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A classical problem describing the collective motion of cells, is the movement driven by consumption/depletion of a nutrient. Here we analyze one of the simplest such model written as a coupled Partial Differential Equation/Ordinary Differential Equation system which we scale so as to get a limit describing the usually observed pattern. In this limit the cell density is concentrated as a moving Dirac mass and the nutrient undergoes a discontinuity.

We first carry out the analysis without diffusion, getting a complete description of the unique limit. When diffusion is included, we prove several specific a priori estimates and interpret the system as a heterogeneous monostable equation. This allow us to obtain a limiting problem which shows the concentration effect of the limiting dynamics.

Introduction

A classical problem describing the collective motion of cells, is the movement driven by consumption/depletion of a nutrient [START_REF] Golding | Studies of bacterial branching growth using reaction-diffusion models for colonial development[END_REF][START_REF] Mimura | Reaction-diffusion modelling of bacterial colony patterns[END_REF][START_REF] Murray | Mathematical biology[END_REF]. The simplest description uses a number density of cells u ε and a nutrient concentration v ε . It is written

∂ t u ε -ε∂ 2 xx u ε = 1 ε u ε (v ε -µ), t ≥ 0, x ∈ R, ∂ t v ε = -u ε v ε , (1) 
completed with initial data u 0 ε , v 0 ε , such that

εu 0 ε ∈ L 1 + (R), 0 < v m ≤ v 0 ε ≤ v M < ∞, v m < µ < v M .
We have introduced a parameter ε which measures the time scale of the cell random motion compared to nutrient consumption. Our interest here is when this parameter is small because it is a case when a pattern is produced under the form of a high concentration of cells despite the parabolic character of Equation [START_REF] Barles | Wavefront propagation for reaction diffusion systems of PDE[END_REF]. In fact this phenomena is closely related to concentration effects in non-local semi-linear parabolic equations as studied intensively recently, see [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF][START_REF] Perthame | Dirac concentrations in Lotka-Volterra parabolic PDEs[END_REF][START_REF] Champagnat | The evolutionary limit for models of populations interacting competitively via several resources[END_REF][START_REF] Lorz | Dirac mass dynamics in multidimensional nonlocal parabolic equations[END_REF] and the references therein. This analogy leads us to postulate that u ε concentrate as Dirac masses at points where v ε undergoes a discontinuity. The scale proposed here, which is chosen to produce a distinguished limit, is usual for semi-linear diffusion equations and has been studied for local problems in classical works, [START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF][START_REF] Barles | Wavefront propagation for reaction diffusion systems of PDE[END_REF]. The most efficient method is to use the Hopf-Cole transform and viscosity solutions of Hamilton-Jacobi equations [START_REF] Michael | Viscosity solutions of Hamilton-Jacobi equations[END_REF][START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF]. We restrict our analysis to one dimension to explain the solution structure as depicted in Figure 1 but significant parts of our analysis can be extended to several dimensions.

Several related studies can be mentioned. Coupling Ordinary and Partial Differential Equation is rather classical in different areas: for pattern formation, see [START_REF] Köthe | Hysteresis-driven pattern formation in reaction-diffusion-ODE systems[END_REF] (study of existence and stability of stationary solutions), modeling of two species dynamics with an unmotile specie [START_REF] Böttger | Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion[END_REF][START_REF] Surulescu | Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis-haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more)[END_REF] for instance. Traveling waves with a non-motile phase have also been studied, see [START_REF] Fang | Asymptotic behaviour of a reaction-diffusion model with a quiescent stage[END_REF] and the references therein. However we are not aware of any analytical study related to the scaling proposed here. Our approach combines a reformulation of the problem which leads to a heterogeneous monostable equation for v ε and the standard Hopf-Cole transform as mentioned above. This a convenient tool to represent the Dirac concentration of u ε under the form exp(-ϕ(t, x)/ε) where ϕ behaves like a quadratic function.

In Section 2, we begin with a simpler case where we omit the diffusion on u ε , arriving to a system of ordinary differential equations which can be solved nearly explicitly. This allows us to introduce the tools which are used in Section 3 where we state and prove the concentration effect. Several related questions are detailed in appendices: the particular case of traveling waves, and some Sobolev regularity results.

