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Abstract. Interpolating sea surface height satellite measurements is a
challenging inverse problem as altimeter observation can be very sparse
in space and time. Operational methods rely on second-order statistics of
ocean evolution which are difficult to estimate due to the high dimension-
ality of the studied system. In this work, we investigate a statistics-free
and unsupervised variational method using a deep spatio-temporal prior,
a neural network optimized on only one observational window. Results
are aligned with state-of-the-art operational methods.
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1 Introduction

Monitoring and modeling the ocean is a constant scientific preoccupation whether
for global climate understanding or numerical weather prediction. To do so, in-
formation from various sensors is processed in order to estimate the state of the
ocean. Surface circulation is usually a variable of great interest as it explains the
transport of numerous quantities. It can partially be derived from sea surface
heights which are observed thanks to altimeter satellites [5,7].

However such data are very sparse in space and time so that interpolating
them leads to challenging inverse problems. Even though classical least square
methods relying on second-order statistics data [3,9] have a strong operational
record and are still getting better thanks to the growing number of available
observations [15], deep learning techniques have revolutionized inverse problems
solving [11]. But in the Earth science context, ground truth is not available, so
that a supervised learning setup is not realistic.

In this work we investigated the deep prior method [17], optimizing a neural
architecture on only one spatio-temporal observation of sea surface heights. We
show that the designed deep prior provides efficient regularization. The code is
available at the following address4.

4 https://github.com/ArFiloche/MACLEAN_deep_spatiotemporal_prior

https://github.com/ArFiloche/MACLEAN_deep_spatiotemporal_prior
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2 Optimal interpolation of sea surface height

2.1 Observing System Simulation Experiment

The used dataset and the simulation experiment framework have been intro-
duced in [2] and we use the pre-processing of [6]. The interest here is to esti-
mate the full space-time trajectory of the sea surface height (SSH) variable. The
considered ground truth is the result of NATL60 high-resolution ocean simula-
tion [1] re-scaled at (1/20)◦. We denote the 3D-volume of dimensions (𝑇, 𝑛𝑥 , 𝑛𝑦)
representing a ground truth space-time trajectory X, an example is displayed in
Fig. 1.

day0 day4 day8 day12 day16 day20 day24 day28

Fig. 1. Example of reference sea surface height trajectory

The observation operator used to create the dataset aims at simulating two
satellite sources. The first is a constellation of 4 nadir altimeters [5] with small
spatio-temporal coverage. The second is from a wide-swath altimeter, replication
the Surface Water and Ocean Topography (SWOT) upcoming mission, and made
possible thanks to the observation simulator introduced in [7]. Observation Y
denoted available at regular time-steps, per daily interval and obey the following
observation equation Y = HX + Y, where H is a linear projector associated with
satellite tracks and Y a measurement noise. An example is displayed in Fig. 2,
pointing to a significant sparsity in space.

day 0 day 4 day 8 day 12 day 16 day 20 day 24 day 28

Fig. 2. Example of sea surface height satellite observation along a trajectory

2.2 DUACS analysis

The Data Unification and Altimeter Combination System (DUACS) [15] analysis
is a result of a best linear unbiased estimation (BLUE) [9]. This estimation relies
on the knowledge of second-order statistics, covariance matrices of state, and



Statistics-free interpolation with deep prior 3

noise that we denote B and R, respectively. Such statistics are usually hard to
estimate for a high dimensional system like the Ocean, but DUACS leverage
25 years of reprocessed sea level altimetry so that this estimation is a strong
baseline. The produced estimation X̂𝑏𝑙𝑢𝑒 = BH𝑇 (HBH𝑇 + R)−1 can be achieved
equivalently in a variational manner [12], minimizing the energy function detailed
in Eq. 1 and condensed using the Mahalanobis distance in Eq. 2. This can be
seen as a least-square regression with a Thikonov regularizer promoting prior
knowledge in the estimation.

