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Abstract

We propose the modelling of a buckled elastic slender beam based on elastica approach. The

model accounts for large rotations of the beam cross-section and rather large elastic displace-

ments. Moreover, the model incorporates the extensibility of the elastic beam. The nonlinear

nature of the model is used to amplify the transition from one stable position of the buckled

beam to the other one. Such mechanical structure is said bistable. The bistable beam is simply

supported at each of its ends and is subject to a transverse force applied at a point of the

beam. The emphasis is placed especially on the bistable mechanism response caused by the

applied force. The stability of the buckled beam is investigated in details and the diagram of

the applied force of actuation as function of the midpoint displacement is discussed according to

the applied force location. The snap-through phenomenon scenario is analyzed. The switching

from one stable state to the other one occurs passing through an instability region in which

the second buckling mode is involved. For rather small end shortening of the beam, the post

buckling behavior is studied by reducing the solution of the complete elastica model to the first

two buckling modes. The reduced model allows us to discuss the switching path in terms of

energy required and stability properties of the bistable mechanism. Numerical algorithms are

developed in order to solve the strongly nonlinear problem.

Keywords: Bistable system, elastica, buckled beam, optimal actuation, snap-through,

nonlinear.

1. Introduction

In a previous work the snap-through mechanism of an elastic bistable beam was examined

and compared to experimental validations (Cazottes et al. , 2010). Especially, the study

investigates the force actuation of a bistable structure consisting of a stainless steel buckled

beam. Experimental evidences exhibit the transition from one stable position of the buckled

beam to the other one passing through a region of instability. It is shown that the combined

buckling modes one and two can also be of value (lower snapping force and larger stable
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domain) and should be considered for mechanical design. The purpose of the present study

is to investigate the switching mechanism of a bistable buckled beam on the basis of elastica

model. More precisely, we examine in details the stability of the buckled beam undergoing a

local force actuation in the post-buckling regime. One of the main results that we want to

achieve is to understand the mechanism of snapping from one stable position to the other one

according to the actuation force and the influence of the actuation location on the performances

of the system.

Bistable mechanisms make them very attractive candidates to design systems that require two

working states. The switching from one state to the other one needs low energy. Bistable

systems are often used as switches (Saif , 2000; Brenner et al. , 2003). They are also used

in microrobotic applications such as microgrippers or binary robotic devices (Fang and Wick-

ert , 1994; Schomburg and Groll , 1998; Reni and Gerhard , 1997). A promising application

is quasitactile display with high density matrix of tiny pins with excellent spatial resolutions

(Jensen et al. , 1999; Benali-Khoudja et al. , 2007; Hafez , 2007). Haptic applications can

be considered as well. One of the advantages of bistable systems is that they need substantial

energy during the switching process. Indeed, they take advantage of the instability phenom-

ena, a rather small of amount of actuating work can produce displacements or rotations of the

slenderness structure of relatively high amplitudes. Once the actuation is released, the system

stays in its stable configuration indefinitely. This property is exploited to the design of shape

control devices (Baker and Howell , 2002).

Other categories of mechanisms use their elastic deformation as a function. Bistable systems

belong to this kind of mechanisms. Among a various nonlinear problems analyzed in the litera-

ture, bistable systems consisting in buckled elastic beams have received a great deal of attention

due to their quite rich nonlinear behavior and their attractive applications. A rather rough,

nevertheless really instructive, example of bistable system consists of rigid barres, springs and

masses. This class of bistable system is referred as to pseudo rigid category (McInnes and

Waters , 2008). In (Pucheta and Cardona , 2010), the authors present an interesting study

devoted to the design of bistable compliant mechanisms based on various pseudo-rigid models

with some instructive applications. Numerous studies on bistable systems are available in the

current literature and modelling of systems depends strongly on the hypotheses concerning

kinematic description and the degrees of sophistication of the approaches. Important founda-

tion of the large-displacement finite-strain approach of shear-deformable beams has been laid

down by Reissner (Reissner , 1972). Reissner has extended his beam approach for the plane case

of shear-deformable and extensible nonlinear beams to 3D-curved beams (Reissner , 1973). A

restricted situation of the Reissner’s approach to unshearable nonlinear beam originally straight

has been extensively presented by Irschik and Gerstmayr (Irschik and Gerstmayr , 2009). On

the basis of (Irschik and Gerstmayr , 2009), Hummer and Irschik (Hummer and Irschik , 2011)

examined the equilibrium configurations and stability of an extensible elastic with an unknown

2



length.

Numerous contributions to problem dealing with bistable structures are based on elastic theory

of flexible beams. In (Patricio et al. , 1998), the authors analyzed the modes of stability of

an elastic homogeneous arch loaded at its center on the basis of elastica theory. The stabil-

ity of dynamics perturbations around static state leads to stability diagram according to the

end-shortening of the beam and frequency. Nevertheless, the elastic model is supposed to be

inextensible. Experimental study of elastic arch loaded at its center was performed by Pip-

pard (Pippard , 1990). In (Magnusson et al. , 2001), the authors examined the behavior of a

pinned-pinned axially beam in the extensible framework. In the approach, the authors study

very clearly the buckling and post-buckling behavior of the beam, and they extended their

beam theory of Euler-Bernoulli for elastic beams to small displacements in order to account for

large-displacement and finite-strain.

Among various nonlinear studies analyzed in literature, buckled elastic beams have received

particular attention due to their complex and rich dynamics responses to different kind of stim-

uli. In this context, weakly nonlinear approach is often considered, in (Nayfeh and Enam ,

2008), the authors accounts for the geometric nonlinearity arising from the mid plane stretch-

ing of the buckled beam. They derived the governing equation of the transverse vibrations

exhibiting a cubic nonlinearity. Along with this approach, the dynamic stability of the post-

buckling solutions is investigated. A simply supported shallow arch was examined by Pinto and

Gonçalves (Pinto and Gonçalves , 2002) for instability phenomena when the structure under-

goes dynamic and static loads, in particular, snap-through buckling. The model used considers

a weakly nonlinear geometric behavior of an arch due to the beam extensibility. Among works

found in recent literature, most of them are mainly devoted to the snap-through effect of a

buckled elastic micro-beams and their actuation. Interesting studies of the phenomenon at the

micro-scale are presented in (Buchaillot et al. , 2008; Krylov and Dick , 2010; Krylov et al. ,

2011) with applications to MEMS, micro robotics, micro-opto-electro-mechanical systems.