The problem without diffusion

We begin with the simpler case where diffusion is ignored and where we can give a complete description while introducing the main tools for the general problem. We are reduced to a system of two differential equations with a parameter x, which solutions however behave as a front propagation in space, namely

∂ t u ε (t, x) = 1 ε u ε (v ε -µ), t ≥ 0, x ∈ R, ∂ t v ε = -u ε v ε . (2) 
We define

Q(v) = v -µ ln v.
We assume there are constants Q m and Q M such that

     For x < 0, v 0 ε (x) < µ, and for x > 0 v 0 ε (x) > µ, Q(v 0 ε (x)) + εu 0 ε ≤ Q M , Q(v 0 ε (x)) > Q m > Q(µ), v 0 ε → v 0 pointwise for x = 0. (3) 
In other words v 0 ε has an initial increasing discontinuity at x = 0. For the cell density, we assume that in the weak sense of measures, as ε → 0,

u 0 ε = exp( ϕ 0 ε ε ) ρ 0 δ(x) in the weak sense of measures, ϕ 0 ε → ϕ 0 in C(R), ϕ 0 < 0 for x = 0. (4) 
In this framework, we can describe the behavior of solutions as follows Theorem 1 Assume (3)-( 4). The solution of (2) has limits u ε u (weak measures) and v ε → v (strongly in L p loc ) and, for x > 0 there is a time τ (x) and v 0

-(x) < µ < v 0 (x) such that (i) v(t, x) = v 0 -(x) for t < τ (x), v(t, x) = v 0 (x) for t > τ (x), (ii) u(t, x) = [ln v 0 (x) -ln v 0 -(x)]δ(t -τ (x)), (iii) τ (x) = -ϕ 0 (x)
v 0 (x)-µ with ϕ defined by (8).

For x < 0, we have v(t, x) = v 0 (x).

Proof. A remarkable property of the system (2) is the identity

∂ t [εu ε + v ε -µ ln v ε ] = 0, which implies εu ε + Q(v ε ) = Q(v 0 ε (x)) + εu 0 ε ≤ Q M , ∀x ∈ R. (5) 
Using this inequality and the fact that v ε decreases, we first conclude for x < 0, v ε -µ < 0 and thus

u ε (t, x) → 0 as ε → 0, therefore v ε (t, x) → v 0 (x)
For x > 0, we conclude from [START_REF] Böttger | Investigation of the migration/proliferation dichotomy and its impact on avascular glioma invasion[END_REF] and assumption [START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF], that there are constants such that

v m ≤ v ε (t, x) ≤ v M . (6) 
Also, integrating the second equation of (2), we have for all T > 0,

T 0 u ε (t, x)dt = ln v 0 ε (x) -ln v ε (T, x) ≤ C(T ),
and since we expect that u ε is a concentrated measure, we define ϕ ε = ε ln u ε . It satisfies

∂ t ϕ ε = v ε -µ is bounded in t and x. (7) 
We can argue x by x and define as ε → 0 (after extraction of subsequences, but the uniqueness of the limit shows that it is the full family) the strong limits

v ε (t, x) → v(t, x), ϕ ε → ϕ(t, x).
We can also define the weak limit

u ε (t, x) m(t, x) ≥ 0 ∈ M 1 (0, T ).
These limits satisfy the equations obtained passing to the limit in ( 2) and ( 7)

     ∂ t ϕ(t, x) = v -µ, ϕ(t, x) ≤ 0 ∂ t ln(v) = -m(t, x), supp(m) ⊂ {ϕ(t) = 0}. Q(v(t, x)) = Q(v 0 (x)). (8) 
Because of this last equality, v(t, x) belongs to one of the two branches v

0 -(x) < v 0 + (x) := v 0 (x) of roots of Q(v(t, x)) = Q(v 0 (x)
). Therefore v -µ is away from 0 and there is a first time τ (x) such that ϕ τ (x), x = 0 and ϕ(t, x) < 0 for t = τ (x). This time τ (x) is also the jump time from one branch to the other for v as stated in (i).

