat histories using a 
maximum-likelihood method35. We conservatively counted transi-
tion events only if they led to a clade with at least two taxa in the 
new habitat to distinguish between biologically active, speciating 
residents from wind-blown cells, resting spores or extracellular 
DNA from dead cells36. Our analyses revealed at least 350 transi-
tion events occurring over eukaryotic history, although the actual 
number is likely to be higher when considering lineages that have 
gone extinct. Out of these, 72 or more transition events occurred 
in fungi alone (39–47 transitions to marine environments detected 
and 33–57 transitions to non-marine environments detected) (Fig. 
2c,d). This was closely followed by gyristans and ciliates, with >60 
putative switches each between environments (Fig. 2c,d).

Relative timing of habitat transitions. We wanted to determine 
when during eukaryote evolution the transitions between marine 
and non-marine habitats occurred. To calculate a relative timing 
for all transitions, we converted the clade-specific phylogenies into 
chronograms with relative dates (as in ref. 37).

For each putative transition event, we measured the rela-
tive branch length from the inferred transition to the root of the 
clade. The general trend is that most transitions occurred rela-
tively recently in the history of the groups (Fig. 3). For instance, we 
detected no transition events in fungi older than 25% of the clade’s 
history, with most transitions occurring in the last 10% of the time 
that this group has been on Earth. Assuming that fungi arose around 
1 billion years ago38–40, this would imply that >90% of all marine/
non-marine transitions (at least 63 transitions according to our 
analyses) in fungi occurred in the last 100 million years alone, with 
older transitions occurring predominantly towards marine envi-
ronments. The observation that most transitions occurred towards 
the present could be due to the increased challenges of inferring 
transition events early in the evolution of a group because of poorer 
resolution of deeper nodes due to little phylogenetic signal and/or 
unsuccessful transitions leading to lineage extinctions in the new 
habitat. However, for a few clades at least (centrohelids, bigyrans, 
apicomplexans, cercozoans and chlorophytes), we detected several 
early transitions in the evolution of the group (Fig. 3). Interestingly, 
the direction of these early habitat transitions is non-overlapping. 
For centrohelids and apicomplexans, the early transitions were 
mainly towards marine environments, possibly corresponding to 
repeated marine colonization events at the onset of the groups’ evo-
lution. Early non-marine colonization events were instead detected 
in cercozoans, chlorophytes and bigyrans. Altogether, these obser-
vations suggest that early in the evolution of the major eukaryotic 
groups the pressure to move towards marine or non-marine habitats 
was group-specific and directional.

Ancestral habitat reconstruction. Our global long-read eukaryotic 
phylogeny, combined with the clade-specific phylogenies including 
short-read metabarcoding data, represent a very dense set of envi-
ronmental information put in a phylogenetic framework. We used 
this information to reconstruct in a Bayesian analysis the most likely 
ancestral environments from the root of the eukaryotic tree through 
the emergence of the major groups. Inferring the ancestral habitat of 
the last eukaryotic common ancestor (LECA) requires information 
about the root itself, which remains very contentious29,41. To accom-
modate uncertainties for the position of the root, we performed  
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ancestral habitat reconstruction analyses using the two most com-
monly proposed root positions: (1) between the discobid excavates 
and all other eukaryotes42 and (2) between amorpheans (the group 
including animals, fungi and amoebozoans) and all other eukary-
otes43. Both root alternatives converged towards the same habitats, 
suggesting that LECA evolved in a non-marine environment (Fig. 4a).

From the inferred non-marine root, our analyses suggest that 
two of the largest mega-assemblages of eukaryotes, probably com-
prising more than half of all eukaryotic diversity44, arose in different  

environments. On one hand, the amorphean group probably origi-
nated in a freshwater or soil habitat (Fig. 4b), where it initially 
diversified into obazoans (which include well-known lineages such 
as animals and fungi but also several unicellular related lineages), 
as well as the amoebozoans. Consistent with previous studies, we 
inferred a marine origin for metazoans45,46; however, for two oba-
zoan lineages—fungi and the group containing metazoans and cho-
anoflagellates—we could not determine a clear preference for their 
ancestral habitats. On the other hand, our analyses indicate that 
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Fig. 3 | Ridgeline histogram plots displaying the timing of transition events. The plots were estimated from relative chronograms obtained with Pathd8 
(ref. 37). The x axis depicts the relative age for each clade.
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the expansive TSAR clade (containing the main eukaryotic phyla 
stramenopiles, alveoates and rhizarians, as well as the smaller group 
telonemids) probably originated in a marine environment, follow-
ing the transition of an ancestral population from a non-marine 
root (Fig. 4b). A marine origin is also likely for the major TSAR 
members, except for alveolates which were inferred to have a non- 
marine origin.

Overall, the predicted ancestral habitats of most major eukary-
otic clades match their current preferred habitat: this is, for example, 
the case for all amoebozoan lineages, radiolarians, dinoflagellates 
and foraminiferans. An exception is cercozoans for which a marine 
origin was inferred but which now dominate non-marine environ-
ments, particularly soils6,47. Interestingly, the results derived from 
the global long-read eukaryotic phylogeny and the clade-specific 
phylogenies (which include short-read OTUs) were largely consis-
tent, except in two cases: the phylogeny of perkinsids changed the 

origin from non-marine to marine for these parasites of animals, 
while the phylogeny of choanoflagellates switched from a marine to 
a non-marine origin (Fig. 4b).

