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Abstract. In spite of some drawbacks, finite element methods based on nodal rather than Gaussian inte-
gration present major advantages, especially in the context of elastoplastic or elastoviscoplastic problems—
notably the elimination of locking problems due the plastic or viscoplastic incompressibility condition, and
the reduction of computation and storage requirements pertaining to internal variables. This paper inves-
tigates another potential advantage of such methods, namely the possibility to account exactly—instead of
approximately like with Gaussian integration—for conditions of prescribed traction on external surfaces, and
continuity of the traction-vector across internal interfaces separating different materials. The technique pro-
posed is somewhat similar to that classically used to satisfy plane stress conditions in 2D elastoplastic prob-
lems: it consists, when using the constitutive law to evaluate the stresses from the strains, in adjusting the out-
of-plane components of the strain, so as to enforce either identity of the traction-vector and its prescribed
value on external surfaces, or identity of the traction-vectors on both sides of internal interfaces. The exam-
ples provided for both traction-free boundaries and interfaces between materials evidence the efficiency of
the technique.

Keywords. Finite elements, Nodal integration, External boundaries, Internal interfaces, Conditions on
traction-vector.

Manuscript received 20th January 2022, accepted 28th January 2022.

1. Introduction

The prime motivation for the development of nodal-integration-based finite element methods
(NIFEMs) probably lied in “locking” problems arising from the plastic or viscoplastic incom-
pressibility condition, frequently encountered in nonlinear simulations of structures using the
standard finite element method (FEM) based on Gaussian integration. Locking, when present, is
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due to the excessive number of Gauss points where this condition is enforced implicitly (through
application of the constitutive law), as compared to that of nodes where discrete degrees of free-
dom are defined. A number of solutions basically retaining Gaussian integration have been pro-
posed (see the works of Arnold et al. [1], Hughes [2], Brezzi and Fortin [3], Bathe [4], Heuze et
al. [5], Feulvarch et al. [6], among others). But all of these solutions, which involve more com-
plex elements, exhibit drawbacks, be they the heaviness of the meshing procedure, the increase
of CPU time, or both.

A more radical solution consists of replacing Gauss points through nodes as integration points;
this is expected to definitively solve the locking issue, since the sets of points where degrees of
freedom are defined on the one hand, and where the possible incompressibility condition is
enforced on the other hand, are then identical. This approach no longer requires evaluating the
strain components within the elements but at the nodes, through some suitable procedure to
be defined. Bonet and Burton [7] developed a 4-node tetrahedral element with average nodal
pressure combined with an explicit algorithm, for applications to dynamic problems; use of such
an element requires nodal calculation of the sole hydrostatic part of the strain tensor. Dohrmann
et al. [8] proposed an extension of Bonet and Burton’s [7] work in the form of a new 4-node
tetrahedral element, combined with a nodal evaluation of all strain components. Other similar
approaches were developed by Bonet et al. [9], Krysl and Zhu [10], Krysl and Kagey [11] and
Castellazzi et al. [12]. Liu et al.’s [13] and Nguyen-Thoi et al.’s [14] nodal smoothed finite element
method also relied on basically similar principles.

In fact, the concept of strain components defined at discrete points rather than over volumes
is not limited to the context of finite elements, being also standard in meshless methods. Tech-
niques have been developed by various authors to directly evaluate the integrals involved in the
weak formulation of the problem from some arbitrary cloud of discretization points; for instance,
Chen et al. [15, 16] and Elmer et al.’s [17] stabilized conforming numerical integration technique
consists of (i) partitioning the domain studied into subvolumes containing one discretization
point each; and (ii) defining strain components at every such point as the average of these com-
ponents over the subvolume containing it. Such an approach may elegantly be combined with
the FEM, by defining the subvolume containing a given node in relation to the finite elements
containing it [18, 19]. A comparison, and a proof of the equivalence, of some of the techniques
proposed for evaluation of nodal strains was very recently provided by Jia et al. [20].

In addition to representing a final solution to locking problems, NIFEMs appeared in time to
exhibit other strong points, notably:

• The possibility of using (locking-free) linear triangular (in 2D) or tetrahedral (in 3D)
meshes, permitting automatic meshing with standard tools available nowadays.

• Lesser computation and storage requirements pertaining to internal variables defined at
integration points—as a consequence of the fact that in large meshes, the total number
of nodes is in practice much lower than the total number of Gauss points.

• In the event of severe distortion of the elements, easy local remeshing avoiding any
redefinition or displacement of the nodes.

• If required, easy transfer of quantities from one mesh to another, through use of nodal
values of these quantities and shape-function-based interpolation.

Admittedly, NIFEMs are not free of shortcomings either:

• The strain tensor at some given node depends on the displacements at all first-neighbor
nodes, which generates couplings between first-neighbor nodes in the famous “B-
matrix” (with Zienkiewicz et al.’s [21] classical notations) connecting the strain tensor
at a given point to the nodal displacements. This in turn generates couplings between
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second-neighbor nodes in the global tangent-matrix, implying an increased bandwidth
of this matrix.

• “Hourglass modes”—distinct from a rigid-body motion but nevertheless having zero
elastic energy, as computed numerically—may be present in some cases.

In practice, however, the first disadvantage is largely compensated by the reduced number of
integration points where the constitutive law must be applied. Also, Puso and Solberg [22] and
Puso et al. [23] proposed a practically efficient remedy to the second shortcoming, consisting of
applying slight corrections, derived from the standard FEM, to both the vector of residues and
the tangent-matrix. Numerical experience shows that use of this remedy may be required or not,
depending on the case considered.1

The purpose of this paper is to investigate a further possible advantage of NIFEMs, which was
not envisaged at first: namely the possibility of accounting in an exact manner for (i) possible
conditions of prescribed traction on some portion of the external boundary; and (ii) requirements
of continuity of the traction-vector across possible internal interfaces between distinct materials.
The impact of the resulting improvement in calculated stress distributions on external surfaces
and material interfaces may be important in some cases, for instance if one wishes to investigate
possible crack initiation on free surfaces, or propagation of cracks along interfaces.

With the classical FEM based on Gaussian integration, conditions of prescribed tractions
on external surfaces and continuity across interfaces are only satisfied “on average”, since they
implicitly result from the weak formulation of the problem (equivalent to the principle of virtual
work), involving integrals evaluated numerically with discretization points which never lie on
the relevant external and internal surfaces. But with a nodal integration technique, integration
points may be found on these surfaces, which paves the way to discrete satisfaction of the
required conditions at these points. One may expect from there an improvement of the calculated
mechanical fields, conspicuous for instance in visualizations of isostress lines.

However, even when nodes are used as integration points, the FEM is still based on the prin-
ciple of virtual work which, in the absence of some special treatment, only warrants satisfaction
of the required conditions in some average, not exact sense. Such a special treatment is therefore
necessary to achieve the desired goal. In this work, we draw inspiration from the classical treat-
ment of plane stress conditions in 2D elastoplastic or elastoviscoplastic problems, consisting of
satisfying the requirement of zero stress in the direction normal to the surface meshed through
gradual (iterative) adjustment of the normal component of the strain. This procedure of adjust-
ment is extended here to all three out-of-plane components of the strain, so as to fulfill the three
conditions required from the full stress-vector.

The paper is organized as follows:

• Section 2 first expounds the procedure proposed for external surfaces with conditions
of prescribed traction, which basically amounts to some slight formal modification of
the constitutive law. The accompanying modification of the local tangent-matrix is also
presented.

• Section 3 similarly presents the procedure for internal interfaces between distinct mate-
rials.

• Section 4 discusses the practical implementation of the methods proposed. (This is
done within the context of the SYSWELD™ finite element code developed by ESI-Group
(SYSWELD [24]) where these methods have been implemented, but the discussion is of
general scope).