We can also compute, from the above equation on ln v, and this gives (ii), namely

u ε = -∂ t ln v ε u = [ln v + (x) -ln v -(x)]δ(t -τ (x)).
The time τ (x) is fully identified from the limiting system: By integrating the equation on ϕ(t, x), we find that

ϕ(t, x) = ϕ(0, x) + t (v 0 (x) -µ), t < τ (x), ϕ(0, x) + τ (x)(v 0 (x) -µ) + (t -τ (x)) (v 0 -(x) -µ), t > τ (x).
For x > 0, as v 0 -(x) < µ < v 0 (x), ϕ(t, x) is strictly increasing in time for t < τ (x), and strictly decreasing for t > τ (x).

Furthermore by the second equation, we have that ϕ(τ (x), x) = 0. Hence this characterizes τ (x) as

τ (x) = - ϕ 0 (x) v 0 (x) -µ .
This gives (iii) and identifies completely the limiting solution x by x.

The full problem

When diffusion is included, the previous analysis, which uses fundamentally x by x convergence, does not apply and the assumptions have to take into account the diffusion term. We also make more general assumptions. For the initial data, we assume that

u 0 ε > 0, εu 0 ε ≤ C, R u 0 ε dx ≤ C, (9) 
and,

ϕ 0 ε = ε ln u 0 ε satisfies ε∂ 2 xx ϕ 0 ε ≤ C, |∂ x ϕ 0 ε | ≤ C, ϕ 0 ε (x) ≥ -C(1 + |x|), (10) 
ε |∂ 2 xx ln v 0 ε | ≤ C, |∂ x ln v 0 ε | + | ln v 0 ε | ≤ C. (11) 
Then, recalling the definition Q(v) = v -µ ln v, we also use

w = ln v, Q(w) = Q(v) = e w -µw, (12) 
and we can define uniquely two smooth branches of initial data w 0 ±,ε by

Q(w 0 ε ) = Q(w 0 -,ε ) = Q(w 0 +,ε ), w 0 -,ε ≤ ln µ ≤ w 0 +,ε . (13) 
Note that assumption [START_REF] Golding | Studies of bacterial branching growth using reaction-diffusion models for colonial development[END_REF] provides corresponding bounds on w 0 ε and w 0 ±,ε , which are

|w 0 ε | + |w 0 ±,ε | ≤ C, |∂ x w 0 ε | + |∂ x w 0 ±,ε | ≤ C, ε |∂ 2 xx w 0 ε | + ε|∂ 2 xx w 0 ±,ε | ≤ C. (14) 
And we also use, for an unessential result, the stronger condition

ε∂ 2 xx (w 0 ε -w 0 -,ε ) + u 0 ε ≤ C. (15) 
Finally, we use the notation |W | -= max(0, -W ).

Our main theorem now reads

Theorem 2 Assume that u 0 ε ∈ C 2 ∩ L 1 (R)
and that assumptions (9)-( 11) hold. The solution of (1) has limits u ε u (weak measures) and v ε → v (strongly in L p loc ) and, there is a time τ (x) and

v 0 -(x) < µ < v 0 (x) such that (i) v(t, x) = v 0 -(x) for t < τ (x), v(t, x) = v 0 (x) for t > τ (x), (ii) u(t, x) = [ln v 0 (x) -ln v 0 -(x)]δ(t -τ (x)).
Compared to the case without diffusion in Theorem 1, there is no simple explicit formula for the jump time τ (x). However, here it is also characterized by ϕ(τ (x), x) = 0 for the solution of an Eikonal equation.

The end of this section is devoted to the proof of Theorem 1.

Our analysis is based on the observation that ∂ t ln v ε = -u ε , thus, from (1), we get the identity

∂ t [εu ε + v ε -µ ln v ε + ε 2 ∂ 2 xx ln v ε ] = 0,
and consequently

ε∂ t ln v ε -ε 2 ∂ 2 xx ln v ε -Q(v ε ) = -Q(v 0 ε ) -εu 0 ε -ε 2 ∂ 2 xx ln v 0
ε , which we can write in terms of w ε as

ε∂ t w ε -ε 2 ∂ 2 xx w ε -Q(w ε ) = -Q(w 0 ε ) -εu 0 ε -ε 2 ∂ 2 xx w 0 ε . (16) 
Notice that this is a monostable equation of Fisher/KPP type, where the steady states depend on x.