A weakly nonlinear behavior of the snap-through of compressed bistable buckled beam was

investigated by Vangbo (Vangbo , 1998) by considering the Lagrangian approach under con-

straint. The energy associated with both bending and compression of the beam is expanded

using the buckling modes of a clamped-clamped beam. The author characterized the bistablil-

ity response due to a control loading. Qiu et al. (Qiu et al. , 2004) extended the method

to a bistable system made of two centrally-clamped parallel beams. Application to a tunable

micromechanical bistable system was examined on the basis of Vangbo’s work (Taher and Saif

, 2000).

The proposed approach relies on the extensible elastica model where the beam kinematics is

described in terms of the cross-sectional rotations. The equations of the model as well as the

jump conditions at the point of the force application are derived from the virtual work principle.

It is also shown that the model can be deduced from a Lagrangian formulation. The conditions
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at the ends of the beam are well formulated and the model parameters are well identified.

Especially, the axial compressive force and the actuating transverse force are considered as

unknown parameters of the problem which are solved by using the end shortening condition and

the vertical coordinate location of the actuating force. The set of equations are then solved by

means of shooting numerical method associated with a predictor-corrector algorithm to capture

the unknown model parameters (or the shooting unknowns). From the numerical investigation

new results are obtained and discussed, among them, the response diagram of the actuating

force as function of the driving point or the beam mid-point. Moreover, a detailed discussion

of the configurational stability of the bistable system is presented in terms of buckling modes.

The analysis of the post-buckling regime of the bistable is investigated by using a reduced order

model limited to first two buckling modes.

2. Description of the system

We consider an elastic beam of length L0 at the rest. The beam is simply supported at

each of its ends. The left end is fixed while the right one can move along the beam axis. The

cross-section of the beam is supposed to be rectangular with a width b and thickness h. The

beam is subject to an end-shortening ∆L that reduces the distance between the pin-joints. The

distance becomes L̂ = L0−∆L. The end-shortening ∆L will play a crucial role in the buckling

process of the elastic beam. The elastic beam at the rest and in the buckled configuration along

with the parameters are depicted in Figure 1. The elastic beam is initially straight when it is

stress free. The beam undergoes a deformation due to the end-shortening and deflection can

take place in the beam plane, i.e. the (xAy) plane.

The buckled beam is loaded by a localized force F in the y-direction. The abscissa of the point

C at which the force is applied is maintained fixed while the beam is snapping-through. The

ratio δ̂ = xC−xA
xB−xA

= xC
L̂

is a key parameter of the problem.

The elastic beam is supposed to be materially homogeneous with Young modulus E and mass

density ρ. We denote by I the moment of inertia of the cross-section along z-axis.

3. Modelling

3.1. Kinematics and deformation descriptions

Geometric considerations - Before entering detailed considerations of the problem under study,

some basic prerequisites and assumptions must be introduced and commented. Accordingly, we

attach a fixed Cartesian reference frame (~e1, ~e2, ~e3) to the structure in its initial configuration

referred as to R0. The x-axis coincides with the axis of the beam which is supposed to be

straight in the reference or underformed configuration. In addition, y represents the thickness

coordinate of the beam and the z-axis is perpendicular to plane deformation, see Figure 2. The

deformation is assumed to take place in (~e1, ~e2)-plane. Any material point G′0 of the beam in

the reference configuration R0, is given by its position
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−→
OG′0 =

−→
OG0 + y0~e2, (1)

The transverse coordinate z0 has been omitted since it plays no role in the beam deformation.

We note by s the curvilinear abscissa along the beam axis in the reference configuration. The

position of the material point G0 belonging to the beam axis is given by

−→
OG0 = ~q0(s) = s~e1, with s ∈ [0, L0] (2)

where ~q0 is the position vector in the reference configuration. The plane deformation of the

beam is ascertained if the loading and the joints at the beam ends are symmetric with respect

to the (~e1, ~e2)-plane.

The material point G′0 is transformed into G′ after beam deformation in the current configu-

ration R (or deformed state, see Figure 2). The position of the material point G′ is now given

by the position vector

−→
OG′ =

−→
OG+

−→
GG′, with

−→
OG = ~q = x~e1 + y~e2. (3)

The actual position of the material point G′ is then function of the coordinates in the reference

configuration (Lagrangian description), especially, it depends on s and y0.

Now, we formulate the Euler-Bernoulli assumptions, that is, the cross-sections originally per-

pendicular to the beam axis in the reference configuration remain perpendicular to the axis in

the deformed state, plane and undistorted, as well. The material point G0 belonging to the

beam axis in the reference configuration is transformed into the material point G of the beam

axis in the deformed state. We denote by ~τ the unit vector tangential to the current axis of the

deformed beam at the point G (s̄). The vector ~τ is usually defined by

~τ =
d
−→
OG

ds̄
. (4)

Nevertheless the position vector ~q of the material point G is a function of the reference co-

ordinate, especially function of the curvilinear abscissa s. We denote by Λ = ds̄
ds

the ratio of

the length of differential line element of the beam axis in the deformed state to that of the

undeformed configuration. Eqn. (4) becomes

d
−→
OG

ds
= Λ~τ . (5)

Denoting by ~n the unit vector perpendicular to the tangent vector ~τ , the set of orthogonal

vectors {~τ , ~n} forms the local frame attached to the deformed beam axis at the curvilinear

abscissa s̄ (see Figure 2). These vectors can be written with respect to the fixed referential

{~e1, ~e2}
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{
~τ(s) = cos θ(s) ~e1 + sin θ(s) ~e2

~n(s) = − sin θ(s) ~e1 + cos θ(s) ~e2

(6)

where the angle of rotation θ is given by

θ = (~e1, ~τ). (7)

Moreover, in the current configuration, the cross-sections are rotated by the angle θ about the

z-axis with respect to the reference configuration.