1In the simulations presented here, it is not used because the results obtained do not seem to make it necessary.
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• As a first illustration, Section 5 presents a numerical simulation of a complex thermome-
chanical problem involving a structure with a traction-free external boundary. This ex-
ample makes quite conspicuous the improvement brought to the results through use of
the procedure proposed.

• As a second illustration, Section 6 provides other numerical examples involving two geo-
metrically simple, but materially inhomogeneous specimens. Very favorable conclusions
on the efficiency of the procedure proposed are again reached.

2. Conditions of prescribed traction on external surfaces

2.1. Generalities

Although the emphasis of this paper is on FEMs using nodes as integration points (NIFEMs), the
procedures proposed in order to exactly satisfy (i) conditions of prescribed tractions on external
surfaces, in this section, and (ii) continuity of the traction-vector across internal interfaces, in
the next section, are not specific to finite elements, and would apply equally well to meshless
approaches. The only things that matter in this section are that:

(1) One is currently calculating the evolution of the elastoplastic or elastoviscoplastic struc-
ture between some discrete instants t and t +∆t .

(2) The calculation is done iteratively, each iteration involving a “constitutive law” step
(performed at each discretization point) and an “equilibrium” step (performed globally
on the whole structure).

(3) At each iteration and at every discretization point, the total increment of strain ∆ε

between times t and t +∆t is known and given; and the stress tensor σ at time t +∆t is a
function (generally complex and determined only numerically) of this strain increment,
resulting from the constitutive law:2

σ≡ F(∆ε) ⇔ σi j = Fi j (∆ε). (1)

(4) The local or constitutive tangent-matrix

D(∆ε) ≡ ∂F

∂∆ε
(∆ε) ⇔ Di j k`(∆ε) ≡ ∂Fi j

∂∆εk`
(∆ε) (2)

is calculated (numerically) simultaneously with the function F.
(5) In addition the stress tensor σ should satisfy the condition

σ ·n = Tprescr, (3)

where n denotes the local unit exterior normal vector to the external surface, and Tprescr

the prescribed traction-vector.3

2The notations σ and ∆ε in (1) suggest a geometrically linearized framework, with σ denoting Cauchy’s stress tensor
and ∆ε the increment of linearized strain. But the formalism applies equally well to a general geometrical framework
within a material Eulerian approach, that is moving the mesh with the material and performing calculations on the
current configuration; ∆ε must then be interpreted as the product of the Eulerian strain rate d and the time-increment
∆t . The formalism does not apply to a general geometrical framework with a total or updated Lagrange option, because
of a more tricky relationship between the Piola–Kirchhoff stress tensor and the traction-vector.

3In this theoretical section, the normal vector n is assumed to exist, that is, the external surface is supposed to be
geometrically regular at the point considered. The situation becomes more complex when it comes to implementing the
algorithm proposed below within some NIFEM, because as a rule, the surface nodes where this algorithm is to be applied
belong to different discretized surface facets with different normal vectors. This issue will be discussed in Section 4 on the
numerical implementation.
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It is obvious that for an arbitrary strain increment ∆ε, resulting from the procedure adopted to
calculate the nodal strains, Equation (3) cannot be satisfied exactly; some adjustment of this
increment is therefore necessary. The problem is the same as for the condition σ33 = 0 in 2D
simulations with a plane stress option: in such simulations it is necessary, when applying the
constitutive law, to adjust the normal component ∆ε33 of the strain increment so as to fulfill
this condition. However one difference is that here, assuming for definiteness the normal vector
n to be parallel to the x3-direction, all three out-of-plane components ∆ε13, ∆ε23, ∆ε33 of the
strain increment must be adjusted so as to satisfy the three conditionsσ13 = T prescr

1 ,σ23 = T prescr
2 ,

σ33 = T prescr
3 .

Another, more subtle difference is that in 2D plane stress calculations, the normal component
∆ε33 of the strain increment is not known a priori, since the mesh is 2D in the plane (x1x2) and
the normal component u3 of the displacement is simply not considered: the value of ∆ε33 only
results from the constitutive law combined with the condition σ33 = 0. The situation is different
here because with a 3D mesh, all components of the strain increment ∆ε are known at all points
from nodal displacements. The possible adjustment of this increment at some points then leads
to some corrected value ∆εcorr, so that two values of the full strain increment tensor are at hand
at these points, ∆ε and ∆εcorr. This raises the following issue: which value should be used every
time the strain increment appears in the numerical algorithm?

The answer to this question requires a careful scrutiny of the said algorithm. The strain
increment appears at three distinct steps: (i) when one calculates it from nodal displacements;
(ii) when one employs the constitutive law to obtain the stresses from it; (iii) when one applies
the principle of virtual work to enforce equilibrium.4 Now:

• When calculating the nodal strains from the nodal displacements, it is logical to deter-
mine the original strain increment ∆ε, since this step is supposed to be of purely geo-
metrical character and independent of the constitutive law.

• In contrast, when calculating the stresses, it is obviously necessary to determine and use
the corrected strain increment∆εcorr in the constitutive law—otherwise condition (3) will
not be satisfied exactly.

• Finally in the principle of virtual work, the choice of the original value of the virtual
strain rate is dictated by the remark that use of the corrected value would raise at least
two serious problems: (i) the field of corrected strain rates would have no reason to be
geometrically compatible, the correction being calculated independently at the various
discretization points; (ii) precisely because of the correction, this field would not be
connected to the virtual velocity field by the correct kinematic relations.

The conclusion is that the corrected strain increment ∆εcorr must be used only when applying
the constitutive law: the correction of∆ε then appears as a mere slight formal modification of the
constitutive law, devoid of consequences on the rest of the numerical algorithm. This implies in
particular that in the famous global tangent-matrix “

∫
ΩBT ·D·BdΩ” (with Zienkiewicz et al.’s [21]

notations), a correction (D → Dcorr) will be required for the local tangent-matrix, but not for the
B-matrix connecting the local strain or strain rate to the nodal displacements or velocities. An
important consequence is that if the correction of the strain increment preserves the symmetry
of the local tangent-matrix, it will also automatically preserve that of the global tangent-matrix.

4To be more exact, the principle of virtual work involves the strain rate, not the strain increment; but the issue remains
of whether this strain rate must be corrected or not.
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2.2. Algorithm for satisfaction of conditions of prescribed traction

Rather than considering, like above, a local frame “adapted” to the orientation of the normal to
the external surface at the point considered, it is preferable to work in an arbitrary frame—in
practice, the “general” one in which the numerical simulation is performed—in order to avoid
cumbersome operations of change of frame from the general to the local frame and vice versa.
We shall therefore use general tensorial notations not tied to any specific frame.

Since a correction is needed for the sole out-of-plane (with respect to the local tangent plane to
the surface) components of the strain increment ∆ε, the corrected strain increment ∆εcorr must
be of the form

∆εcorr ≡∆ε+∆ε′, ∆ε′ ≡ 1
2 (ϕ⊗n+n⊗ϕ), (4)

whereϕ denotes some unknown vector to be determined. (In this way, if the x3-direction is taken
parallel to the exterior normal vector n to the surface, the components of the correction∆ε′ of the
strain increment are ∆ε′11 =∆ε′22 =∆ε′12 = 0, as desired, and ∆ε′13 =ϕ1/2, ∆ε′23 =ϕ2/2, ∆ε′33 =ϕ3.)