Discussion
In this study, we used a unique combination of long- and short-read 
data to obtain an evolutionary framework of environmental diver-
sity and infer habitat-preference evolution across the eukaryotic 
tree. High-throughput long-amplicon sequencing followed by 
careful processing of the data provide high-quality sequences con-
taining improved phylogenetic signal for the vast environmental 
diversity28,48–50. We generated over 10 million long-read metabarcod-
ing data spanning the eukaryotic rDNA operon, which assembled 
into nearly 17,000 OTUs, for marine and non-marine ecosystems. 
We then added two additional layers of phylogenetic information: 
(1) a much larger amount of available short-read metabarcoding 
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data to more deeply cover the molecular diversity of environmental 
microbes and (2) a set of well-accepted constraints derived from 
published phylogenomic analyses to fix the backbone of our eukary-
otic tree. By combining all this information, we show that we can 
infer evolutionary patterns at global scales across the tree.

We confirm that the salt barrier has been a major factor in shap-
ing eukaryotic evolution6,14,16 and that marine/non-marine tran-
sitions are infrequent in comparison to transitions across other 
habitats such as between freshwater and soil (Fig. 1). Our analyses 
detected at least 350 transition events (Fig. 2), although this num-
ber is probably a minimum estimate when considering that: (1) 
extinct lineages missing from our phylogenies hide transitions; (2) 
future sampling efforts from more diverse geographical locations 
(for example, in ref. 24) will help to detect more transitions; and (3) 
by clustering sequences into OTUs at 97% similarity, we do not 
detect recent transition events within the clusters (for example, in 
refs. 26,51,52). These difficult-to-achieve environmental crossings have 
probably played important evolutionary roles by allowing coloniz-
ers to reach vacant ecological niches. Crossing the salt barrier may 
have led to the establishment of some major eukaryotic assemblages 
such as TSAR or highly diverse lineages such as the oomycetes and 
vampyrellids (Supplementary Fig. 7). Marine/non-marine transi-
tions have also allowed lineages such as diatoms, golden algae and 
spirotrich ciliates to expand their range to both habitats, contrib-
uting to the diversification of the vast eukaryotic diversity we see 
today. We unexpectedly found that 56% of all detected transitions 
occurred recently, in the last 10% of the evolutionary history of 
the respective groups (Fig. 3), which is in contrast to a common 
idea that most marine/non-marine transitions are ancient14. It is, 
however, unclear why colonization across the salt barrier would be 
more frequent in recent geological time, so this observation could 
instead be due to recent colonizing lineages having had less time to 
go extinct and thus being more likely to be represented in our data53.

At its deepest phylogenetic level, our analyses suggest that the 
earliest eukaryotes inhabited non-marine habitats (Fig. 4) and not 
marine habitats as often assumed (for example, refs. 54–56). While 
the fossil record for early eukaryotes is sparse and difficult to dis-
tinguish from prokaryotes, there is evidence for early eukaryotes 
in non-marine or low-salinity environments from at least 1 bil-
lion years ago55. Furthermore, other key early eukaryotic innova-
tions, such as the origin of the plastid organelles, have been inferred 
to have occurred around 2 billion years ago in low-salinity habi-
tats57,58. Freshwater and soil environments are known to be more 
heterogeneous59 and may thus have provided a wider range of eco-
logical niches for early eukaryotes to occupy. However, one source 
of uncertainties in our ancestral state reconstructions is the lack of 
samples from some major ecosystems such as marine sediments, 
anoxic habitats and other extreme habitats like hydrothermal vents 
and hypersaline lakes. These habitats may contain deep-branching 
lineages not represented in our current phylogenies. Because 
ancestral state reconstruction analyses are especially sensitive to 
deep-branching lineages, the inclusion of environmental data from 
more habitat types (and the discovery of more kingdom-level lin-
eages) is crucial to confirm the inferences presented here.

Our detailed investigation across the main groups of eukaryotes 
showed marked differences in the rates of crossing the salt barrier 
(200-fold globally). While some groups have low global transition 
rates, others show a higher tendency to cross this physiological bar-
rier. Most notably, we inferred on the basis of both the highest tran-
sition rates in our analysis and relatively high number of transition 
events (Fig. 2), that fungi are the strongest eukaryotic colonizers 
between marine and non-marine environments. This is consistent 
with previous studies documenting a multitude of close evolutionary 
associations between marine and non-marine fungal lineages60–62, 
which in turn suggests that many fungal species may be generalists 
that can tolerate a wide range of salinities63,64. Interestingly, fungi 

showed a much greater trend (21-fold) for colonizing non-marine 
environments, where they are dominant, than the reverse. Whether 
this reflects a strong preference for non-marine environments or 
instead unequal diversification rates in the two habitats65,66, or both, 
is unclear and should be further investigated.

The differences in habitat transition rates across eukaryotes are 
probably shaped by a host of complex factors. Microbial groups 
with lower dispersal ability, such as the large radiolarians and tes-
tate amoebae, probably have a lower number of potential coloniz-
ers, decreasing transition opportunities. Trophic lifestyles may also 
play a role, with parasites and symbionts such as apicomplexans 
and perkinsids potentially expected to mirror the habitat transition 
histories of their respective hosts. Furthermore, varying salinity 
tolerance can also prevent, or instead promote, successful coloni-
zation events. Among algae, comparative genomics showed large 
differences in gene content between marine and freshwater spe-
cies, notably for ion transporters and other membrane proteins that 
probably play important roles in osmoregulation67. These different 
gene contents may be due, at least in part, to lateral gene transfers 
(LGT) that could facilitate successful crossing of the salt barrier, as 
proposed for other environmental adaptations68–73. Interestingly, for 
two of the most frequently transitioning eukaryotic groups (dia-
toms and ascomycetes), it has been shown that gene transfer is an 
important driver of evolution74,75. However, the precise role of LGT 
in facilitating the crossing of the salt barrier remains unclear, as is 
our understanding of how protists in general acquire the necessary 
genes for osmoregulation. Whether it is through LGT (as has been 
shown for some halophilic protists68), gene duplication or rewiring 
of existing metabolic pathways (as shown for the SAR11 bacteria76) 
remains to be studied. Other ecological factors must also intervene, 
as a colonizing organism does not only need to adapt to a differ-
ent salinity but also has to adapt to the different nutrient and ion 
availabilities and avoid being out-competed or preyed upon by the 
resident community73.