A priori estimates on v ε .

Lemma 3 The inequalities hold

0 < C ≤ w ε (t, x) ≤ w 0 +,ε , (17) 
and for any R, there is a constant C R such that,

|x|≤R | Q(w ε ) -Q(w 0 ε )|1 I {wε-w 0 -,ε ≤0} dx ≤ C R ε, ∀t ≥ 0. ( 18 
)
Finally, with the additional assumption (15), we have

-C √ ε + w 0 -,ε ≤ w ε (t, x). Proof.
For the first statement, on the one hand, we note that we necessarily have that for any x, w 0 ε (x) = w 0 -,ε (x) or w 0 ε (x) = w 0 +,ε (x). In both cases, that implies that w 0 ε (x) ≤ w 0 +,ε (x). Since v ε is non-increasing in time, so is w ε and

w ε (t, x) ≤ w 0 ε (x) ≤ w 0 +,ε (x) 
. On the other hand, as ∂ t w ε ≤ 0, we can deduce from [START_REF] Murray | Mathematical biology[END_REF], that

-ε 2 ∂ 2 xx (w ε -w 0 -,ε ) + [ Q(w 0 -,ε ) -Q(w ε )] ≥ -ε 2 ∂ 2 xx (w 0 ε -w 0 -,ε ) -εu 0 ε . (19) 
Using the maximum principle and assumptions ( 9), [START_REF] Golding | Studies of bacterial branching growth using reaction-diffusion models for colonial development[END_REF], we conclude that at a minimum value of w ε -w 0 -,ε , the quantity Q(w 0 -,ε ) -Q(w ε ) is controlled from below and the lower bound on w ε follows.

Furthermore, from the usual convex inequalities, we also observe that

-ε 2 ∂ 2 xx (w ε -w 0 -,ε ) -+ [ Q(w ε ) -Q(w 0 -,ε )]1 I {wε-w 0 -,ε <0} ≤ ε u 0 ε + ε 2 |∂ 2 xx (w 0 ε -w 0 -,ε )|. ( 20 
) Because the set {W s.t. W -w 0 -,ε < 0} lies in the decreasing branch of Q, the quantity [ Q(w ε ) - Q(w 0 -,ε )]1 I {wε-w 0 -,ε <0} is positive.
We integrate against some smooth non-negative ψ with ψ = 1 on B(0, R) and ψ compactly supported in B(0, 2R). Since we have already proved that w ε -w 0 -,ε is bounded, we obtain the estimate

|x|≤R | Q(w ε ) -Q(w 0 ε )|1 I {wε-w 0 -,ε ≤0} dx ≤ C R ε 2 + ε |x|≤R u 0 ε dx + ε 2 |x|≤R |∂ 2 xx (w 0 ε -w 0 -,ε )| dx.
Using assumption [START_REF] Diekmann | The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach[END_REF] and assumption [START_REF] Golding | Studies of bacterial branching growth using reaction-diffusion models for colonial development[END_REF] concludes the second point of the lemma. We may also use the specific assumption [START_REF] Mimura | Reaction-diffusion modelling of bacterial colony patterns[END_REF] in (20), we obtain that

-ε 2 ∂ 2 xx (w ε -w 0 -,ε ) -+ [ Q(w ε ) -Q(w 0 -,ε )]1 I {wε-w 0 -,ε <0} ≤ Cε. Recalling that [ Q(w ε ) -Q(w 0 -,ε )]1 I {wε-w 0 -,ε <0} is positive, we conclude that Q(w ε ) -Q(w 0 -,ε )1 I {wε-w 0 -,ε <0}
≤ Cε, and thus the third statement of Lemma 3 holds, namely w ε -w -,ε ≥ -C √ ε.