The vectorϕmust be determined so as to satisfy the condition (see (1) and (3)):

G(ϕ) ≡ σcorr ·n−Tprescr = F(∆εcorr) ·n−Tprescr = F[∆ε+∆ε′(ϕ)] ·n−Tprescr = 0

⇔ Gi (ϕ) ≡ Fi j [∆ε+∆ε′(ϕ)]n j −T prescr
i = 0 (∀i ),

(5)

where σcorr ≡ F(∆εcorr) denotes the corrected stress tensor. In the case of an elastic constitutive
law, Equation (5) on ϕ is linear so that its solution is easily found. For a general elastoplastic or
elastoviscoplastic law, the equation is nonlinear; the easiest way to get the solution is to use a
Newton method, wherein the valueϕ(n+1) ofϕ at iteration n+1 is deduced from that at iteration
n,ϕ(n), through the relation

ϕ(n+1) =ϕ(n) −A−1(ϕ(n)) ·G(ϕ(n)). (6)

In (6) the components of the tangent-matrix A of the algorithm are given by

Ai k (ϕ) ≡ ∂Gi

∂ϕk
(ϕ) = ∂Fi j

∂∆ε`m
(∆εcorr)

∂∆ε′
`m

∂ϕk
(ϕ)n j = Di j`m(∆εcorr) · 1

2
(δk`nm +δkmn`)n j

= 1

2
[Di j km(∆εcorr)n j nm +Di j`k (∆εcorr)n j n`] = Di j k`(∆εcorr)n j n`, (7)

where the symmetry property Di j k` = Di j`k has been used. Thus A is nothing other than the
acoustic tensor. Note that this tensor is symmetric if the local tangent-matrix D obeys the “major”
symmetry property Di j k` = Dk`i j . (This property is obeyed for all elasticity laws, and most—but
not all—usual elastoplastic and elastoviscoplastic laws.)

In order for the Newton algorithm to run optimally, one must choose the initial value of ϕ as
close as possible to the final solution of (5). A natural choice consists of that value satisfying this
equation in elasticity, which is easily obtained by performing a preliminary iteration using for F
the function corresponding to a purely elastic behavior. In this way, if the strain increment be-
tween times t and t+∆t at the point considered finally happens to be purely elastic, convergence
of the algorithm is achieved with just one elastoplastic iteration in addition to the preliminary
purely elastic one.

2.3. Calculation of local tangent-matrix

The corrected local tangent-matrix Dcorr needed to construct the global tangent-matrix “
∫
ΩBT ·

Dcorr ·BdΩ” is defined through its components:

Dcorr
i j k` ≡

∂σcorr
i j

∂∆εk`
(∆ε). (8)
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It differs from D(∆εcorr) = ∂F/∂∆ε(∆εcorr) because σcorr depends on the solution ϕ of (5), which
itself implicitly depends on ∆ε.

The first task is therefore to calculate the derivatives of the components of ϕ with respect to
those of ∆ε. This may be achieved by differentiating equation (5) for the index i with respect to
∆εk`,ϕ being taken equal to that valueϕ(∆ε) satisfying the requested condition:

0 = ∂Fi j

∂∆εk`
(∆εcorr)n j +

∂Fi j

∂∆εmn
(∆εcorr)

∂∆ε′mn

∂ϕp
(ϕ)

∂ϕp

∂∆εk`
(∆ε)n j

= Di j k`(∆εcorr)n j + Ai p (ϕ)
∂ϕp

∂∆εk`
(∆ε).

Thus, for fixed indices k and `, the vector of components ∂ϕp /∂∆εk` satisfies the vectorial
equation Ai p∂ϕp /∂∆εk` =−Di j k`n j , the solution of which is

∂ϕp

∂∆εk`
(∆ε) =−(A−1)pi (ϕ)Di j k`(∆εcorr)n j . (9)

It now becomes easy to calculate the components of the corrected local tangent-matrix Dcorr:

Dcorr
i j k` = ∂

∂∆εk`
Fi j {∆ε+∆ε′[ϕ(∆ε)]}

= Di j k`(∆εcorr)+Di j mn(∆εcorr)
∂∆ε′mn

∂ϕp
(ϕ)

∂ϕp

∂∆εk`
(∆ε)

= Di j k`(∆εcorr)+Di j mn(∆εcorr) · 1

2
(δmp nn +δnp nm)

∂ϕp

∂∆εk`
(∆ε)

= Di j k`(∆εcorr)+Di j mn(∆εcorr)
∂ϕm

∂∆εk`
(∆ε)nn , (10)

where the symmetry property Di j mn = Di j nm has been used, and ∂ϕm/∂∆εk` is given by (9) (with
m instead of p).

Equation (10) provides the most compact expression of the tensor Dcorr, adapted to its numer-
ical computation; but its format does not clearly evidence its symmetry properties. A more con-
venient format in this respect may be obtained by substituting ∂ϕm/∂∆εk` through its expres-
sion (9):

Dcorr
i j k` = Di j k`(∆εcorr)−Di j mn(∆εcorr)(A−1)mp (ϕ)nnnq Dpqk`(∆εcorr). (11)

Then permutation of the pairs (i , j ) and (k,`), followed by renaming of the pairs of repeated
indices (m,n) and (p, q), yields

Dcorr
k`i j = Dk`i j (∆εcorr)−Dk`mn(∆εcorr)(A−1)mp (ϕ)nnnq Dpqi j (∆εcorr)

= Dk`i j (∆εcorr)−Dk`pq (∆εcorr)(A−1)pm(ϕ)nq nnDmni j (∆εcorr)

= Dk`i j (∆εcorr)−Dmni j (∆εcorr)(A−1)pm(ϕ)nnnq Dk`pq (∆εcorr).

Therefore, if Di j k` = Dk` i j , then Dcorr
i j k` = Dcorr

k`i j also (because the matrix A is symmetric). This
means that the properties of “major symmetry” of the original and corrected local tangent-
matrices D and Dcorr are identical.

3. Continuity of traction-vector across internal interfaces between different materials

3.1. Generalities

The procedure proposed in this section to exactly satisfy continuity of the traction-vector across
internal interfaces, just like that of Section 2 pertaining to conditions of prescribed tractions
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on external surfaces, will apply to any numerical approach—based or not on finite elements—
for which some integration points may be found on such interfaces. Again, the only points that
matter are:

(1) Point (1) of Section 2.1, unmodified.
(2) Point (2), unmodified.
(3) Point (3), modified as follows: (3′): the integration point considered lies in two different

materials denoted with upper indices 1 and 2; the stress tensorsσ1,σ2 in these materials,
at this point and at time t +∆t , are given functions (determined numerically) of the local
strain increment ∆ε: {

σ1 ≡ F1(∆ε) ⇔ σ1
i j = F 1

i j (∆ε)

σ2 ≡ F2(∆ε) ⇔ σ2
i j = F 2

i j (∆ε).
(12)

(4) Point (4), modified as follows: (4′): the constitutive tangent-matrices

D1(∆ε) ≡ ∂F1

∂∆ε
(∆ε) ⇔ D1

i j k`(∆ε) ≡
∂F 1

i j

∂∆εk`
(∆ε)

D2(∆ε) ≡ ∂F2

∂∆ε
(∆ε) ⇔ D2

i j k`(∆ε) ≡
∂F 2

i j

∂∆εk`
(∆ε)

(13)

in the two materials, at the point considered, are calculated simultaneously with the
functions F1 and F2.

(5) Point (5), modified as follows: (5′): the stress tensors σ1, σ2 in the two materials, at the
point considered, should satisfy the condition

σ1 ·n =σ2 ·n, (14)

where n denotes a local unit normal vector to the interface between the materials. (The
orientation of this vector does not matter here.)5

Again, it is obvious that in order to satisfy condition (14), one must correct the out-of-plane
components of the strain increment, the correction being here different in the two materials; ∆ε
will therefore become ∆εcorr1 and ∆εcorr2 in materials 1 and 2, respectively. Again, the corrected
strain increments∆εcorr1,∆εcorr2 will have to be used only when applying the constitutive laws of
the two materials, not when evaluating the strain increment from the nodal displacements, nor
when expressing virtual strain rates in terms of nodal virtual velocities in the principle of virtual
work.