Now, the position vector of any material point G′ of the cross-section in the deformed state

takes on the form (see Eqn. (3))

−→
OG′ = ~q + y0~n. (8)

The coordinate of the position vector of the point G, ~q = (x, y) in the current configuration

are function of the curvilinear abscissa s measured along the beam axis. Therefore, the current

configuration of the beam is a smooth curve defined by

C(s) = {~q(s) = x(s) ~e1 + y(s) ~e2, s ∈ [0, L0]}, (9)

One of the kinematic key parameters of the deformed beam is its curvature κ. The curvature

of a line element ds̄ of the beam axis is usually defined by (Reissner , 1972; Simo , 1985),

κ =

∣∣∣∣∣∣∣∣d~τds̄
∣∣∣∣∣∣∣∣ =

1

Λ

∣∣∣∣∣∣∣∣d~τds
∣∣∣∣∣∣∣∣ . (10)

On using Eqn. (6) we compute

d~τ

ds
= θ,s~n. (11)

Accordingly, we obtain the following equation for the beam curvature

κ =
1

Λ

dθ

ds
. (12)

The factor Λ is sometimes missing in elastic theory for extensible elastic beam. On using

the curvilinear abscissa s̄ measured along the deformed beam axis, the curvature takes on the

following form

κ = θ,s̄. (13)

Remark. For inextensible elastic theory, obviously Λ = 1 and we cannot distinguish the curvilin-

ear abscissa s and s̄ measured along the undeformed and deformed configurations, respectively.
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Gradient of deformation - According to the above hypotheses on the beam deformation, the

gradient of deformation can be written as (Eringen , 1967)

F = Grad
−→
OG′ =

∂
−→
OG′

∂s
⊗ ~e1 +

∂
−−→
OG′

∂y0

⊗ ~e2, (14)

where Grad is the gradient of the transformation computed with respect to the reference

configuration. Now, by using Eqns. (3, 6, 8, 11, 12) , we arrive at

F = Λ (1− y0κ)~τ ⊗ ~e1 + ~n⊗ ~e2. (15)

Next, we compute the component of the gradient of deformation in the basis of the reference

configuration by using Eqn. (6), which can be presented in the matrix form

F =

[
Λ (1− y0κ) cos θ − sin θ

Λ (1− y0κ) sin θ cos θ

]
(16)

From Eqns. (3, 5) and (6), we compute the gradient of deformation of the beam axis relative

to the beam curvilinear coordinate{
x,s(s) = Λ(s) cos θ(s)

y,s(s) = Λ(s) sin θ(s)
(17)

The gradient of deformation possesses a unique polar decomposition of the form (Eringen ,

1967) F = RU, where R is an orthogonal tensor of rotation such that RRT = RTR = 1, and

U is the symmetric tensor of the right stretch. On using the matrix form of the gradient of

deformation given by Eqn. (16), we are able to identify the polar decomposition with

R =

[
cos θ − sin θ

sin θ cos θ

]
(18)

We note that R (θ)T = R (−θ). In addition, the stretch tensor takes on the form

U =

[
Λ (1− y0κ) 0

0 1

]
(19)

Now it is clear that the tensor U is definite positive and it possesses two distinct eigenvalues

U1 = Λ (1− y0κ) , U2 = 1. (20)

The associated eigenvector are obviously ~e1 and ~e2, which are the principal directions of stretch.

From the physical point of view, U1 is the principal stretch of a material line element ds parallel

to the beam axis in the reference configuration and Λ is merely the axis stretch. Therefore,

the beam deformation is the combination of a stretch of the beam axis follows by a rotation of

angle θ described by the tensor of rotation R (θ).
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Moreover, the tensor of rotation can be written as

R = ~τ ⊗ ~e1 + ~n⊗ ~e2. (21)

Now using the polar decomposition with the forms of the stretch tensor and the tensor of

rotation, the gradient of deformation can be written as

F = U1 (~τ ⊗ ~e1) + U2 (~n⊗ ~e2) . (22)

This shows that the principal stretches give the ratio of length of material line elements in the

deformed configuration relative to that of the reference configuration.

Distributor of transformation - The two strain measures of the beam model are given by the

extensional strain ε = Λ − 1 and the beam curvature κ = θ,s̄. Using these definitions for the

beam deformation, we introduce the distributor of the beam transformation that the components

are the actual position of the current point G,
−→
OG = x(s) ~e1 + y(s) ~e2 = ~q(s) and the rotation

~p(s) = θ(s) ~e3 of each cross-section at the current point of the curvilinear abscissa s. Therefore,

it is necessary to define the following distributor of transformation gradient

{
dU
ds

}
G(s)

=
d

ds

{
~p(s)

~q(s)

}
G(s)

(23)

The different deformation measures which have been introduced in this Section will be very

convenient to deduce the beam equations.

3.2. Elastica beam variational formulation

With the aim at deducing the beam equations, we adopt the principle of virtual works. The

principle for the present model of beam and configuration is stated as follows

δWi + δWe + δWλ = 0. (24)

The different contributions to the principle are denoted byWi for the work of the internal forces,

We for the work of the applied actions and Wλ for the work of the eventually constraints on

the kinematic variables. The expression of the virtual works in Eqn. (24) are given in details

in the next subsections.