Concentration dynamics of u ε . We turn to the study of u ε and begin with some simple estimates.

• Since u ε = -∂ t w ε , and using the bound (17), we find

sup x T 0 u ε (t, x)dt = sup x [w 0 ε (x) -w ε (x, T )] ≤ C(T ), (21) 
and thus, integrating the equation on u ε , we also get

ε R u ε (t, x) dx = ε R u 0 ε (x) dx + R t 0 u ε (s, x)(v ε (s, x) -µ)ds dx ≤ C(t). (22) 
• Next, we use the Hopf-Cole transform

ϕ ε (t, x) = ε ln u ε (t, x).
As usual, we compute that ϕ ε satisfies the Eikonal equation

∂ t ϕ ε = ε∂ 2 xx ϕ ε + |∂ x ϕ ε | 2 + v ε -µ. ( 23 
)
We are going to show some uniform bounds on ϕ ε .

Lemma 4

We have

∂ t ϕ ε (t, x) ≤ C, ∀x ∈ R, t ≥ 0 (24) ∂ x ϕ ε (t) L ∞ (R) ≤ C, ∂ t ϕ ε L p t,x ≤ C(p), ∀p ∈ [1, ∞), (25) 
-C(t)(1 + |x|) ≤ ϕ ε (t, x) ≤ 2 ε ln 1 ε + C(t) ε, ∀x ∈ R, t ≥ 0. ( 26 
)
Proof. For the time derivative, differentiating (23) and using the equation on v ε , we find

∂ t (∂ t ϕ ε ) = ε∂ 2 xx (∂ t ϕ ε ) + 2∂ x ϕ ε ∂ x (∂ t ϕ ε ) -u ε v ε ≤ ε∂ 2 xx (∂ t ϕ ε ) + 2∂ x ϕ ε ∂ x (∂ t ϕ ε )
, so that the maximum principle gives ∂ t ϕ ε (t, x) ≤ max x ∂ t ϕ 0 ε (x) which gives (24) thanks to the assumption [START_REF] Fleming | PDE-viscosity solution approach to some problems of large deviations[END_REF].

Next, we prove the Lipschitz bound. Consider any point x ε that is a maximum in x of ∂ x ϕ ε at any time t (standard arguments apply if the maximum is not achieved, see [START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF][START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]). Then ∂ 2 xx ϕ ε (x ε ) = 0 and we conclude, still using (24), that

|∂ x ϕ ε (t, x ε )| 2 = ∂ t ϕ ε (t, x ε ) + v ε -µ ≤ C. ( 27 
) Once ∂ x ϕ ε ∈ L ∞ t,x uniformly, standard parabolic estimates provide a uniform bound on ∂ t ϕ ε in L p t,x
for any 1 ≤ p < ∞.

Finally, since ϕ ε is uniformly Lipschitz in x, let x ε be a maximum of ϕ ε , then

ϕ ε (t, x) ≥ max ϕ ε (t, .) -C |x -x ε |, so that, using (22), C ε ≥ R u ε (t, x) dx ≥ R e max ϕε(t,.)/ε e -C |x-xε|/ε dx ≥ ε C
e max ϕε(t,.)/ε , which proves the upper bound in (26). The lower bound relies, as it is standard [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF][START_REF] Crandall | Some properties of viscosity solutions of Hamilton-Jacobi equations[END_REF][START_REF] Barles | Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result[END_REF], on the construction of a sub-solution. Here one can immediately check that -C(t + 1) -Cx 2 √ 1+|x| 2 will work.

Compactness of v ε . We introduce the quantity Φ(x, w), defined up to a constant, by

Φ w (x, w) = | Q(w 0 ε (x)) -Q(w)| ≥ 0.
Lemma 5 With assumptions (11)-( 9), we have

sup x∈R, 0≤t≤T |∂ x w ε | ≤ C T ε , T 0 |x|≤R ∂ x Φ(x, w ε (t, x)) ≤ C T,R .
Consequently, by monotonicity of

Φ in w, v ε is locally compact in L p ((0, ∞) × R) for any 1 ≤ p < ∞.
Remark 6 It is also possible to conclude from this lemma that w ε is uniformly bounded in

L 1 ([0, T ], W θ,1 (R))
for some θ > 0; see Appendix B.