3.2. Algorithm for satisfaction of continuity of traction-vector

Again, corrections in materials 1 and 2 are required only for the out-of-plane components of the
strain increment∆ε; thus the corrected strain increments∆εcorr1 and∆εcorr2 must be of the form{

∆εcorr1 ≡∆ε+∆ε′1, ∆ε′1 ≡ 1
2 (ϕ1 ⊗n+n⊗ϕ1)

∆εcorr2 ≡∆ε+∆ε′2, ∆ε′2 ≡ 1
2 (ϕ2 ⊗n+n⊗ϕ2),

(15)

where ϕ1 and ϕ2 are unknown vectors to be determined. However, unlike in the case of an
external point subjected to some prescribed traction, the overall value∆ε of the strain increment
at the point of the interface considered should be left unchanged by the corrections of this
increment in the two materials (since this point lies in the interior of the structure). This means

5The remark made in Section 2.1 about the definition of the normal vector applies equally well here.
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that w1 and w2 denoting the “weights” of this point in materials 1 and 2 (appearing in the various
discretized integrals of the weak formulation of the problem), the condition

w1∆εcorr1 +w2∆εcorr2 = 0 ⇔ w1ϕ1 +w2ϕ2 = 0 (16)

should be obeyed. The implication is that we may use the vector ϕ1 as sole unknown, the other
oneϕ2 being connected to it through the relation

ϕ2 =−kϕ1, k ≡ w1

w2 . (17)

The vectorϕ1 must be determined so as to satisfy the condition (deriving from (12) and (14)):

H(ϕ1) ≡ σcorr1 ·n−σcorr2 ·n = [F1(∆εcorr1)−F2(∆εcorr2)] ·n

= {F1[∆ε+∆ε′1(ϕ1)]−F2[∆ε+∆ε′2(ϕ2(ϕ1))]} ·n = 0

⇔ Hi (ϕ1) ≡ {F 1
i j [∆ε+∆ε′1(ϕ1)]−F 2

i j [∆ε+∆ε′2(ϕ2(ϕ1))]}n j = 0 (∀i ),

(18)

where σcorr1 ≡ F1(∆εcorr1) and σcorr2 ≡ F2(∆εcorr2) denote the corrected stress tensors in mate-
rials 1 and 2, respectively. Following the same steps as in Section 2.2, one calculates the compo-
nents of the tangent-matrix B of a Newton algorithm aimed at solving this equation onϕ1:

Bi k (ϕ1) ≡ ∂Hi

∂ϕ1
k

(ϕ1) =
[
∂F 1

i j

∂∆ε`m
(∆εcorr1)

∂∆ε′1
`m

∂ϕ1
k

(ϕ1)−
∂F 2

i j

∂∆ε`m
(∆εcorr2)

∂∆ε′2
`m

∂ϕ1
k

(ϕ1)

]
n j

= [D1
i j k`(∆εcorr1)+kD2

i j k`(∆εcorr2)]n j n`. (19)

Again, note that the matrix B—a combination of the acoustic tensors of materials 1 and 2—
is symmetric if the constitutive tangent-matrices D1, D2 obey the major symmetry properties
D1

i j k` = D1
k`i j , D2

i j k` = D2
k`i j .

Here also, it is advisable to first perform a preliminary Newton iteration using for F1 and F2

the functions corresponding to a purely elastic behavior; then if the behavior between times t
and t +∆t at the point considered happens to be purely elastic, convergence of the algorithm is
achieved with just one additional iteration.

3.3. Calculation of local tangent-matrices

Like in Section 2.3, the first task is to calculate the derivatives of the components of ϕ1 with
respect to those of ∆ε, by differentiating equation (18) for the index i with respect to ∆εk`:

0 =
∂F 1

i j

∂∆εk`
(∆εcorr1)n j +

∂F 1
i j

∂∆εmn
(∆εcorr1)

∂∆ε′1mn

∂ϕ1
p

(ϕ1)
∂ϕ1

p

∂∆εk`
(∆ε)n j

−
∂F 2

i j

∂∆εk`
(∆εcorr2)n j −

∂F 2
i j

∂∆εmn
(∆εcorr2)

∂∆ε′2mn

∂ϕ1
p

(ϕ1)
∂ϕ1

p

∂∆εk`
(∆ε)n j

= [D1
i j k`(∆εcorr1)−D2

i j k`(∆εcorr2)]n j +Bi p (ϕ1)
∂ϕ1

p

∂∆εk`
(∆ε).

For fixed k and `, the solution of this equation on the vector of components ∂ϕ1
p /∂∆εk` reads

∂ϕ1
p

∂∆εk`
(∆ε) = (B−1)pi (ϕ1)[D2

i j k` (∆εcorr2)−D1
i j k` (∆εcorr1)]n j . (20)
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The components of the corrected local tangent-matrices Dcorr1, Dcorr2 of materials 1 and 2 then
follow like in Section 2.3:

Dcorr1
i j k` = ∂

∂∆εk`
F 1

i j {∆ε+∆ε′1[ϕ1(∆ε)]}

= D1
i j k`(∆εcorr1)+D1

i j mn(∆εcorr1)
∂∆ε′1mn

∂ϕ1
p

(ϕ1)
∂ϕ1

p

∂∆εk`
(∆ε)

= D1
i j k`(∆εcorr1)+D1

i j mn(∆εcorr1)
∂ϕ1

m

∂∆εk`
(∆ε)nn ; (21)

Dcorr2
i j k` = ∂

∂∆εk`
F 2

i j {∆ε+∆ε′2[ϕ1(∆ε)]}

= D2
i j k`(∆εcorr2)+D2

i j mn(∆εcorr2)
∂∆ε′2mn

∂ϕ1
p

(ϕ1)
∂ϕ1

p

∂∆εk`
(∆ε)

= D2
i j k`(∆εcorr2)−kD2

i j mn(∆εcorr2)
∂ϕ1

m

∂∆εk`
(∆ε)nn . (22)

The symmetry properties of Dcorr1 and Dcorr2 are less obvious than those of the matrix Dcorr of
Section 2.3. To examine them, let us substitute ∂ϕ1

m/∂∆εk` through its expression (20) in (21)
and (22); the results read{

Dcorr1
i j k` = D1

i j k`(∆εcorr1)+D1
i j mn(∆εcorr1)(B−1)mp (ϕ1)nnnq [D2

pqk` (∆εcorr2)−D1
pqk`(∆εcorr1)]

Dcorr2
i j k` = D2

i j k`(∆εcorr2)−kD2
i j mn(∆εcorr2)(B−1)mp (ϕ1)nnnq [D2

pqk`(∆εcorr2)−D1
pqk`(∆εcorr1)].

(23)
Inspection of these two formulas shows that even if D1 and D2 obey the major symmetry
properties D1

i j k` = D1
k` i j , D2

i j k` = D2
k` i j , neither Dcorr1 nor Dcorr2 does. However under such

circumstances the “overall” local tangent-matrix w1Dcorr1 +w2Dcorr2—the role of which will be
apparent below—does possess these symmetries. Indeed by (23) combined with the expression
(17)2 of k,

w1Dcorr1
i j k` +w2Dcorr2

i j k` = w1D1
i j k`(∆εcorr1)+w2D2

i j k`(∆εcorr2)

−w1[D1
i j mn(∆εcorr1)−D2

i j mn(∆εcorr2)](B−1)mp (ϕ1)nnnq

× [D1
pqk`(∆εcorr1)−D2

pqk`(∆εcorr2)].

It is then easy, following the same lines as in Section 2.3, to check that w1Dcorr1
i j k` + w2Dcorr2

i j k` =
w1Dcorr1

k`i j +w2Dcorr2
k`i j .

4. Numerical implementation

We shall concentrate henceforward on FEMs using a nodal integration scheme (NIFEMs) and
linear tetrahedral elements. (These are the elements of major interest for NIFEMs, since they
permit to use standard automatic meshing tools available nowadays.)