Conclusions
This study represents the first comprehensive analysis of the evolution 
of marine and non-marine habitat preferences across the global tree of 
eukaryotes. We inferred that two of the largest assemblages of eukary-
otes (TSAR and Amorphea) originated in different environments and 
that ancestral eukaryotes probably inhabited non-marine environ-
ments. Our results show that marine and non-marine communities 
are phylogenetically distinct but the salt barrier has been crossed at 
least several hundred times over the course of eukaryotic evolution. 
Several of these crossings coincided with the birth of diverse lineages, 
indicating that the availability of new niches has probably played a 
large role in the vast eukaryotic diversity we see today. We predict 
that the generation of genomic data from closely related marine and 
non-marine lineages will shed light on the genetic and cellular adapta-
tions that have allowed crossings over the salt barrier.

Methods
Environmental samples and total DNA extraction. A total of 18 samples were 
sequenced for this study: five freshwater samples, four soil samples, four marine 
euphotic samples and five marine aphotic samples (see Supplementary Table 1 
for sample coordinates and details). Additionally, we used reads from three soil 
samples that were sequenced in a previous study28 (European Nucleotide Archive 
(ENA) accession PRJEB25197), resulting in a total of 21 samples that were analysed 
in this study. The aim here was to get a representative view of the microbial 
eukaryotic diversity in each environment using long-read metabarcoding.

Soil samples (four). Peat samples were collected from (1) Skogaryd mire and (2) 
Kallkäls mire in October–November 2019. The 5 ml samples with three to four 
replicates of the top layer of soil were collected at both sites and visible roots 
were removed. Samples were kept at 4 °C for 2 d before extracting DNA using 
the DNeasy PowerSoil Kit (Qiagen). We also obtained DNA extracts from: (3) 
rainforest soil samples (six sites) from Puerto Rico77 and (4) boreal forest soil 
samples (six sites) from Sweden78.
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Freshwater samples (five). We sampled three freshwater lakes in Sweden in 
October–November 2019: (1) Lake Erken, (2) Lake Ersjön and (3) Lake Stortjärn. 
Planktonic samples were collected from the middle of the lakes at multiple depths 
and mixed. Up to 3 l of water was prefiltered through a 200 µm mesh net to remove 
larger organisms before sequential filtration through 20–25 µm, 3 µm and 0.25 µm 
polycarbonate filters (47 mm). Filters were immediately frozen at −20 °C and stored 
at −70 °C before further processing. We also collected a (4) freshwater sediment 
sample (four replicates) from Lake Erken. The upper 0–5 cm of a sediment core 
was separated and mixed. All samples were kept at 4 °C before processing and 
extracting DNA using the DNeasy PowerSoil Kit. Lastly, we obtained DNA from 
(5) ten permafrost thaw ponds in Canada79.

Marine euphotic samples (four). One 5 l sample was collected from the (1) North 
Sea at a depth of 5 m. Water was processed and DNA extracted as described for 
the freshwater water samples. We used DNA extracts from the nano-plankton 
(3–20 µm) and pico-plankton (0.2–3 µm) fractions of two stations from the 
Malaspina expedition (stations 49 and 76 in the Indian Ocean)80. These extracts 
corresponded to (2) one surface sample at 3 m depth and (3 and 4) two deep 
chlorophyll maxima (DCM) layer samples at depths of 70 and 85 m.

Marine aphotic samples (five). We used DNA extracts from the nano- and 
pico-fractions of the aphotic marine environment from Malaspina stations 49 
and 76 (ref. 80). These corresponded to depths of (1 and 2) 275 and 800 m for the 
mesopelagic and (3 and 4) 1,200 and 2,800–3,300 m for the bathypelagic samples. 
Lastly, we obtained (5) DNA from a Mariana Trench sample from a depth of 
5,900 m (ref. 81).

Dataset consistency. The DNA from several samples (primarily non-Swedish 
samples) were obtained from other studies. The samples were processed and DNA 
extracted using distinct methods, which can introduce various biases in the overall 
community obtained. We assessed how robust the community profiles obtained 
were to (1) different extraction methods and (2) different filtration protocols.

Different commercial kits were used for extracting DNA from the 
environmental samples. Additionally, several extraction protocols (of two soil and 
seven marine samples) included extra cell-beating or cryogenic crushing steps77,78,80. 
While it has been previously shown that DNA extraction protocols significantly 
affect the protist communities retrieved, most of these differences are restricted 
to several groups and do not overwhelm the real, biological variations between 
samples82. Given the limited number of samples in this study, it is difficult to assess 
how much of the variation between samples can be attributed to the extraction 
protocol but differences are likely to be minor.

Freshwater and marine samples were filtered through meshes with different 
pore sizes. The smallest pore size did not differ in both cases (0.2–0.25 µm which 
enables capturing even the smallest eukaryotes such as Ostreococcus tauri with 
a diameter of 0.8 µm; ref. 83). On the other hand, the largest pore size did differ 
between freshwater and marine samples: a ‘micro’ size fraction (20–200 µm) was 
obtained for most freshwater samples but not for most marine samples. However, 
we do not expect this difference to influence the communities obtained as most 
of the marine protist diversity is captured in the smaller size fractions (with the 
exception of the exclusively marine Collodaria and Phaeodarea which are mostly 
found in the micro-size fraction)84. Overall, we are confident that the aquatic 
communities obtained are comparable to the soil communities in this study.