Proof. First of all, calculate

∂ t ∂ x w ε = -∂ x u ε = - ∂ x ϕ ε ε u ε ,
which yields, from the Lipschitz bound on ϕ ε in ( 27) and the estimate (21),

|∂ x w ε (t, x)| ≤ |∂ x w 0 ε (x)| + C ε t 0 u ε (s, x) ds ≤ C(t) ε .
Next, we write

∂ x [Φ(x, w ε (t, x))] = ∂ x Φ(x, w ε ) + [ Q(w 0 ε ) -Q(w ε )]∂ x w ε . Since ∂ x Φ(x, w ε ) is bounded in L ∞ ,
and thanks to the second bound in Lemma 3, we conclude that

T 0 |x|≤R |∂ x Φ(x, w ε )| ≤ C T,R + ε sup |x|≤R, 0≤t≤T |∂ x w ε | T 0 |x|≤R | Q(v 0 ε ) -Q(v ε ) ε | ≤ C T,R . (28) 
Since ∂ t w ε ≤ 0 and w ε bounded provide us with compactness in time, we conclude that Φ(x, w ε ) is compact and thus converges a.e. By monotonicity of Φ in w ε , we also conclude that w ε converges a.e.

Convergence as ε → 0. We are now ready to study the limit as ε vanishes.

• The bounds in Lemma 4 show that ϕ ε is locally compact in C(R + × R) and hence, after extraction of a subsequence that we still denote by ε, there exists ϕ which is Lipschitz in space and with time derivatives in L p such that

ϕ ε -ϕ L ∞ ((0,T )×(-R,R)) → 0, as ε → 0, ∀T > 0, R > 0.
We note that

-C(1 + t) -C|x| ≤ ϕ(t, x) ≤ 0. (29) 
• From Lemma 5, we also conclude that v ε converges locally; for any 1 ≤ p < ∞,

v ε → v, w ε → w = ln v in L p ((0, T ) × (-R, R)), ∀T > 0, R > 0.
• From the bound (21), we can also extract a subsequence such that, in the weak sense of measures,

u ε u, in M((0, T ) × (-R, R)), ∀T > 0, R > 0.
We may pass to the limit, in distributional sense, in Equations ( 1) and get, as ε → 0,

u ε v ε uµ, ∂ t w = -u ∂ t v = w-lim (-u ε v ε ) = -uµ,
which expresses that the concentration of the measure u ε is exactly at the point where v ε = µ. And from Lemma 3, we know that

Q(w) = Q(w 0 ), i.e., w(t, x) = w 0 -(x) or w 0 + (x).
Since w is non-decreasing in time, we conclude that, for all x ∈ S, a subset of R where w 0 = w 0 -, there is a unique time τ (x) such that w jumps from w 0 -(x) to w 0 + (x) (with τ (x) = ∞ for x < 0), and

u(t, x) = [w 0 + (x) -w 0 -(x)]δ(t -τ (x))1 I {x∈S} , ϕ(τ (x), x) = 0.
Open questions. Uniqueness for the limit problem, which we proved when diffusion is ignored (Section 2, is an open question in full generality. In particular it seems hard to determine more properties about the set S, which depends on the initial data. In the monotone case when w 0 (x) = w 0 -(x) for x < 0 and w 0 (x) = w 0 + (x) for x > 0 with u 0 = [[w 0 ]]δ(x), one can expect τ (x) be invertible and to obtain a front located at some value x = X(t).

that is σ * = 2 Q (w + ). In our analysis, this value σ * also appears in the limit of Equation ( 23), that is the Eikonal equation

∂ t ϕ = |∂ x ϕ| 2 + v -µ,
which for the traveling wave problem generates a solution ϕ(x -σt) with

σϕ (y) = |ϕ (y)| 2 + v ± (y) -µ,
where v ± (y) = v -for y < 0 and v ± (y) = v + for y > 0. The limiting minimal speed traveling wave solution is ϕ(y) = p -y < 0 for y < 0, p + y < 0 for y > 0, and p + is the double root of the polynomial -σ * λ -2λ 2 = Q (w + ) = v + -µ. This approach based on the concentration as a Dirac measure of u ε differs (but is restricted to one dimension) from the general front propagation theory in [START_REF] Barles | Wavefront propagation for reaction diffusion systems of PDE[END_REF][START_REF] Barles | A remark on the asymptotic behavior of the solution of the KPP equation[END_REF] based on the quantity v ε .