Although the implementation of the procedures sketched in Sections 2 and 3 above, and
detailed in this section, has been done in the SYSWELD™ finite element code developed by
ESI-Group SYSWELD [24], and all practical examples presented in Sections 5 and 6 below have
been treated with this programme, neither these procedures nor those examples involve any of
its specific features: the same methods could be implemented in, and the same results obtained
with, any other standard finite element code.
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4.1. Classification of nodes

The procedures discussed in this paper require a clear distinction between external (E) nodes
(belonging to some portion of the external surface subjected to some prescribed traction),
interface (I) nodes (belonging to some internal interface between distinct materials), and all other
standard (S) nodes. It would be awkward to force the user to define such nodes him(her)self; a
reasonable extra programming effort, discussed here, permits to define these distinct categories
of nodes automatically, thus avoiding to place any extra burden on the user. The procedures
sketched below may be executed once and for all at the beginning of the calculation (as long
as no remeshing is performed), thus minimizing their cost in CPU time.

(1) Construction of a preliminary file. By looping over all 3D (tetrahedral) elements, and
then over the four triplets of nodes in each element, construct a provisional file (F1)—
to be erased after Step 2 below—containing an ordered list of all (triangular) facets of the
discretized geometry, with the following information for each facet: (i) the three numbers
of the facet nodes; (ii) the number of the first element containing the facet; (iii) the
number of the material this element belongs to; (iv) the number of the second element
containing the facet (0 if there is no such element); (v) the number of the corresponding
material (0 if the element does not exist).

(2) Construction of external and interface facet files. By looping over all facets in file (F1),
construct two permanent files (F2) and (F3) containing ordered lists of all external and
interface facets, respectively, with the following information:

• File (F2): for every external facet, defined as belonging to one 3D element only:
(i) the three numbers of the facet nodes P,Q,R, ordered in such a way that the
vector product PQ × PR provides the orientation of the exterior normal vector to
the surface; (ii) the number of the element containing the facet; (iii) the number of
the corresponding material; (iv) the number of the facet as a skin (2D) element over
which some traction is prescribed (0 if the facet does not exist as a skin element, that
is in the absence of prescribed traction).

• File (F3): for every interface facet, defined as belonging to two 3D elements lying
in distinct materials: (i) the 3 numbers of the facet nodes; (ii) the number of the
first element containing the facet; (iii) the number of the corresponding material;
(iv) the number of the second element containing the facet;(v) the number of the
corresponding material.

(3) Beginning of construction of a node category file. By looping over all external and interface
facets in files (F2) and (F3), start the construction of a permanent file (F4) containing
a list of all nodes of the structure with the following information for each node: (i) a
code indicating the node type, e.g. 0 for an S node, 1 for an E node and 2 for an I node;
(ii) the number of external or interface facets containing the node (0 for an S node);
(iii) the numbers of these facets, according to the numberings in files (F2) and (F3);
(iv) the three components of the local mean unit normal vector to the external surface or
internal interface, in the initial configuration—obtained by averaging over the external
or interface facets containing the node.

Because, as will be seen, the true definition of the categories of nodes is complex
and involves various special cases to be examined later, the definition adopted at this
stage is only provisional. First, all nodes where at least one displacement component is
prescribed are all put definitively in the S category; second, the same is done with all
nodes simultaneously belonging to at least one external facet and one interface facet.
(It is logical to apply a standard treatment to such nodes since no special treatment has
been defined for them.) One is then left only with nodes belonging to (i) no external facet
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and no interface facet; or (ii) at least one external facet but no interface facet; or (iii) no
external facet but at least one interface facet. Nodes of the first type are definitively put
in the S category, of the second type provisionally in the E category, of the third type
provisionally in the I category.

(4) First control of the node category file. Looping over all nodes of type E or I in file (F4),
check that for every such node, all unit normal vectors to the external or interface facets
containing it are very close to each other. If they are not, put the node definitively back in
the S category. (This is logical since there is then no clearly defined normal to the external
surface or interface at the point considered: it is a corner- or edge-point for which no
special treatment has been defined.)

(5) Second control of the node category file. Looping again over all nodes of type E or I in
file (F4), check that: (i) for every E node, all elements containing the node are located
on the “−” side of the mean unit exterior normal vector to the surface, and belong to
the same material; (ii) for every I node, all elements containing the node and located on
a given side, “+” or “−”, of the mean unit normal vector to the interface, belong to the
same material. If this condition is not satisfied, be it for an E or an I node, put the node
definitively back in the S category.

The use of files (F2), (F3) and (F4) in the treatment of the constitutive law at nodes of type S, E
and I will now be explained.

A final remark pertaining to the work of Weissenfels [25] is in order here. In this work the au-
thor proposed a very elegant and economical method of calculation of the “average normal vec-
tor to the boundary” at a given node. This method offers a double advantage: (i) it avoids the
cumbersome determination and use of the element facets containing this node; (ii) it permits
to decide automatically and very simply which nodes are located in the interior of the structure,
versus on its external surface. It is regrettable that this method cannot be used in the present con-
text, because it does not permit to compare the normal vectors to the various facets containing
a given node, which is necessary to decide whether or not the normal vector to the boundary is
well-defined at this point.

4.2. Treatment of standard nodes

The variational formulation of the problem results, at each time step, in a system of nonlinear
equations on the nodal displacements which is solved by some iterative procedure (Newton or
some variant), wherein a linear system on variations of these displacements is solved at each
iteration. The left-hand side (LHS) matrix and right-hand side (RHS) vector of this system are
discretized integrals over the domain considered, which are evaluated numerically by looping
over all nodes of the structure, applying the constitutive law at every node to get the local stress
tensor and tangent-matrix, and adding the contributions of the said node to the LHS and RHS
(nodal integration). For this “summing” node, file (F4) provides the node type (S, E, I) to be
considered. We first assume in this subsection that the summing node is of type S.

In such a case file (F4) is of no further use, and files (F2) and (F3) pertaining to facets are
not needed at all. What is required is just standard application of the constitutive law at the
summing node, circumventing use of the algorithms of Sections 2 and 3. The only difficulty is
that the summing node considered, even though classified as of type S, may belong to several
materials simultaneously, if it happens to have failed to pass the tests to be classified as of type I
(see Section 4.1). For instance, it may belong to two materials, but with an ill-defined normal to
the interface; or it may belong to three or more materials. (Recall that no special treatment has
been defined for such nodes.) In such an instance one cannot unambiguously define a “stress
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tensor at the node”, because the said tensor is different in the various materials containing this
node.

There is only one viable solution to this problem, originally proposed by Krysl and Zhu [10]
in the restricted context of linear elasticity and extended here to elasto-(visco)plasticity: namely,
separately calculating and storing the stress tensors and constitutive tangent-matrices in each
material containing the node considered. This is an inevitable drawback of NIFEMs in the case
of multi-material problems; it is not a serious one, however, because in practice there are not
so many nodes belonging to several materials simultaneously, and the number of materials
containing a given node is also limited. It is thus necessary to evaluate the nodal strain increment
at the summing node, and apply the constitutive law there, separately in each material containing
the node. (The nodal strain increment has no reason to be identical in the various materials.) The
strain increment at the summing node in a given material is calculated from nodal increments
of displacement, by looping over all elements containing the said node and belonging to this
material.

Note that it is also necessary, when calculating the integrals defining the global LHS and RHS,
to split them into materials. This implies a double loop, over materials and summing nodes; the
ordering of the two loops is indifferent.

4.3. Treatment of external nodes

If file (F4) reveals that the summing node is of type E, a different treatment is in order. The node
having passed the tests of Section 4.1 for classification as of type E, it belongs to one material only,
and the external surface has a well-defined unit exterior normal vector there. All conditions are
therefore gathered for use of the algorithm of Section 2, and files (F4) and (F2) provide access
to the necessary data, including the value of the traction-vectors prescribed on possible skin
elements containing the node. A Newton algorithm is thus superimposed upon application of
the constitutive law, in order to determine the vectorϕ of (4).