3.2.1. Internal virtual work

The virtual work of internal forces reads as

δWi = −
∫ L0

0

{T (s)}G(s) ·
d

ds
{δU(s)}G(s) ds. (25)

In Eqn. (25), {T (s)}G(s) is the distributor of the internal forces defined by

8



{T (s)}G(s) =

{
~R(s)
~M(s)

}
G(s)

(26)

where ~R(s) is the force resultant and ~M(s) is the moment computed at the point G(s) of the

beam. In Eqn. (25), {δU(s)}G(s) is the virtual beam transformation as defined in the kinematic

considerations.

On using Eqn. (23),

{
dδU
ds

}
G(s)

=

{
δ~p′(s)

δ~q′(s) + d
−−→
OG
ds
× δ~p (s)

}
G(s)

(27)

where it has been set (•)′ = d•
ds

the spacial derivative. Now, the virtual work of internal actions

can be put in the following form

δWi = −
∫ L0

0

{
~R(s) · δ~q′(s) + ~M(s) · δ~p′(s)−

(
~q′(s)× ~R(s)

)
δ~p(s)

}
ds (28)

3.2.2. Virtual work of the applied actions

The only force acting on the elastica beam which produces nonzero work is the actuation

force ~F applied at the point C located at the unknown curvilinear abscissa s̄c in the deformed

configuration. For a virtual displacement of the point C, δ~q (s̄c), the corresponding virtual work

reads as

δWe = ~F · δ~q (s̄c) (29)

where in our particular situation, we have

~F = −F~e2, δ~q (s̄c) = δyc~e2. (30)

Remarks.

(i) Obviously, we have the actions of the simple support at the points A and B of the beam,

nevertheless, these points are fixed. The modelling can be easily extended to a general

boundary conditions at the ends of the beam, for instance applied forces or moments or

clamped conditions at the beam ends or any other conditions.

(ii) The beam actuation can be extended to a lineic density of force or applied moment located

at a fixed point of the beam; which can be easily incorporated in the formulation.

3.2.3. Virtual works of constraints

Because of the simply supported conditions at each end of the beam, geometric conditions

must be fulfilled. More precisely, the point A is fixed and the point B is subject to an end-

shortening of the fixed amount. The conditions are given by
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x (0) = 0, x (L0) = xB,

y (0) = 0, y (L0) = 0,
(31)

These conditions can be conveniently replaced by integral conditions∫ L0

0

x′(s)ds = xB,

∫ L0

0

y′(s)ds = 0. (32)

The variation of the above condition leads to∫ L0

0

δ~q′(s)ds = ~0. (33)

Now, the problem is to find the solution to the minimization of the virtual work under the

integral conditions Eqn. (32). In order to use the virtual work principle subject to the constraint

Eqn. (33) on the arbitrary virtual displacement δ~q(s), we consider a Lagrange multiplier vector

associated with the condition Eqn. (33). Accordingly, we introduce the virtual work due to the

Lagrange multiplier

δWλ =

∫ L0

0

~λ · δ~q′(s)ds. (34)

The vector ~λ = (λx, λy) of which the components are the Lagrange multipliers enforcing the

integral constraint Eqn. (33) associated with the boundary conditions at the ends of the beam.

3.2.4. Virtual work formulation

Variational formulation established by Eqn. (24) consists of looking the state fields in space

V = {x(s), y(s), θ(s)} and those admissible Lagrange multipliers (λx, λy) satisfying the varia-

tional Eqn. (24). On using Eqs. (28,29,34) the variational equation can be written as

−
∫ L0

0

{
~R(s) · δ~q′(s) + ~M(s) · δ~p′(s)−

(
~q′(s)× ~R(s)

)
δ~p(s)

}
ds

+

∫ L0

0

~λ · δ~q′(s)ds+ ~F · δ~q (sc) = 0.

(35)

The actuating force ~F applied at the curvilinear abscissa sc of the beam produces a discontinuity

in the internal force resultant ~R at this point. Consequently, we must split the variational

Eqn. (35) into two segments of integration [0, L0] = [0, sc[∪]sc, L0]. The integrals in Eqn. (35)

are also separated into two integrals over the segment at the left of sc and the segment at the

right of this point. Now, by integrating by part, we arrive at the following variational equation
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∫ sc

0

{
d ~R−

ds
· δ ~q− +

(
d ~M−

ds
+ ~q−′ × ~R−

)
· δ ~p−

}
ds

+

∫ L0

sc

{
d ~R+

ds
· δ ~q+ +

(
d ~M+

ds
+ ~q+′ × ~R+

)
· δ ~p+

}
ds

+
(
J~R (sc)K + ~F

)
· δ~q (sc)− J ~M (sc)K · δ~p (sc) = 0.

(36)

where we note the jump of any quantity by JAK = A+ − A−. The above form the variational

equation is now in a convenient form to deduce the beam equations.

3.3. Elastica beam equations

Before writing down the equations of the beam, for sake of consistency and in order to

introduce key parameters as function of the beam characteristics, we define the following di-

mensionless parameters and variables

• lengths
(
S,X, Y, ~Q,∆L

)
= (s, x, y, ~q,∆L) /L0. (37a)

• Forces and moments
(
~F, ~R, ~M

)
=
(
~F/F0, ~R/F0, ~M/M0

)
. (37b)

• Energy Etot = Etot/E0. (37c)

with F0 = EAk, M0 = EI/L0 and E0 = F0L0. In addition, we have placed a key parameter in

evidence

k =
I

AL2
0

(38)

which characterize the ratio of the bending energy over the compression energy. The parameter

k ∝ (h/L0)2 with L0/h is the slenderness ratio of the beam which plays a crucial role in the

bistable mechanism. The total energy Etot is defined as the sum of the flexural and compressive

energies.

Therefore, the equation of the beam deduced from the variational formulation Eqn. (36) is

given by

d~M

dS
+
d~Q

dS
× ~R = ~0, (39)

The above equation holds for both segments of the beam. In addition, we deduce the equations

of the jump at the point of actuating force for the resultant and the moment, that is

J~R(sc)K + ~F = ~0,

J~M(sc)K = ~0,
(40)
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The first equation of Eqn. (40) denotes that the jump of the resultant of the internal action is

the actuating force while the second equation means that the bending moment is continuous

across the point C.