PCR amplification and long-read sequencing. We amplified a ~4,500 bp fragment 
of the rDNA operon using the general eukaryotic primers 3NDf85 and 21R86, 
including part of the 18S gene, the complete internal transcribed spacer (ITS) 
region, and part of the 28S gene85,86. PCRs were performed with sample-specific 
tagged-primers using the Takara LA Taq polymerase (Takara) and 5 ng of DNA 
as input. PCR-cycling conditions included an initial denaturation step at 94 °C for 
5 min, at least 25 cycles of denaturation at 98 °C for 10 s, primer annealing at 60 °C 
for 30 s and elongation at 68 °C for 5 min and finishing with a final elongation step 
at 68 °C for 10 min. We limited the number of PCR cycles to 25, where possible, to 
reduce chimaera formation87. For samples that did not get amplified, we increased 
the number of cycles to 30. PCR products were assessed using agarose gels and 
Qubit 2.0 (Life Technologies) and then purified with Ampure XP beads (Beckman 
Coulter). Amplicons from replicates, size fractions and different sites from the same 
sampling location were pooled at this stage. SMRTbell libraries were constructed 
using the HiFi SMRTbell Express Template Prep Kit 2.0. Long-read sequencing was 
carried out at SciLifeLab (Uppsala, Sweden) on the Sequel II instrument (Pacific 
Biosciences) on a SMRT Cell 8 M Tray (v.3), generating four 30-h movies.

Processing reads and OTU clustering. We QC filtered sequences following ref. 
28 with some modifications. The CCS filtration pipeline is available on GitHub88. 
Briefly, CCSs were generated by SMRT Link v.8.0.0.79519 with default options. The 
CCS reads were demultiplexed with mothur v.1.39.5 (ref. 89) and then filtered with 
DADA2 v.1.14.1 (ref. 90). Reads were retained if they had both primers and if the 
maximum number of expected errors was four (roughly translating to one error for 
every 1,000 bp). We preclustered reads at 99% similarity using VSEARCH v.2.3.4 
(ref. 91) and generated consensus sequences for preclusters ≥3 reads to denoise 

the data. Prokaryotic sequences were detected by BLASTing92 against the SILVA 
SSU Ref NR 99 database v.132 (ref. 93) and removed. We predicted 18S and 28S 
sequences in the reads using Barrnap v.0.9 (--reject 0.4 --kingdom euk) (https://
github.com/tseemann/barrnap) and discarded non-specific and artefactual reads 
(those containing multiple 18S/28S or missing 18S/28S). Chimaeras were detected 
de novo using Uchime94 as implemented in mothur. Finally, we extracted the 18S 
and 28S sequences from the reads and clustered them using VSEARCH into OTUs 
at 97% similarity. After discarding singletons, a second round of de novo chimaera 
detection was performed using VSEARCH and chimaeric OTUs were removed. We 
calculated sequence similarity of the OTUs against reference sequences in a custom 
PR2 database30 (PR2-transitions31; see later) using two methods. (1) A global 
identity search was carried out using VSEARCH (--usearch_global and --iddef 1; 
Extended Data Fig. 3). For this method, all references and OTU sequences were 
trimmed with the primers 3ndf and 1510R95 using Cutadapt96 to ensure that 
they spanned the same region. (2) Since not all sequences in PR2 span the region 
between 3ndf and 1510R or are targeted by this primer pair, we also estimated 
local similarity by BLASTing the 18S OTU sequences against references in the 
PR2 database and extracting the top hit with an alignment of at least 500 bp. The 
corresponding percentage identities are displayed in Fig. 1.

Taxonomic annotation of long-read sequences. The modified PR2 reference 
database. Reference sequences were derived from a modified version of the Protist 
Ribosomal Reference (PR2) database v.4.12.0 (ref. 30), called PR2_transitions. This 
database used a revised taxonomy structure compared to PR2, with nine instead of 
eight levels adding a Subdivision level: Domain, Supergroup, Division, Subdivision, 
Class, Order, Family, Genus and Species. This allowed us to update the taxonomy 
to accommodate recent changes in eukaryotic classification97 (changes in taxonomy 
can be viewed at ref. 88). Additionally, we added sequences from nucleomorphs 
and several newly discovered or sequenced lineages such as Rholphea, 
Hemismastigophora and others. PR2_transitions is available on Figshare31. We 
used the 18S gene alone for taxonomic annotation, as 28S databases are much less 
comprehensive by comparison.

Phylogeny-aware taxonomy assignment. We used a phylogeny-aware approach to 
assign taxonomy to the PacBio OTUs, as done in ref. 28. This approach assigns 
taxonomy to the appropriate taxonomic rank, such that OTUs branching deep in 
the eukaryotic tree are labelled to high taxonomic ranks and vice versa. For each 
sample, we inferred preliminary maximum-likelihood trees along with SH-like 
support98 with RAxML v.8 (ref. 99) (using the GTRCAT approximation as it is 
better suited for large trees100). These trees contained the filtered OTUs and closely 
related reference sequences from PR2_transitions. Trees were scanned manually to 
identify misannotated reference sequences, nucleomorphs and artefactual OTUs. 
After removing these sequences, we inferred trees with RAxML-NG101 using 20 
starting trees.