Once the local corrected stress tensor σcorr and constitutive tangent-matrix Dcorr have been
determined, the contributions of the summing node to the LHS and RHS may be accounted for
without any additional loop on materials, since the said node belongs to a single material.

Remark 1. Within a geometrically linearized option (small displacement and strains), the local
unit exterior normal vector to the external surface need not be re-calculated from the node
positions, since it has already been calculated in the initial configuration once and for all, and
made available in file (F4). In a general geometric option (large displacements and/or strains),
however, it is necessary to re-calculate the present unit exterior normal vector by accounting for
the present nodal displacements.

4.4. Treatment of interface nodes

Finally if, according to file (F4), the summing node is of type I, it is known—since it has passed
the tests of Section 4.1 for such nodes—to belong to two materials only, unambiguously located
on the two sides of an interface having a well-defined unit normal vector. Hence the algorithm of
Section 3 is applicable, and files (F4) and (F3) provide the necessary data. Then the constitutive
laws of the two materials are not applied in sequence but simultaneously, with a superimposed
Newton algorithm aimed at determining the vectorϕ1 of (15).

Note that in such an instance the original strain increment at the summing node is not
calculated (from nodal increments of displacement) separately in the two materials containing
this node, as would be done for an S node (see Section 4.2); indeed the algorithm of Section 3
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is based on use of a single original strain increment ∆ε, shared by the two materials, at the
node considered. Another seemingly viable option would be to replace this unique ∆ε through
distinct original strain increments ∆ε1 and ∆ε2 in materials 1 and 2 respectively; but in addition
to making the algorithm more complex, this would entail non-physical discontinuities of the in-
plane components (∆ε11, ∆ε22, ∆ε12 for a normal vector parallel to the direction x3) of the strain
increment across the interface. With the option retained of using a single ∆ε, continuity of these
components across the interface is automatically ensured before the correction, and it remains
so after the correction which modifies only the out-of-plane components of the strain increment,
see (15).

Once the local corrected stress tensorsσcorr1,σcorr2 and constitutive tangent-matrices Dcorr1,
Dcorr2 have been calculated in materials 1 and 2 respectively, one must account for their contri-
butions in the LHS and RHS of the global linear system. Upon nodal discretization of the relevant
integrals, the contributions of the summing node to these LHS and RHS are of the form

w1 BT ·σcorr1 +w2 BT ·σcorr2 and w1 BT ·Dcorr1 ·B+w2 BT ·Dcorr2 ·B

respectively, where w1 and w2, like above, denote the weights of the node in the discretized inte-
grals over materials 1 and 2, and B the matrix connecting the local original strain increment to the
nodal increments of displacement. Now in these expressions, as another happy consequence of
the use of a single original strain increment, this “B-matrix” is the same in the terms correspond-
ing to the two materials. Hence it may be factorized so as to put the expressions in the form

BT · (w1σcorr1 +w2σcorr2) and BT · (w1Dcorr1 +w2Dcorr2) ·B.

This means that materials 1 and 2 may be treated as a whole, simply weighing the corresponding
corrected stress tensors and constitutive tangent-matrices according to their respective weights
w1 and w2. This implies, in particular, that the major symmetry properties (upon interchange
of the first two and last two indices) of the global tangent-matrix

∫
ΩBT ·D ·BdΩ depend only on

those of the overall constitutive tangent-matrix w1Dcorr1 +w2Dcorr2—themselves guaranteed by
those of D1 and D2, see Section 3.3—and not on the (unwarranted) major symmetry properties
of the individual tangent-matrices Dcorr1 and Dcorr2.

5. Example involving a traction-free boundary

5.1. Presentation of the problem

The problem considered pertains to a welding process performed on a plate made of SS316L
stainless steel, the thermal and mechanical properties of which are provided in Appendix A. The
length, width and thickness of the plate are 150 mm, 127 mm and 30 mm, respectively. A volumic
heat source moves over the upper surface along a straight line located halfway across the width, at
a velocity of 4 mm·s−1; details about this source (and convective and radiative losses) are provided
in Appendix B. The plate is free of mechanical constraints, except for minimal ones required to
avoid rigid-body motions. The temperature-induced plastic deformations generate important
residual stresses, which are to be evaluated.

Three thermomechanical computations are performed, all within a geometrically linearized
option (small displacements and strains). The first is based on the classical FEM with Gaussian
integration and Q1P0 elements (8-node hexahedra with continuous trilinear displacement and
discontinuous constant pressure). The mesh used for this simulation, which consists of 98,578
nodes and 90,000 elements, is shown in Figure 1.

The second and third computations are based on the NIFEM depicted in Jia et al. [20]; the
second does not use the special procedure of Section 2 for nodes belonging to the free surface,
whereas the third does. The mesh used in both simulations, shown in Figure 2, consists of
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Figure 1. Simulation of a welding process: mesh used for the standard FEM—Gaussian
integration, Q1P0 elements.

Figure 2. Simulation of a welding process: mesh used for the two NIFEM simulations—
nodal integration, linear tetrahedral elements.

the same 98,578 nodes as in the mesh of Figure 1, but now 540,000 linear 4-node tetrahedral
elements, obtained by splitting each hexahedron into six tetrahedra.

It is important to note that the Q1P0 elements of the first simulation are optimal for application
of the classical FEM, since their excellent overall behavior has been noted many times. However
use of such elements is easy only because of the extreme simplicity of the geometry considered
(a parallelepiped). For most geometries of practical interest, meshing with such elements would
only be possible manually and require much time and effort; simpler elements permitting the use
of automatic meshing tools would certainly be used. This means that the comparison between the
classical FEM and the NIFEM presented here is in fact biased to some extent in favor of the former
method.

5.2. Simulation results

All numerical results presented in this subsection are provided at t = 25 s, at which time the center
of the double ellipsoid heat source (see Appendix B) is located at y = vy t = 100 mm. Figure 3
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Figure 3. Simulation of a welding process: standard FEM simulation—distribution of
temperature at time t = 25 s.

Figure 4. Simulation of a welding process: standard FEM simulation—distribution of ver-
tical stress σzz at time t = 25 s.

shows the temperature distribution at this instant on the surface of the plate, cut along the plane
of symmetry x = 0 so as to permit a visualization of internal temperatures (and stresses below).6

Figure 4 similarly shows, for the first simulation based on the classical FEM and Q1P0 ele-
ments, the final distribution of the vertical (σzz ) stress. Two points are noteworthy here. First, in
spite of the relative thinness of the plate, non-negligible tensile and compressive stresses of the
order of ±150 MPa are generated by the process, and the stress gradient is very high just under the
moving heat source. Second, the boundary condition of zero vertical stress on the upper surface
of the plate is respected only in a rough manner, this vertical stress varying between about −10
and +50 MPa.

Figure 5 provides analogous results for the second simulation based on Jia et al.’s [20] NIFEM
with tetrahedral elements, not using the procedure of Section 2 for free surface nodes. The results
here seem to represent an improvement over those displayed in Figure 4, in the sense that even
larger stress gradients are present in the interior of the plate, meaning that such extreme gradients
are better captured through nodal rather than Gaussian integration. However the boundary

6The temperature distributions obtained with the classical FEM and Jia et al.’s [20] NIFEM being almost identical, we
only show here those obtained with the first method.
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Figure 5. Simulation of a welding process: NIFEM simulation, no special treatment for
boundary nodes—distribution of vertical stress σzz at time t = 25 s.

condition of zero traction on the upper surface is poorly respected, the vertical stress varying
between approximately −50 and +40 MPa.