The geometrical compatibility Eqn. (17) using the dimensionless variables can be rewritten in

the vectorial form

d~Q

dS
= (1 + ε(S))~τ . (41)

Constitutive equations of the beam. The analysis of the bistable beam must be completed by

giving the relationships between the strain measures and the resultants in force and moment.

The elastic behavior of the beam is supposed to be linear. The constitutive equations are stated

as

~R · ~τ = N = EAε(s),
~M = EIθ,s~e3.

On using the dimensionless quantities, we arrive at

ε(S) = kN, (42a)

~M =
dθ

dS
~e3. (42b)

It is worthwhile noting that the parameter k holds for the compressibility of the beam and N

is the resultant along the beam axis and perpendicular to the beam cross-section.

Remarks : The equilibrium equation (39) can be deduced from the following Lagrangian

L =

∫ L0

0

[
1

2
~M · d~p

dS
+

1

2
Nε− (1 + ε)N

]
dS, (43)

where the first term in the integral Eqn. (43) is reduced to 1
2
~M · d~p

dS
= 1

2

(
dθ
dS

)2
is the bending

energy, 1
2
Nε with ε = kN is the compression energy. The last term in Eqn. (43) is deduced from

the boundary conditions at both ends of the beam of the displacements X (S) and Y (S) and

it involves Lagrangian multipliers. More precisely, from Eqn. (41) and Eqn. (42) we write

(1 + ε)N = (1 + ε) ~R · ~τ = ~R · d
~Q

dS
.

Now, it clear, if we consider the boundary conditions on both ends of the beam in their integral

form given by Eqn. (32), that the vector ~R can be viewed as the Lagrangian multiplier. The

latter can be identified to the vector ~λ which has the meaning of a force maintaining fixed the

end-shortening on the right end of beam and imposing the vertical displacements at both ends

of beam to be zero.
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The beam equation (39) is deduced by rendering the Lagrangian stationary, i.e., δL = 0. The

Lagrangian form is deduced directly from the variational equation (36) after direct algebraic

manipulations. Due to the actuating force applied to the point C of the beam, the Lagrangian

Eqn. (43) must be split into two integrals one over the segment S ∈ [0, SC [ and the other one

over the segment S ∈ ]SC , 1].

3.3.1. Beam equilibrium

The global equilibrium of the beam subject to buckling load and actuating force allows to

compute the unknown resultants applied at each end of the beam. The resultants are found

out as follow

NA = P, (44a)

VA = (1− δ̂) F, (44b)

VB = δ̂ F, (44c)

where NA is the horizontal force at the point A and VA and VB are the vertical components

of the resultants at the beam ends A and B, respectively. The parameter δ̂ denotes the ratio

δ̂ = XC

XB
, the relative position of the point C.

Now, the internal resultant ~R can be reach by studying the equilibrium of the region on the left

side of actuating point and on the right side. We have

~R± =

{
R±x = −P
R±y = δ̂± F

with

{
δ̂− = δ̂ − 1, ∀S ∈ [0, SC [

δ̂+ = δ̂, ∀S ∈ ]SC , 1]
(45)

where the subscript (−) refers to the left region while (+) refers to the right one.

3.3.2. Final form of the set of equations of the buckled beam

On using the different equations obtained in the previous subsections and combining Eqns (39,

42) and Eqn. (45), the static equations for the present buckling beam take on the form


d2θ

dS2
+ δ̂± F cos θ + P sin θ − kδ̂± PF cos(2θ)− 1

2
k[P2 −

(
δ̂±
)2

F2] sin(2θ) = 0,

d ~Q

dS
=
(
1 + kN±

)
~τ ,

(46)

the above equations are valid for both segments [0, SC [ and ]SC , 1]. The resultant along the

beam axis is given by

N± = −P cos θ + δ̂± F sin θ. (47)
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3.3.3. Comments

The equations governing the equilibrium of the proposed buckled beam thus obtained de-

serve some comments and remarks.

1. At a first sight, the extensibility property of the beam produces more or less complicated

structure including nonlinear term in the forces F and P. If the beam is inextensible, that

is k = 0, the bending equation is simplified into a kind of sine-Gordon equation (Drazin ,

1983). The latter possesses localized solution in the form of lump structure corresponding

to the beam deflexion.

2. The parameter δ̂ denoting the ratio of the abscissa of actuating force to the distance

between supports allows us to find an optimal position of the actuating force; which is

not necessary located at the beam center.

3. As soon as the bending equation is solved with respect to θ, on using geometric com-

patibility equations (Eqns (41)) we reach the position X(S) and Y (S) of the buckled

beam.

4. Numerical solutions and results

4.1. Numerical method

We start with Eqns (46) and (47). The problem is then to search for the solutions θ (S),

X (S) and Y (S) which must satisfy the boundary conditions on the left end of the beam
X(0) = 0,

Y (0) = 0,

θ′(0) = 0,

θ(0) = θA,

(48)

and on the right end of the beam 
X(1) = XB,

Y (1) = 0,

θ′(1) = 0,

θ(1) = θB,

(49)

In these boundary conditions, θA is unknown, XB is given (it is the end-shortening of the

support B), θB is unknown, but computed once the solution obtained. Accordingly a numerical

shooting algorithm must be used. The input parameters of the method are given by Eqn. (48)

and we start with an initial guess for θA. The objective parameters are given by Eqn. (49).