The final taxonomy was generated by getting the consensus of two strategies. 
Strategy 1 parses the tree and propagates taxonomy to the OTUs from the nearest 
reference sequences using the Genesis102 app partial-tree-taxassign (https://github.
com/Pbdas/genesis-apps/blob/master/partial-tree-taxassign.cpp). Strategy 2 
starts by pruning the OTUs from the phylogeny, leaving behind references only. 
OTUs are then phylogenetically placed on the tree with EPA-ng v.0.3.5 (ref. 33) 
and taxonomy assigned using the gappa102 command assign under the module 
examine. The resulting taxonomy of the 18S gene of each OTU was transferred to 
its 28S gene counterpart, as the molecules are physically linked. The taxonomic 
annotations of the OTUs were used downstream to label clades in the global 
long-read phylogeny (Fig. 1) as well as to enforce monophyly of major eukaryotic 
lineages (see next section).

Maximum-likelihood analyses of the global eukaryotic dataset. The 18S and 
28S sequences were aligned using MAFFT v.7.310 (ref. 103) using the FFT-NS-2 
strategy and subsequently trimmed with trimAl104 to remove sites with >95% 
gaps. We inferred preliminary trees from a concatenated alignment with RAxML 
v.8.2.12 under the GTRCAT model99 which were then visually inspected to 
detect chimaeras and sequence artefacts. Taxa were removed if their position in 
the tree did not match their taxonomy. Four such rounds of visual inspection 
were performed, two with unconstrained trees and two with constrained trees 
(see text below for details on constraints). To avoid long-branch attraction, we 
excluded rapidly evolving taxa using TreeShrink105 (k = 2,500). This resulted in the 
removal of Mesodinium, long-branch Microsporidia, several Apicomplexa, several 
Heterolobosea and several Colladaria from our dataset.

After removing chimaeras and sequence artefacts, we realigned and trimmed 
the 18S and 28S sequences as before. After concatenation, the final dataset was 
composed of 16,821 taxa and 7,160 alignment sites. Global eukaryotic phylogenies 
of the taxonomically annotated, 18S–28S environmental sequences were inferred 
using RAxML v.8.2.12 under the GTRCAT model99 and 100 transfer bootstrap 
replicates (TBE)106. Supergroups, Divisions and Subdivisions (ranks 2, 3 and 4 in 
PR2_transitions) were constrained to be monophyletic in our tree (all taxa labelled 
as a specific subdivision were constrained to be on one side of a split). The one 
exception was Excavata whose monophyly has not been confidently resolved29. 
One-hundred maximum-likelihood (ML) inferences were performed to take 
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phylogenetic uncertainty into account for subsequent ancestral state reconstruction 
analyses, using the Robinson–Foulds distance metric and the MRE-based 
bootstrap test107 to test if 100 ML trees were sufficient (Supplementary Note 1). We 
opted to include only the long-read environmental sequences in our phylogenies 
because they better represent environmental diversity (compared to reference 
databases which are more biased towards culturable organisms and marine 
environments108) and because very few 18S–28S sequences can otherwise be 
ascertained to derive from the same organism. The final tree along with metadata 
was visualized using the anvi’o interface109 and then modified in Adobe Illustrator 
v.24.2 to label clades.

Short-read datasets. Datasets collected. Short-read data corresponding to the V4 
hypervariable region were retrieved from 22 publicly available metabarcoding 
datasets. Data were considered if the following criteria were fulfilled: (1) samples 
were collected from soils, freshwater or marine habitats; (2) there was clear 
association between samples and environment (no data from estuaries where 
salinity fluctuates); and (3) data publicly available or authors willing to share. The 
search for studies was not meant to be exhaustive and the datasets included in this 
work were identified and collected by the end of October 2020, unless specified 
otherwise. A list of these datasets can be found in Supplementary Table 3.

Processing short-read data and clustering into OTUs. Raw sequence files and 
metadata were downloaded from NCBI SRA web site (https://www.ncbi.nlm.nih.
gov/Traces/study/) when available or obtained directly from the investigators. 
Information about the study and the samples (substrate, size fraction and so on), 
as well as the available metadata (geographic location, depth, date, temperature 
and so on), were stored in three distinct tables in a custom MySQL database. For 
each study, raw sequences files were processed independently de novo. Primer 
sequences were removed using Cutadapt96 (maximum error rate = 10%). Amplicon 
processing was performed under the R software110 using the dada2 package90. 
Read quality was visualized with the function plotQualityProfile. Reads were 
filtered using the function filterAndTrim, adapting parameters (truncLen, minLen, 
truncQ, maxEE) as a function of the overall sequence quality. Merging of the 
forward and reverse reads was done with the mergePairs function using the default 
parameters (minOverlap = 12, maxMismatch = 0). Chimaeras were removed using 
removeBimeraDenovo with default parameters. Taxonomic assignation of ASVs 
was performed using the assignTaxonomy function from dada2 against the PR2 
database30 v.4.12 (https://pr2-database.org). ASV assignation and ASV abundance 
in each sample were stored in two tables in the MySQL database. ASV information 
was retrieved from the database using an R script. Data are available from the 
metapr2 database (https://shiny.metapr2.org/)111.

ASVs from each environment (freshwater, soil, marine euphotic and marine 
aphotic) were clustered into OTUs at 97% similarity using VSEARCH91, to make 
the size of the dataset more manageable for subsequent phylogenetic analyses. 
Identical or near-identical sequences can often be found in multiple habitats but 
these sequences do not necessarily represent generalists; instead some can be cases 
of very recent transition events (for example, refs. 51,52) and we therefore chose to 
cluster the sequences of each environment individually to account for such cases. 
Identical sequences in multiple habitats can also be the result of contamination 
(for example, refs. 36,112). Therefore, to be conservative in what was considered to be 
present in an environment, we retained only those OTUs that were composed of at 
least 100 reads or were present in at least two distinct samples.