Finally Figure 6 presents analogous results for the third simulation, identical to the second
one except for the use of the procedure of Section 2 for free surface nodes; Figure 6(a) gives a
general overview of isostress contours while Figure 6(b) provides additional contours for small
values of σzz , thus permitting to better investigate satisfaction of the boundary condition of zero
traction on the free surface. The stress distribution in the interior of the plate is quite similar to
that obtained in the second simulation, but the boundary condition of zero traction on the upper
surface is now very well satisfied, surface stresses being less than 1 MPa in absolute value.

The conclusion of these comparisons is thus clear: Jia et al.’s [20] NIFEM, used in conjunction
with the procedure of Section 2 for surface nodes, permits to notably improve the results obtained
with the standard FEM, with regard to satisfaction of the condition of zero traction on free
surfaces. This is all the more true since, as explained above, the comparisons are biased in favor
of the standard FEM.

Although the main focus of this paper is not on comparisons of CPU times and storage
requirements in the classical FEM and Jia et al.’s [20] NIFEM—which have already been discussed
by Jia et al. [20,26]—some quick remarks on the subject may be welcome. The CPU time required
by the NIFEM (be it without or with the procedure of Section 2 for free surface nodes) is
approximately 2.7 times larger than that required by the classical FEM (5.37 h or 5.51 h versus
2.01 h)—most probably because of the increased bandwidth of the LHS matrix in the NIFEM.
On the other hand the storage needed per time step is about 8.2 smaller for the NIFEM than
for the classical FEM (27.5 Mo versus 224.6 Mo)—obviously because of the reduced number of
integration points in the NIFEM. Thus, as stated in the Introduction, the advantage of the NIFEM
tied to the reduction of the storage requirement overcomes the drawback represented by the
increase in CPU time.

6. Examples involving an interface between distinct materials

6.1. Presentation of problems

The problems considered here, of a more academic type, pertain to the simple tension of
cylindrical specimens made of two materials, the mechanical properties of which are given in
Table 1. Note that material 1 is stiffer elastically, harder plastically, and deforms less laterally, than
material 2.
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Figure 6. Simulation of a welding process: NIFEM simulation, with special treatment for
boundary nodes—distribution of vertical stress σzz at time t = 25 s.

Table 1. Mechanical constants of materials 1 and 2

Material E (MPa) ν σ0 (MPa) Criterion Flow rule Hardening law
1 200,000 0.2 500 von Mises Prandtl–Reuss Ideal plasticity
2 70,000 0.4 100 von Mises Prandtl–Reuss Ideal plasticity

The radius and height of the cylinder, of axis Oz, are 10 mm and 40 mm, respectively. Each ma-
terial occupies half of the volume, the planar interface between the two passing through the cen-
ter of the specimen, and being either perpendicular (configuration A) or parallel (configuration
B) to the axis Oz.

Figures 7 and 8 show the meshes used for configurations A and B respectively. In each case
materials 1 and 2 are painted blue and orange, respectively.

In each figure the mesh on the left is used with the classical FEM, and that on the right with
Jia et al.’s [20] NIFEM. For configuration A, the meshes consist of: (i) for the FEM computation,
25,461 nodes and 24,800 Q1P0 elements—22,320 8-node hexahedra off the axis and 2480 6-node
pentahedra (prisms of triangular basis) adjacent to it; (ii) for the NIFEM computations, the same
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Figure 7. Simple tension of inhomogeneous specimen A: meshes used in the simulations
based on the classical FEM (a) and the NIFEM (b).

Figure 8. Simple tension of inhomogeneous specimen B: meshes used in the simulations
based on the classical FEM (a) and the NIFEM (b).

nodes and 141,360 linear 4-node tetrahedral elements, obtained by splitting every hexahedron
in the previous mesh into six tetrahedra and every pentahedron into three tetrahedra. For
configuration B, the mesh used in the FEM computation similarly consists of 33,973 nodes and
33,280 elements—29,952 hexahedra and 3328 pentahedra—and the mesh used in the NIFEM
computations of the same nodes and 189,696 linear tetrahedral elements.
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Figure 9. Simple tension of inhomogeneous specimen A: distribution of vertical stress
σzz for an overall axial strain of 5%—standard FEM simulation (a); NIFEM simulation, no
special treatment for interface nodes (b); NIFEM simulation, with special treatment for
interface nodes (c).

Unlike the computations of Section 5 performed within a geometrically linearized framework,
all computations presented here are performed within a general geometrical framework (large
displacements and strains), with a material Eulerian option (moving the mesh with the material
and performing the calculations on the current configuration). Like before, the simulations based
on Jia et al.’s [20] NIFEM are done both without and with the special procedure of Section 3 for
nodes lying on the interface between the materials.

It is important to note again that just like in Section 5, and for the same reasons, the present
comparison between the classical FEM and the NIFEM is biased in favor of the former method.

6.2. Simulation results

We consider configuration A first. Figure 9 first shows the distributions of the vertical stress σzz

obtained in the three types of simulations, at an instant corresponding to an overall axial strain of
5%, on the vertical plane y = 0. This stress component is theoretically supposed to be continuous
across the horizontal interface between the materials.7

Several points are noteworthy here:

• First, in all simulations the difference between the two materials generates an important
heterogeneity of the stress, which varies roughly between −10 MPa and 130 MPa.

• The stress distribution obtained with the classical FEM—diagram (a)—is nice and
smooth.

• The stress distribution obtained with the NIFEM without using the procedure of Section 3
for interface nodes—diagram (b)—is approximately continuous across the interface. But

7Since a general geometrical framework is used, the normal unit vector n to the interface is considered on the current
configuration and slightly differs from the unit vertical vector ez ; but this effect is small and may safely be ignored when
interpreting the figures.
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Figure 10. Simple tension of inhomogeneous specimen A: distribution of horizontal stress
σxx for an overall axial strain of 5%—standard FEM simulation (a); NIFEM simulation, no
special treatment for interface nodes (b); NIFEM simulation, with special treatment for
interface nodes (c).

it is somewhat chaotic in the vicinity of this interface, stress oscillations being observable
along horizontal lines located below it, even at some distance from it.

• When use of the NIFEM is combined with that of the procedure of Section 3 for interface
nodes—diagram (c)—the vertical stress is perfectly continuous across the interface and
irregularities of its distribution are greatly, if not completely, reduced. (Note that the
procedure for free surface nodes is activated simultaneously with that for interface nodes,
so that both procedures are in fact responsible for the improvements.)

Figures 10 and 11 now show the distributions of the horizontal stresses σxx and σy y , again on
the vertical plane y = 0. These stress components have no theoretical reason to be continuous
across the horizontal interface.

One may note here that:

• The stress distributions obtained with the classical FEM are again smooth, although they
vary somewhat quickly in the vicinity of the interface. But since the stress components
considered here are not expected to be continuous across the interface, this relative
smoothness is no longer an advantage but rather a drawback.8

• In contrast, the stress distributions obtained with the NIFEM without any special treat-
ment for interface nodes exhibit a clear discontinuity across the interface. However they
are again somewhat chaotic, with stress oscillations along horizontal lines below the in-
terface.

• The stress distributions obtained with the NIFEM using the special treatment for inter-
face nodes of Section 3 also exhibit a clear discontinuity across the interface, but are con-
siderably smoother below.

8This smoothness certainly arises at least partly from the procedure of “transfer” of the stress tensor from the Gauss
points to the nodes, which precedes the drawing of the figure. But such a procedure is unfortunately unavoidable with
the classical FEM based on Gaussian integration.
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Figure 11. Simple tension of inhomogeneous specimen A: distribution of horizontal stress
σy y for an overall axial strain of 5%—standard FEM simulation (a); NIFEM simulation, no
special treatment for interface nodes (b); NIFEM simulation, with special treatment for
interface nodes (c).