B A Sobolev estimate

We may use the bound (28) to obtain Sobolev regularity on v ε by controlling

sup |h|≤1 T 0 |x|≤R |v ε (x + h) -v ε (x)| |h| θ dx dt, (30) 
for some appropriate value of θ. This requires to be a bit more precise on the set where the initial data v ε crosses µ. Specifically, we assume that there exists some constants C > 0 and κ > 0 such that for any δ > 0

|{x, |v 0 ε (x) -µ| ≤ δ}| ≤ C δ κ . (31) 
Observe that when |h| ≤ ε 1/(1-θ) then by the Lipschitz bound on v ε (which follows immediately from that on w ε ), then

T 0 |x|≤R |v ε (x + h) -v ε (x)| |h| θ dx dt ≤ C T,R ∂ x v ε L ∞ |h| 1-θ ≤ C R ,
so that we can limit ourselves to h ≥ ε 1/(1-θ) . For some α > 0 which we later relate to θ and some constant C, denote

Ω -= {(t, x) ∈ [0, T ] × B(0, R), w 0 -,ε -|h| α ≤ w ε (t, x) ≤ ln µ -|h| α/2 }, Ω + = {(t, x) ∈ [0, T ] × B(0, R), w ε (t, x) ≥ ln µ + |h| α/2 }, Ω 0 = {(t, x) ∈ [0, T ] × B(0, R), ln µ -|h| α/2 ≤ w ε (t, x) ≤ ln µ + |h| α/2 or w ε (t, x) ≤ w 0 -,ε -|h| α }.
Observe that when (t, x) ∈ Ω 0 then sup

ε 1/(1-θ) ≤|h|≤1 (t,x)∈Ω 0 or (t,x+h)∈Ω 0 |v ε (t, x + h) -v ε (t, x)| |h| θ dx dt ≤ 2 sup ε 1/(1-θ) ≤|h|≤1 v ε |h| θ (t,x)∈Ω 0 or (t,x+h)∈Ω 0 dxdt We note that if w ε (t, x) ≤ w 0 -,ε (x) -|h| α then | Q(w ε ) -Q(w 0 ε )| ≥ |h| α /C. Similarly if ln µ -|h| α/2 ≤ w ε (t, x) ≤ ln µ + |h| α/2 but w 0 ε (x) < ln µ -2 |h| α/2 or w 0 ε (x) > ln µ + 2|h| α/2 , then we have again | Q(w ε ) -Q(w 0 ε )| ≥ |h| α /C, as Q(w) has a minimum at w = ln µ but is strictly convex.
Hence by (31)

|Ω 0 | ≤ C |h| α T 0 B(0,R) | Q(w ε ) -Q(w 0 ε )| dx dt + {x, |w 0 ε (x) -ln µ| ≤ 2 |h| α/2 } ≤ C |h| α T 0 B(0,R) | Q(w ε ) -Q(w 0 ε )| dx dt + C |h| κ α/2 .
We therefore obtain that sup