Testing for primer bias. The 22 short-read datasets selected for this study were 
generated using nine different primer pairs (Supplementary Table 3). As no 
primer pair can amplify all taxa equally well, using multiple primer sets can bias 
the microbial communities obtained113, thereby impacting downstream analyses 
on habitat transitions. To assess whether the different primer sets used lead to 
primer bias (certain taxa being detected in one habitat but not another), we 
tested each primer pair in an in silico analysis using the PR2 primers database113 
(Supplementary Fig. 14). Firstly, nearly half of the datasets (10/22) were generated 
using one primer pair (primer set 8; TAReuk454FWD1 and TAReukREV3), 
spanning all four habitats. Secondly, most of the variation in primer sets comes 
from freshwater studies, which have used seven different primer sets in total. When 
not allowing any mismatches, different primer sets displayed reduced affinities for 
different eukaryotic clades (for example, primer set 16 amplifies <25% of rhizarian 
sequences in PR2). However, no habitat has been surveyed by primers all biased 
against the same clade. Secondly, we note that PCR amplifications do not always 
correspond exactly to in silico analyses: some groups with mismatches against 
the primers can be amplified in the laboratory and vice versa. Therefore, we also 
performed analyses while allowing for four mismatches (corresponding to the 
default error-tolerance in Cutadapt96 of 0.1 assuming all primers are 20 bp long). 
In this case, the primer pairs are largely equivalent, except for excavates (which 
we did not analyse in this study on account of high phylogenetic uncertainty). We 
therefore do not expect taxa to be missed in a certain habitat due to primer bias.

Phylogenetic placement on global eukaryote phylogeny. Short-read OTUs were 
aligned against the long-read alignment (section 'Maximum-likelihood analyses 
of the global eukaryotic dataset') using the phylogeny-aware alignment software 

PaPaRa114. Misaligned sequences were systematically checked and removed. OTUs 
from the four environments were then phylogenetically placed on the global 
eukaryote tree (the tree with the highest likelihood) using EPA-ng33. OTUs with 
high EDPL (expected distance between placement locations) indicate uncertainty 
in placement and were filtered out with the gappa command edpl102. The resulting 
jplace files were visualized with iTOL115.

Inferring clade-specific phylogenies with short- and long-read data. To 
investigate clade-specific transition rates across the salt barrier, we inferred 
phylogenies for major eukaryotic groups. We considered only those clades that 
contained sufficient data to more precisely infer transition rates: both non-marine 
and marine taxa were present and there were at least 50 taxa present. This 
excluded taxa such as radiolarians (which contain no non-marine taxa), rigifilids 
(which contain only non-marine taxa) and tubulineans (which are predominantly 
non-marine with an extremely small proportion of marine taxa). After preliminary 
analyses, we also excluded the clades discobans and discoseans due to large 
topological differences in the resulting trees.

We extracted all short-read OTUs from the remaining 13 clades using 
the gappa subcommand extract. Short-read OTUs taxonomically annotated 
as anything other than the respective clade were discarded (for instance, we 
discarded sequences labelled as amoebozoans that were phylogenetically placed 
in apicomplexa). For each clade, we pruned the corresponding subtree (and an 
outgroup) from the global phylogeny with the best likelihood score. For each 
clade, we then inferred 100 ML phylogenies with RAxML (GTRCAT model), 
using the long-read subtree as a backbone constraint. We estimated how robust 
these trees were by estimating SH-aLRT98 (Shimodaira–Hasegawa approximate 
likelihood-ratio test) support values in IQ-TREE116 v.1.6.3.

Analyses of habitat-preference evolution. Unifrac analyses. To estimate whether 
microbial communities from various habitats were phylogenetically distinct, we 
calculated unweighted UniFrac distance117 as implemented in mothur, between (1) 
marine and non-marine habitats, (2) marine euphotic, marine aphotic, soil and 
freshwater and (3) each sample sequenced with PacBio. Distances were estimated 
along the best ML global eukaryotic phylogeny with 1,000 randomizations to test 
for statistical significance.

Similarly, we estimated pairwise Kantorovich–Rubinstein distance (earth 
mover’s distance) between the four habitats (soil, freshwater, marine euphotic and 
marine aphotic) using the gappa subcommand krd with the short-read placement 
files (jplace files) as input (section 'Phylogenetic placement on global eukaryotic 
phylogeny').

Model test on global eukaryotic phylogeny. To investigate whether transition rates 
vary between major eukaryotic clades, we compared a homogeneous model (qM–NM 
and qNM–M remain constant throughout the global eukaryotic tree: a single rate 
regime) against a heterogeneous model (qM–NM and qNM–M estimated separately 
for each major eukaryotic clade; that is, multiple rate regimes) on the global 
eukaryotic phylogeny. These models were compared using Markov Chain Monte 
Carlo (MCMC) analyses in BayesTraits v.3.0.2 (refs. 118,119) in a reversible-jump 
framework to avoid over-parameterization120. Briefly, under this framework, the 
Markov chain samples the posterior distribution of different models of evolution as 
well as the posterior distributions of the parameters of these models: no parameter 
restrictions were applied and the Markov chain simultaneously tested ‘equal rates’ 
and ‘unequal rate’ models, thereby integrating results over all possible model 
formulations weighted by their probabilities. Following the analysis in ref. 121, we 
used 50 stones and a chain length of 5,000 to obtain marginal likelihood for each 
model using stepping stone method122 and a log Bayes factor (2 × difference of log 
marginal likelihoods) of ten or more was used to favour the heterogeneous model 
over the homogeneous model.