Nevertheless, we do not know the buckling force P since only the displacement of the right end

of the beam is given. Moreover, at each position YC = Y (SC) the vertical coordinate of the

applied force corresponds to one deformed beam, while a same actuating force can produce, a
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priori, different beam deformations. Therefore, the buckling resultant P , the actuating force

F and the curvilinear abscissa SC of the application point are not known. In order to find

the so-called shooting parameters θA, P, F and SC we use along with the shooting method a

predictor-corrector algorithm starting with initial guess θA, P, F and SC by varying continuously

the guessed values until the conditions at the right end of the beam (Eqn. (49)) are fulfilled

with a sufficient accuracy. Each solution is recursively found by using a previous one as initial

guess for the following step. In the procedure, we use four shooting parameters in order to

reach an objective vector with three components. As consequence, an orthogonality condition

is required between the predictor vector and corrector one to close the system. Moreover, the

orthogonality condition is such that the method convergence is rapidly ensured. The numerical

problem concerns the solutions to a set of nonlinear differential equations of two point boundary

values problem given by Eqns. (48) and (49) with integral constraint Eqn. (32). The method

is based on numerical continuation methods (Allgower and Georg , 2003) which is quite well

efficient for the present numerical problem we want to solve.

4.2. Numerical results

4.2.1. Bifurcation diagrams

One of the first results which can be extracted from the numerical computations is the

bifurcation diagram. More precisely, the evolution of the buckling load P as function of the end

shortening ∆L of the elastic beam. In this situation the actuating force F is set to zero. The

bifurcation curve shown in Figure 3 exhibits very clearly two domains. As far as the compres-

sive force is less than the critical one, the beam is still straight. The relationship for ∆L versus

P follows a linear Hook law. Once the applied load is increased by a small amount beyond the

critical load, the beam is deformed into a buckled configuration which is just very close to the

original straight beam, but with a small transverse deviation. This is the post-buckling regime.

The latter increases with the applied load as shown in Figure 3. The insert in Figure 3 shows, in

the vicinity of the bifurcation point, the detailed variation of ∆L depending on the parameter k.

Influence of the beam extensibility - It is worthwhile examining in details the diagram of bifur-

cation in the post-buckling regime in the vicinity of the critical load. At this end, we assume

small end-shortening and consequently rotations of small amplitudes. We look for solution to

the static problem (see Eqn. (46) with no applied transverse force) as a reduced form on the

first buckling mode

θ (S) = θ0 cos (πS) , (50)

In order to compute the amplitude θ0 satisfying the post-buckling regime problem, we expand

the Lagrangian of the system Eqn. (43) for small rotations up to the fourth order. We arrive

at
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L̃ =

∫ 1

0

[
1

2
(θ,S)2 + P

(
1− 1

2
kP
)
− 1

2
P (1− kP) θ2 + 1

24
P (1− 4kP) θ4]dS. (51)

On considering the first mode solution Eqn. (50) into the new form of the Lagrangian Eqn. (51),

after integrating over the segment [0, 1], the latter takes on the form

L̃ = P
(
1− 1

2
kP
)
− 1

4

(
P− kP2 − π2

)
θ2

0 + 1
64
P (1− 4kP) θ4

0. (52)

which is merely a polynomial function of the fourth order in θ0. Now, the problem is to find θ0

which minimizes the Lagrangian Eqn. (52). The necessary condition reads as ∂L̃
∂θ0

= 0, yielding

θ0[P (1− kP)− π2 − 1
8
P (1− 4kP) θ2

0] = 0. (53)

It can be checked that the trivial solution θ0 = 0 (straight beam) corresponds to a maximum

of the Lagrangian (unstable solution), while the solution θ0 6= 0 realizes the minimum. We find

θ2
0 =

8

P

[
P (1− kP)− π2

1− 4kP

]
. (54)

For inextensible beam (k = 0) and P ≥ π2 (post-buckling regime), we recover the classical

formula θ0 = ±2
√

2
P

(P− π2). From Eqn. (54), the rotation amplitude θ0 becomes non zero for

a critical load slightly greater than π2 because of the beam compressibility. We can say that

for small k, the critical loading can be approximated by Pc ' π2 (1 + kπ2). We can observe

on the diagram of bifurcation the tiny shift of the critical load relative to the inextensibility

theory. This is why the extensibility hypothesis of the beam becomes significant as soon as

we deal with small end-shortening and rotations or displacements of small amplitudes. On the

bifurcation diagram, Figure 4, the curve of θ0 as function of loading force P (see Eqn. (54)), has

been superposed to the solution coming from the numerics. The difference is not practically

observable.

4.2.2. Elastic beam response under actuating force

Now, we introduce the action of an applied transverse force F. In this section we want to

determine the actuating force as function of the vertical displacement of the mid-point of the

beam for given end-shortening ∆L and compressibility parameter k.

The first numerical results deal with the central actuating and the force is maintained verti-

cally at the abscissa XC such that δ̂ = 0.5. The vertical displacement of the actuating force

YC = Y (SC) at the point C is controlled step by step. The corresponding actuating force is

computed with the help of the numerical algorithm. The force-displacement diagram is shown

in Figure 5. A classical N-shaped curve is obtained. Such results can be compared to those

presented by different authors (Vangbo , 1998; Qiu et al. , 2004) using different approaches,

essentially based on buckling mode expansion. More precisely, there are several branches on the

graph. The first branch starts at the either both stable positions (point a1 or a2 on Figure 5).

The crossing point of the branch involving the first buckling mode and that for the second mode
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occurs for the bifurcation actuating force F = Fb at the point b1. On decreasing the actuating

force the branch (b1b2) passes through the point c1 corresponding to YC = 0 with F = 0. The

curve is symmetric with respect to the origin. It is worthwhile noting that the slope of the

F − YC diagram is negative, this means that the bistable system possesses a negative stiffness

on this branch. Because of the symmetry of the structure, two symmetric solution exist for the

second buckling mode, but these solutions share the same branch (b1b2). The branch selection

is ensured by an energetic criterium. The part of the graph drawn in dashed line represents the

non-admissible path, that is, the path with greater energy. In addition the branch is unstable,

because the snap-through of the beam involves a zero mode (straight beam). Quite similar

results have been obtained by (Pi. , 2007) for circular shallow arches subjected to uniform

loading and simply supported.