An ancillary remark about Figure 10(c) is that the condition σxx = 0 is not satisfied as it
should at the two points of intersection of the interface and the free surface (where the exterior
normal vector is ±ex ). The explanation is that as mentioned in passing in Section 4.1, no special
procedure has been developed for nodes of this (rare) type, which are thus simply treated as
“standard”.

We now consider configuration B of the heterogeneous specimen. The interface between
the materials then coincides with the plane y = 0; hence the stress component σy y should be
continuous across the interface, and the components σxx and σzz discontinuous. Figures 12–14
show the distributions of these components (starting again with the hopefully continuous one
σy y ) on the vertical plane x = 0, for an overall axial strain of 5%.

The conclusions drawn from these figures are basically the same as for configuration A:

• The standard FEM provides good results but exaggerates the smoothness of supposedly
discontinuous stress components in the vicinity of the interface.

• The NIFEM without any special treatment of interface nodes wrongly yields a slightly
discontinuous σy y component.

• The NIFEM with a special treatment of interface nodes clearly distinguishes between
supposedly continuous and discontinuous stress components.

One may also note incidentally, about Figure 12, that the requested condition σy y = 0 is not
satisfied at the lower right corner in the FEM simulation, whereas it is in both NIFEM simulations.

The general conclusion of this section is thus just as clear as that of the preceding one: use of
Jia et al.’s [20] NIFEM, in conjunction with the procedure of Section 3 for surface nodes, leads to
a notable improvement of the results obtained with the classical FEM, with regard to satisfaction
of conditions of continuity across material interfaces. The results obtained with Jia et al.’s [20]
NIFEM, coupled with the procedure of Section 3, are the only ones that make a clear distinction
between stress components expected to be continuous/discontinuous across material interfaces.
Again, this is all the more true since the comparisons are biased in favor of the classical FEM.
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Figure 12. Simple tension of inhomogeneous specimen B: distribution of horizontal stress
σy y for an overall axial strain of 5%—standard FEM simulation (a); NIFEM simulation, no
special treatment for interface nodes (b); NIFEM simulation, with special treatment for
interface nodes (c).

Figure 13. Simple tension of inhomogeneous specimen B: distribution of horizontal stress
σxx for an overall axial strain of 5%—standard FEM simulation (a); NIFEM simulation, no
special treatment for interface nodes (b); NIFEM simulation, with special treatment for
interface nodes (c).

7. Concluding synthesis

The aim of this paper was to investigate an interesting bonus of NIFEMs for deformable (elastic,
elastoplastic or elastoviscoplastic) solids: namely the possibility of exactly accounting for (i) pos-
sible conditions of prescribed traction on external surfaces; and (ii) continuity of the traction-
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Figure 14. Simple tension of inhomogeneous specimen B: distribution of vertical stress
σzz for an overall axial strain of 5%—standard FEM simulation (a); NIFEM simulation, no
special treatment for interface nodes (b); NIFEM simulation, with special treatment for
interface nodes (c).

vector across internal interfaces between different materials. Such a possibility is important in
some problems, when accurate stress distributions on external surfaces and/or material inter-
faces are required, for instance to investigate possible crack initiation on free surfaces or prop-
agation of cracks along interfaces. It is ruled out in the classical FEM based on Gaussian inte-
gration, because the constitutive law is applied, and the stresses are calculated, at some internal
points within the elements which never lie on external surfaces or internal interfaces.

In Section 2, we discussed a special procedure aimed at exactly respecting conditions of
prescribed traction at some node located on some external surface. The principle was inspired
from the classical numerical treatment of 2D plane stress problems; it consisted in correcting the
three out-of-plane components of the strain calculated from the nodal displacements, so as to
satisfy the said conditions. With such a procedure the strain tensor exists in two forms, original
and corrected. The latter form is relevant when one uses the constitutive law to calculate the
stress tensor; but the original form must be preferred when writing the principle of virtual work,
in order to retain the necessary consistency of the displacement and strain fields. The procedure
proposed thus formally appears as a mere slight modification of the sole constitutive law.

In Section 3, we discussed a similar procedure aimed at exactly respecting continuity of the
traction-vector across internal interfaces between distinct materials. The principle was anal-
ogous to, albeit a bit more complex than, that for boundary nodes; it consisted of modifying
the out-of-plane components of the strain tensors in the two materials containing the node
considered—while respecting their average over these materials—so as to achieve the desired
continuity. Again, the local strain tensor then exists in two forms: the corrected form must be
used when applying the constitutive laws of the two materials, and the original one when apply-
ing the principle of virtual work.

Section 4 was devoted to an in-depth discussion of the numerical implementation of the
algorithms proposed. The main topic in this section was a depiction of automatic procedures—
aimed at sparing the user’s data input effort—for: (i) classification of the nodes into three
categories: “standard” (not requiring any special treatment), “external” (liable to the treatment
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of Section 2), and “interface” (liable to the treatment of Section 3); (ii) calculation and storage
of information pertaining to the last two categories of nodes, needed for the application of the
procedures discussed previously. A briefer discussion of the numerical treatment of the various
types of nodes was then provided.

In Section 5, we provided an example of application of the procedure of Section 2 to a problem
involving a structure with a free external surface. This structure was geometrically simple—a
plate—but subjected to some rather complex thermal loading resulting from a welding operation.
Three types of calculations were performed, using (i) the standard FEM; (ii) Jia et al.’s [20] NIFEM
without the procedure of Section 2 for free surface nodes; and (iii) the same method with this
procedure. The results clearly evidenced the advantages of the last method, at no significant
additional cost.

Finally Section 6 provided two examples of application of the procedure of Section 3 to
problems involving simple specimens made of two materials bonded onto one another. These
specimens were circular cylinders subjected to simple tension, with an interface between the
materials either perpendicular or parallel to their central axis. Again, the comparisons clearly
evidenced the advantage of using the NIFEM with a special treatment for interface nodes.

To conclude, it should be remarked that when defining the procedures of Sections 2 and 3,
we excluded for simplicity some cases of practical interest: for instance that of a node located on
some plane of symmetry of the structure, for which the normal component of the displacement
and the two tangential components of the traction-vector are requested to be zero. It would
not be difficult, in principle, to treat such cases through suitable extensions of the procedures
presented above.
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Appendix A. Material properties used in the simulations of Section 5

The thermal and mechanical properties of the SS316L stainless steel considered in Section 5 are
provided in Figure 15 in graphical form. The left diagram here illustrates the variations of the
thermal conductivity, mass density, specific heat, thermal strain (harmlessly truncated at 1400 °C)
and Young’s modulus with the temperature. (A constant value of 0.3 is adopted for Poisson’s
ratio.) The right diagram shows the (stress)–(plastic strain) curve in simple tension at various
temperatures; plasticity is assumed to be governed by the von Mises criterion and the associated
(Prandtl–Reuss) flow rule, hardening being of purely isotropic nature.

Appendix B. Details on thermal data in the simulations of Section 5

The simulations of Section 5 consider a moving “double ellipsoid heat source” Goldak et al. [27]
defined by the following heat inputs per unit volume (with “f” and “r” meaning “front” and “rear”):
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Figure 15. Material (thermal and mechanical) properties of the SS316L stainless steel.

with 

Q f = 14 W·mm−3; Qr = 7.6 W·mm−3

a f = 2 mm; ar = 6 mm
b = 6 mm
c = 6 mm
z0 = 30 mm
vy = 4 mm·s−1;

the coordinates x, y, z in these expressions are specified in Figures 1 and 2.9

Also, thermal convective losses in the atmosphere are simulated through some heat transfer
coefficient hconv = 35×10−6 W·mm−2·(° C)−1; and radiative losses through some output thermal
flux Jrad = εσ(T 4−T 4

0 ) where ε= 0.8 denotes the emissivity,σ= 5.67×10−14 W·mm−2·K−4 Stefan’s
constant, T the local absolute temperature in K, and T0 the room temperature of 20 °C = 293.15 K.
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