Before final analyses in BayesTraits, we tried several prior distributions 
for transition rates (using a hyperprior approach to reduce uncertainty about 
prior choice120). Specifically, we compared gamma hyperpriors with exponential 
hyperpriors using different values. While the different priors produced 
qualitatively similar results, we found the exponential hyperprior to be most 
suitable. All BayesTraits analyses were therefore carried out using an exponential 
hyperprior with the mean seeded from a uniform distribution between 0 
and 2 in a reversible-jump MCMC framework, integrating results over all 
possible model formulations, weighted by their probabilities. All ancestral state 
reconstruction analyses were carried out on 100 inferred phylogenies to take 
phylogenetic uncertainty into account and were repeated thrice to check for 
convergence. Additionally, we assessed whether the variance of the transition rate 
parameters reached convergence as an increasing number of trees were sampled 
(Supplementary Fig. 15).

Clade-specific transition rates. We inferred clade-specific transition rates along the 
clade-specific phylogenies (long-read data + short-read data), on account of these 
being more complete. The metadata for each taxon was used to label it as either 
marine or non-marine. We ran 1 million generations on each tree (100 million 
generations in total) with 0.5 million generations discarded as burn-in, using 
the same hyperpriors as described above. For each clade, we also inferred the 
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global transition rate, regardless of the direction of transition. This was achieved 
by normalizing the QMatrix123,124, with all other parameters unchanged. These 
analyses also allowed us to infer the ancestral state of each major eukaryotic clade.

Sensitivity analyses for sampling efforts. The short-read datasets included in 
this study were uneven in terms of number of samples and sequencing depth 
(Supplementary Table 4). As a result, the number of OTUs for soil and marine 
euphotic habitats were much higher compared to freshwater and marine 
aphotic environments. To test whether varying sampling efforts influences the 
clade-specific transition rates, we carried out a sensitivity analysis where we 
generated subsets of the short-read data by randomly removing 5%, 10%, 20%, 
30%, 50% and 70% of (1) soil, (2) marine euphotic and (3) soil and marine 
euphotic OTUs (Supplementary Fig. 8). Five replicates for each subset were 
generated using SeqKit v.0.15.0 using the command sample. For each clade, we 
dropped tips corresponding to the OTUs removed from each subset using the 
custom script prune.py88 and re-ran BayesTraits as before. In total, we estimated 
transition rates for 18 conditions × 5 replicates × 14 clades × 100 trees per 
clade = 126,000 trees.

Inferring ancestral states of deep nodes and the last common ancestor of eukaryotes. 
To infer the ancestral habitats at deeper nodes (including the origin of eukaryotes), 
we modelled habitat evolution along the global eukaryotic phylogeny using the 
better suited, heterogeneous model. Analyses were run for 500 million generations, 
with 5 million generations spent on each tree and 200 million generations were 
discarded as burn-in. Analyses were carried out after rooting the tree at Discoba 
and at Amorphea to take uncertainty about the root into account.

Visualizing scenarios of habitat evolution. Most ancestral state reconstruction 
programmes do not explicitly calculate the ancestral state at internal nodes (but 
integrate over all possibilities). To visualize habitat evolution, we used PastML, a 
maximum-likelihood ancestral state reconstruction programme which calculates 
the state at each internal node and also generates a concise visual summary 
of the clade35. For each major eukaryotic clade, we ran PastML on 100 trees. 
Visualizations for several trees were checked manually to assess if they displayed 
similar histories and one visualization was chosen randomly for display in 
Supplementary Fig. 7.

Counting number and relative timing of transitions. We converted all clade-specific 
phylogenies into relative chronograms (with the age of the root set to 1) using 
Pathd8 (ref. 37) which is suitable for large phylogenies. We ran PastML on these 
phylogenies (as before) and used custom scripts88 to count the number of marine/
non-marine transitions. For each transition, we calculated the distance to the root 
to obtain relative timing of transition. We also validated our results with TreePL125 
v.1.0 (Supplementary Fig. 16). Results were largely similar to those obtained with 
Pathd8 but with transition events more shifted towards recent time.

Network analyses. To check that our results about transition rates and timings 
were not biased by phylogenetic inference from sequences with poor phylogenetic 
signal, we constructed sequence similarity networks. These networks were 
constructed using representative 18S sequences of the long-read OTUs. Briefly, we 
performed all-against-all BLAST searches and generated networks using a coverage 
threshold of 75 and sequence identity thresholds of 80, 85, 90, 95, 97. Networks 
were visualized on Cytoscape126. Assortativities were calculated using scripts 
available at https://github.com/MiguelMSandin/SSNetworks and then plotted in R 
using ggplot127.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
New sequence data generated for this study were deposited at ENA under the 
accession number PRJEB45931, while data from Sequel I (generated in ref. 28) were 
deposited under the accession number PRJEB25197. The PR2-transitions database, 
annotated 18S and 28S OTU sequences, clustered short-read metabarcoding 
sequences used in this study and all trees have been deposited in an online 
repository31. Unclustered short reads are available from the metapr2 database 
(https://shiny.metapr2.org/)111.