Figure 6 shows the non dimensional compressive force P as function of the vertical coordinate

YC of the point C. We can observe that as far as P > 4π2, the snap-through from one stable

state to the other one occurs involving a buckling mode 2. The upper branch corresponds to a

greater energy. The corresponding points introduced for the force-displacement diagram have

been reported in the P−YC curve. We have the bifurcation points b1 and b2 for which the lower

branch (b1c1b2) corresponds to the second buckling mode.

Instructive details are given by the graph of the total energy Etot of the bistable system as

function of the vertical coordinate YC shown in Figure 7 for the central actuation and for an

end-shortening of 3 %. The two minima of the energy are located at the stable positions either

the downwards buckling beam (point a1) or the upwards one (point a2) for null actuating force.

At the bifurcation points b1 and b2 the energy graph splits into two branches the lower one for

the admissible solution and upper one for the non-admissible solution.

A second series of numerical results is obtained for shifted actuating force (force not applied

to the beam center). In this situation we want to examine the influence of the position of the

actuating force in the bistable system response. Especially, the question is, is there an optimal

position? In the work of Cazottes et al. (Cazottes et al. , 2010) the advantage of shifted

actuating force is experimentally placed in evidence. In particular, this mode of actuation

needs a maximum of the actuating force smaller than that of the central actuation for a given

end-shortening. We perform numerical simulation by varying the ratio δ̂ (or the location of

the actuating force) for an end-shortening of about 3 %. Figure 8 presents the maximum of

actuating force as function of the ratio δ̂. The graph exhibits clearly two symmetric minima.

The first minimum is located at 39 % of the total length of the beam.

We consider the actuating force located at the optimal position and we observe the displacement

of the beam center (at S = 0.5). The result is then drawn in Figure 9 with a graph possessing

three loops. The curve in solid line corresponds to admissible solution (path (a1b1c1d1b2a2)) and

(path (a2b2c2d2b1a1)) while the one in dashed-line is for higher actuation energy. The crossing
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point of the branch using the first buckling mode and that of the second mode is referred as to

b1. The two symmetric points c1 and c2 correspond to F = 0 and those noted d1 and d2 are for

YC = 0. Because of the dissymmetric loading the path going from the upwards solution (point

a2) to the downwards position (point a1) is different from the path for the inverse switching.

The buckling force P which imposes the end-shortening fixed is plotted in Figure 10 as function

of the displacement YC . The different points defined on Figure 9 have been reported on the

P − YC diagram. In particular, the points d1 and d2 for YC = 0 have the same locus. The

total energy Etot of the bistable system versus YC is presented in Figure 11. Similarly as for

the central actuation, the curve exhibits two branches, the lower branch corresponds to the

admissible path for the actuating response of the bistable beam. It is worthwhile observing

that even if we have two branches for the admissible solution. As matter of fact, the branch

(b1d1b2) and the branch (b1d2b2) share the same part of curve in the Etot−YC diagram. It means

physically that the switching from upwards buckling position to the downwards one and the

reverse switching need the same energy.

4.2.3. Influence of the end-shortening on bistable beam response under actuating force

The model of the bistable buckled beam possesses, in its dimensionless representation, two

important parameters : (i) the end-shortening of the right end of the beam ∆L (parameter of

configuration) and (ii) the extensibility parameter k which depends mainly on the slenderness

ratio of the beam (geometric parameter). The other parameters are controlling quantities,

especially, the buckling force P is subject to the limit condition at S = 1, such that X(1) = XB

which is given (see Eqn. (31) or Eqn. (49)).

In this subsection we want to know how the end-shortening ∆L modifies the response of the

bistable beam, that is, the paths of the actuating force as function of its vertical position on

the beam. The response to this question is illustrated in Figure 12 for four typical values of

the end-shortening and for central actuation. We observe that the number of branches for the

curve F versus YC increases as ∆L. This means that physically for a given YC the number of

equilibrium solutions to the static equations becomes more numerous. This does not means

that all the solutions are stables. Only, the one corresponding to the lowest energy is the

admissible solution.

4.2.4. Influence of the extensibility parameter on bistable beam response under actuating force

For a given end-shortening (∆L = 0.03), the extensibility parameter k (see Eqn. (38) for

definition) is varied. Figure 13 represents three situations corresponding to three values of

k (k = 1
20000

, k = 1
5000

and k = 1
2500

). We observe that the number of branches of the

F − YC diagram for equilibrium solutions is more numerous as k is getting smaller, which is

physically reasonable since the beam is more flexible leading to a great number of equilibrium

configurations for a given actuating force. For k rather moderate the number of branches

remains limited to a couple of branches. In fact, the extensibility parameter k represents the

ratio of the compressive beam energy to the bending energy, physically, that means that the
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bending energy is more important for k small or for slender beams. As consequence, for different

values of the actuating force F correspond to different levels of energy. Only the lowest level

of energy leads to the stable equilibrium solution. In order to compare the influence of the

extensibility on the F − YC diagram, the graphs on Figure 13 are plotted in dimension unit

for the force. The actuating force at the bifurcation point b1 of the F − YC diagram have been

computed, we find Fb. The actuating force at the bifurcation point b1 of the F − YC diagram

have been computed, we have Fb = 4651.85 N , Fb = 2834.82 N and Fb = 784.77 N respectively

for k = 1
2500

(L
h

= 14.43), k = 1
5000

(L
h

= 20.41) and k = 1
20000

(L
h

= 41). In the case of an

inextensible beam (k = 0) the corresponding forces take on the following values Fb = 6446.95 N

(−38.6 %), Fb = 3223.47 N (−13.5 %) and Fb = 805.87 N (−2.7 %). An extra comparison can

be done with a very small k = 3 × 10−7 (L
h

= 500 very slender beam), Fb = 4.837 N to

be compared to Fb = 4.835 N (0.04 %) obtained with k = 0. The percentages represent the

difference between inextensible model with respect to extensible one.