J (X) = (Y − HX)𝑇R−1 (Y − HX) +X𝑇B−1X (1)

= ∥Y − HX∥2R + ∥X∥2B (2)

2.3 Deep spatio-temporal prior

The idea behind deep prior [17] is that using a well-suited neural network to
generate the solution of a variational problem can act as a handcrafted regular-
ization, leveraging spatial and spectral bias induced by the architecture [4,14].
This means that the control parameters are shifted from the system state space
to the neural network parameters space. From a practical standpoint, a generator
network 𝑔𝜽 outputs the solution from a latent state 𝑧 such that 𝑔𝜽 (𝑧) = X̂. In our
case, we ask the network to output the spatio-temporal system state trajectory
on a specified window.

J (𝜽) = ∥Y − H ◦ 𝑔𝜽 (𝑧)∥22 (3)

Architecture The global design of the used deep prior is largely inspired by
generative convolutional architectures introduced in [13]. To avoid checkerboard
artifacts, we replaced deconvolution operations as described in [10]. Finally, to
ensure spatio-temporal coherence of the generated solution we used (2+1)D con-
volution [16], which is an alternative to 3D convolutions being less expensive
computationally. A schematic view of the architecture is provided in Fig. 3.
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Fig. 3. Schematic view of the deep spatio-temporal prior architecture
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3 Experimental results

3.1 Observational window

We tested the method on 32-day windows with 128×128 sized observation. While
optimizing deep priors, we observed that reached optimum was significantly dif-
ferent depending on the weights initialization of the generator network. To over-
come this issue, we trained multiple deep generators with different initialization
and averaged their results, constituting an ensemble.
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Fig. 4. RMSE comparison of optimal interpolation from DUACS and deep spatio-
temporal prior on a single 32-day observational window example

In Fig. 4, estimation from DUACS and deep priors are compared using the
root mean square errors (RMSE) metric. We observe that the ensemble is in-
deed beneficial and performs slightly better than DUACS interpolation. We also
notice border effects, such that deep prior estimation deteriorates at the begin-
ning and at the end of the temporal window. Logically, the DUACS optimal
interpolation does not suffer from border effects as considered estimation where
window-centered.
Looking at the error maps displayed in Fig. 5 we see that both methods have
very similar spatial structures. We also notice that error maps for the DUACS
optimal interpolation present checkered numerical artifacts while the deep prior
ones are smoother. Our interpretation is that various biases induced by the cho-
sen deep architecture emphasize low-frequency patterns avoiding high-frequency
artifacts introduced by numerical optimization directly at the pixel level.

3.2 Year-long analysis

We also compared both methods on a year-long analysis. But training an en-
semble of deep prior at each window can be computationally cumbersome. To
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Fig. 5. Error maps of DUACS and deep prior estimation at various times in the same
observational window

overcome this issue but still benefit from ensemble performances, we adopted a
sliding window along the year and averaged estimation from different windows
excluding border estimation. Results are displayed in Fig. 6. As for the single
window experiment, RMSE scores are in the same range and slightly better with
an ensemble of deep prior.
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Fig. 6. RMSE comparison of optimal interpolation from DUACS and sliding-averaged
deep spatio-temporal prior on a year-long period

3.3 Conv(2+1)D ablation

To justify the use of (2+1)D convolutions, we performed a similar experiment
using only 2D convolutions and considering the time as channels. Results dis-
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played in Fig. 7 show that such prior lacks temporal coherence and degrades
performances, particularly at times where observations are very sparse.
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Fig. 7. RMSE comparison of optimal interpolation from DUACS and deep prior with
vanilla convolutional architecture, on a single 32-day observational window example

4 Perspective

We extrapolated an idea from the image processing community to interpolate sea
surface height observation from altimeter data. We highlighted in a preliminary
experiment that a well-suited deep architecture has a strong regularizing effect
and can substitute prior knowledge, in our case statistics of high-dimensional
physical state. Finally, we give exploratory perspectives.

Automate convergence criteria. Automating the convergence when using
deep prior is still an active research field, whether using an early stopping ap-
proach [18] or specific architectures [8]. If ground truth is needed to find such
criteria, the method loses its appeal.

Retro-engineered the prior. As a deep prior seems to be able to replace
second-order statistics, we would be interested in retrieving such statistics from
a trained architecture. At the moment we did not succeed in doing so.

Refine the loss function. Observational noise statistics are usually known
from measurement devices. We could use such statistics to weigh deep prior
costs in a variational data assimilation fashion, for example knowing that nadir
and SWOT measurement come with different noises.
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