Code availability
All custom code used in this study is available on Zenodo88 with the identifier 
https://doi.org/10.5281/zenodo.6656264. Code for analysing sequence similarity 
networks is available at https://github.com/MiguelMSandin/SSNetworks.
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Extended Data Fig. 1 | Shared ASVs between PacBio and Illumina sequencing. Comparison of PacBio and Illumina sequencing. PacBio amplicons were 
compared with metagenomes (mTags), V4 amplicons, and V9 amplicons from three marine samples corresponding to the pico size fraction from the 
Malaspina expedition27. Station 76|Surface did not have V9 amplicon data. ASVs = Amplicon Sequence Variants. (a) Number of reads and ASVs for 
each sample for each marker. The mTags represent sequence length of ca. 100 bp, so no ASV level is available, as this short length does not give enough 
resolution. More PacBio sequences were generated for each sample compared to Illumina sequences. (b) Comparison of PacBio ASVs (that is de-noised, 
preclustered sequences) with the ones given by V4 amplicons. A similar comparison with V9 ASVs was not carried out as not all samples had V9 Illumina 
data available. Around half of the sequences were shared, which represented the majority of reads.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Metagenomes versus other sequencing efforts. Comparison of the eukaryotic communities retrieved by PacBio and Illumina 
sequencing (V4, V9, and 18 S reads retrieved from metagenomic data) of three marine samples (See Extended Data Fig. 1). (a) Comparison of mTags 
(which should represent a snapshot of the community unbiased by PCR) with the other datasets. Groups explaining the majority of reads are detected 
at comparable abundances. Points at the margins represent taxa that are found in one dataset but not in the other; the line of dots along the y-axis 
represent groups not present in mTags, but present in other datasets; and along the x axis we see groups that are present in mTags but not in the other 
datasets. For instance in the 49|DCM panels, there are some groups recovered by mTags that V4/V9 amplicons cannot detect (blue and red points at 
the bottom). Groups detected by PacBio in 49|DCM but missed by V9 include: MAST-25, MOCH-1, Marine-Opisthokonts; whereas groups missed by V4 
include: kinetoplastids, discoseans, diplonemids, pyrmnesiophytes, Marine-Opisthokonts, and Basal-Fungi. Fewer black points (PacBio) at the bottom of 
the panels, indicates that PacBio is detecting groups that are missed by metabarcoding with V4/V9 sequencing. (b) Overall comparison of the relative 
abundances at the group level (excluding Charophyta, Metazoa and Nucleomorphs). The primer pair used for long-read sequencing seem to preferentially 
amplify MALV-I, but the overall community structure that PacBio is retrieving is reasonable with the other sequencing approaches.
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Extended Data Fig. 3 | Percentage similarity of OTUs to references in PR2. Percentage similarity of OTUs (18 S sequence only) against reference 
sequences in the PR2 database30, as determined by vsearch global search91. All sequences (OTU queries and references) were trimmed with primers 3NDF 
and 1510 R so that they spanned the same region.
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Extended Data Fig. 4 | Phylogenetic placement of short-read OTUs on global eukaryotic phylogeny. Phylogenetic placement of short-read OTUs onto the 
long-read, global eukaryotic reference phylogenetic tree (in Fig. 1). The upper two panels represent marine environments (a, marine euphotic; b, marine 
aphotic), while the lower two panels showcase non-marine placements (c, freshwater; d, soil). Visualization of the placement files was done through the 
interactive Tree of Life115, and the size of each circle represents the number of placements on that particular branch weighted by the likelihood weight ratios.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Testing models of habitat transitions on global eukaryotic phylogeny. (a) A graphical representation of the homogenous and 
heterogeneous models tested. The homogenous model involves a single rate regime over the tree (that is qM−NM and qNM−M have constant values). No 
restrictions are placed on the parameters; so qM−NM and qNM−Mare allowed to be equal or unequal to each other. The heterogeneous model estimates 
a separate qM−NM and qNM−M for every major eukaryotic lineage (defined in this paper as rank 4 in the PR2-transitions database, for example Ciliates, 
Dinoflagellates, Fungi, etc.) that had at least 50 taxa and contained both marine and non-marine taxa. (b) Instantaneous transition rates from marine 
to non-marine habitats (qM−NM) and vice versa (qNM−M) when using a homogenous model over the global eukaryotic phylogeny (in Fig. 1). An equal rates 
model formulation (qM−NM = qNM−M) was found to have a higher posterior probability and was therefore sampled more frequently (100% of the time) by 
the reversible-jump Markov chain. (c) Comparison of the posterior probability of log-likelihoods when using the simple, homogenous model and the 
heterogeneous model. The plot shows that the heterogeneous model had a much better fit, indicating that rates of habitat evolution vary strongly across 
the eukaryotic tree of life.
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Extended Data Fig. 6 | Examples of transitions detected by the incorporation of short-read data. Three examples of transitions detected by the 
incorporation of short-read data in our phylogenies that would otherwise have been missed. Shades of blue/purple represent marine sequences, while 
shades of orange/red represent non-marine taxa. (a) A clade of marine centrohelids is detected in purple (including sequences from the Malaspina 
expedition, Ocean Sampling Day, Tara Oceans, and Mariana Trench datasets). (b) A clade of marine chytrids is detected mainly from Ocean Sampling Day 
datasets. (c) A clade of non-marine haptophytes is detected mainly from the Swiss Soils and Neotropical soil datasets. Such cases were spread throughout 
the eukaryotic phylogeny.
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Extended Data Fig. 7 | Heterogeneity of habitat transition rates within clades. Posterior probability distributions of the global habitat evolution rates 
of selected eukaryotic classes. In purple, are the global transition rates of three major eukaryotic lineages (Cercozoans, Ciliates, Gyristans) as shown in 
Fig. 2, and in green, are the global transition rates for selected clades within these lineages. From this analysis, we can see that Thecofilosea+Imbricatea 
tend to transition across the salt barrier faster than Cercozoans on the whole. Spirotrich ciliates have higher transition rates than ciliates on average, and 
chrysophtes (golden algae) and diatoms seem to have the highest transition rates across protists.
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