ε 1/(1-θ) ≤|h|≤1 (t,x)∈Ω 0 or (t,x+h)∈Ω 0 |v ε (t, x + h) -v ε (t, x)| |h| θ dx dt ≤ sup ε 1/(1-θ) ≤|h|≤1 C |h| θ 1 |h| α T 0 B(0,R) | Q(w ε ) -Q(w 0 ε )| dx dt + C |h| κ α/2 |h| θ ≤ C T,R ,
by Lemma 3 and provided that κ α/2 ≥ θ leading us to take α = 2 θ/κ and (α + θ)/(1 -θ) = (1+2/κ) θ/(1-θ) ≤ 1. It is always possible to satisfy these inequalities provided that θ/(1-θ) ≤ 1 1+2/κ . We can consequently exclude the case where (t, x) ∈ Ω 0 or (t, x + h) ∈ Ω 0 when bounding (30). The BV bound (28) also directly controls the case where (t, x) ∈ Ω -and (t, x + h) ∈ Ω + (or vice-versa). Indeed in that case, we necessarily have that w |Φ(x, w ε (t, x + h)) -Φ(x, w ε (t, x))| dx dt ≤ C T,R |h| 1-θ-3α/2 , by (28). This is bounded as long as θ + 3α/2 = θ (1 + 3/κ) ≤ 1.

0 +,ε ≥ w 0 -,ε + 2 |h| α/2 and ∂ w Φ(x, w ε ) = Q(w 0 ε ) -Q(w ε )
We are finally able to focus on the case where for example both (t, x) ∈ Ω -and (t, x + h) ∈ Ω -. Note again that ∂ w Φ(x, w ε ) = Q(w 0 ε ) -Q(w ε ) vanishes once with a change of sign at w ε = w -,ε for (t, x) ∈ Ω -. Therefore w → Φ(x, w) is injective on w ∈ [w 0 -,ε , ln µ -|h| α/2 ] for some constant C and ≤ C T,R , by (28) again, provided that 3 θ ≤ 1 and α ≥ 3 θ. Since we chose α = 2 θ/κ, this last inequality holds provided that κ ≤ 2/3, which we can always impose.

|w 1 -w 2 | 3 ≤ C |Φ(x,
To summarize, we have obtained the desired bound (30) provided that θ ≤ 1/3 and θ ≤ 1/(1 + 3/κ) together with θ/(1 -θ) ≤ 1/(1 + 2/κ).
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 1 Figure 1: Traveling wave solution of Equation (1). In blue/solid line the component u ε . In red/dashed line, the nutrient v ε .

  has a sign between w -,ε and w +,ε so that there exists a constant C s.t. (again at least locally) By our definitions of Ω -and Ω + and taking C large enough, this implies that|Φ(x, w ε (t, x + h)) -Φ(x, w ε (t, x))| ≥ |h| 3 α/2 C if (t, x) ∈ Ω -and (t, x + h) ∈ Ω + .
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	Therefore					
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  Since w ε ≥ w 0 -,ε -|h| α on Ω -, this implies that for both (t, x) ∈ Ω -and (t, x + h) ∈ Ω -, we have|w ε (t, x) -w ε (t, x + h)| 3 ≤ C |Φ(x, w ε (t, x)) -Φ(x, w ε (t, x + h))| + C ε α .By a straightforward Hölder inequality, we get(t,x)∈Ω -and (t,x+h)∈Ω + |v ε (t, x + h) -v ε (t, x)| |h| θ dx dt ≤ C T,R(t,x)∈Ω -and (t,x+h)∈Ω - |w ε (t, x + h) -w ε (t, x)| 3 (t,x)∈Ω -and (t,x+h)∈Ω - |Φ(x, w ε (t, x)) -Φ(x, w ε (t, x + h))| + |h| α |h| 3θ dx dt

		1/2
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w 1 ) -Φ(x, w 2 )|, w 1 , w 2 ∈ [w 0 -,ε , ln µ -|h| α/2 ].
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A Traveling wave

Traveling waves are an intuitive way to understand, in a very particular case, the general behavior of system [START_REF] Barles | Wavefront propagation for reaction diffusion systems of PDE[END_REF]. considering solutions of the form u ε (x -σt), v ε (x -σt), w ε = ln v ε . Recalling the notation Q(w) = e w -µw, we arrive at an equation on the single quantity w ε (y),

with the conditions at infinity

This is just a Fisher/KPP monostable equation with w + the unstable state and we know from the general theory [START_REF] Lam | Reaction-Diffusion Equations: Theory and Applications[END_REF] that there is a traveling wave with minimal speed σ * which is characterized by the property of a double root for the polynomial