4.3. Analysis of the role of buckling modes in the bistable snap-through

4.3.1. Reduced model

In this part we want to show how the bistable system uses the buckling modes for the

switching process from one stable state to the other one. In Section 4.2.1, it has been exam-

ined the bifurcation diagram in the post-buckling regime for moderate rotation. Accordingly,

it is reasonable to investigate the post-buckling behavior of the system using reduced order

model. We consider a finite-dimensional approximation of the solution to the beam equations

by expanding the rotation θ(S) as a series of buckling modes truncated at the Kth order

θ(S) =
K∑
j=1

Aj cos (jπS) , (55)

where the Aj’s are the amplitude associated to the jth mode. The approximation Eqn. (55)

can be viewed as a truncated Fourier series. The Fourier coefficient being Aj and they can be

computed by using the orthogonality properties of the buckling modes, thus we have

Aj = 2

∫ 1

0

θ(S) cos (jπS) dS. (56)

Now, for each value YC of the vertical position of the actuating force F we compute the admis-

sible solution θ(S) with YC as parameter. On considering Eqn. (56) , the coefficient Aj depend

only on YC , all other ones are completely determined for a given end-shortening. The first three

coefficients Aj (j = 1, 2, 3) are plotted in Figure 14 versus YC . It is clear that, in practice and

during the switching process the first two buckling modes are predominant. The third mode

even if it is not null, it remains rather small in comparison to the other two.

Here and henceforth, the analysis is done in hypothesis of moderate rotation. Then we assume

a two degrees of freedom model by setting
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θ(S) = A1 cos (πS) + A2 cos (2πS) , (57)

Now, the discussion continues with the Lagrangian functional of the bistable system computed

with expansion given by Eqn. (57). This functional is now a function of the mode amplitudes

A1 and A2. We set L(r) (A1, A2) the Lagrangian functional associated with the model reduced

to the first two buckling modes using Eqn. (43).

4.3.2. Equilibrium and stability

The equilibrium configurations are defined as the solutions of

∂L(r) (A1, A2)

∂Aj
= 0, for j = 1, 2. (58)

The stability of the equilibria is examined by the Dirichlet theorem for potential system

(Thompson and Hunt , 1973; Huseyin , 1986; Quoc Son , 1995), that is, the 2 × 2 Hessian

matrix of L(r) is

Hij (A1, A2) =
∂2L(r) (A1, A2)

∂Ai∂Aj
, for i, j = 1, 2. (59)

If the matrix H is positive definite, i.e., if all the eigenvalues of H are positive, the system is

stable, because the Lagrangian functional is convex. If one or more eigenvalues are negative

the system is unstable, because the Lagrangian functional is concave with respect to one or two

directions determined by the associated eigenspaces.

The Lagrangian functional of the system is a function of the amplitudes A1 and A2 and P

as well, the buckling force. The latter depends on the equilibrium configuration for a given

end-shortening. This dependency is given by Eqn. (31) or Eqn. (32) which can be written as

X(1) = XB =

∫ 1

0

X ′(S)dS =

∫ 1

0

[1− kP cos (θ(S))] cos (θ(S)) dS. (60)

where θ(S) is given by Eqn. (57). Eqn. (60) allows us to compute the buckling force P as func-

tion of the amplitudes A1 and A2 for a given end-shortening. Now, the Lagrangian functional

can be plotted in the (A1, A2)-plane. Figure 15 shows the 3D graph of the Lagrangian func-

tional as function of A1 and A2. The graph exhibits an unstable equilibrium configuration for

A1 = A2 = 0. But, for A2 = 0 there exists two stable configurations for A1 = A10 6= 0, where

A10 is the amplitude of the first buckling mode with null actuating force. It corresponds to the

first buckling mode (upwards for A10 > 0 and downwards otherwise) when the actuating force

is not applied. The surface possesses two saddle points for A1 = 0 and A2 6= 0 which means

that the Lagrangian functional is convex in the A2-direction while it is concave in A1-direction

as shown in Figure 15.

According to the study of the bistable response for actuating force as function of the vertical
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position YC , we are able to parameterize the switching path going from one stable position to

the other one and vice versa in the contourplot graph in the (A1, A2)-plane. Figure 16 shows

such contourplot where the closed curve marks the limit of the unstable region. The latter is

determined by examining the sign of the eigenvalues of the Hessian matrix Eqn. (59). For each

position YC while the bistable moves quasi-statically, there exists an equilibrium corresponding

to an unique actuating force as examined in Section 4.2.2. Two kinds of numerical results are

reported. The first result deals with a central force actuation. The path (P1) is the result,

it is obtained by controlling the switching from the stable position (A10, 0) to the other one

(−A10, 0) for each value of the vertical position YC . The equilibrium positions are computed

leading to the solution (A1 (YC) , A2 (YC)). The path (P1) starts using mainly a first buckling

mode in the stable region and it quickly enters the instability domain. The second buckling

mode increases at the cost of the first mode passing through the saddle point of the domain.

A second result is presented - path (P2) - for non central force at 40% from the left end

(δ̂ = 0.4). In this situation, the beam begins to switch using a non zero amount of the second

buckling mode. The equilibrium path (P2) enters the instability region passing through by

the saddle points (0,±A20) as the path (P1). The bistable beam follows the path (P1) or

(P2) using the control of the actuating force quasi-statically until the intersection point with

the instability region is reached. Beyond this point the bistable system becomes unstable and

jumps to the other stable position by making use of the second buckling mode which is the less

energetic mode as already presented for the actuation force response. It is worthwhile noting

that while the bistable beam switching whatever the actuating force position the energy barrier

to be overtaken is the same. Nevertheless, a non-central actuation allows to delay the bistable

system entering the instability domain. Similar instability phenomena can be met for shallow

arches where the switching process depends on the arch height (Vangbo , 1998; Qiu et al. ,

2004; Cen and Lin , 2005).

5. Comments and concluding remarks

The main objects of the proposed work are twofolds. The first goal is to report a model for

bistable buckled beam based on elastica theory including extensibility. On using the complete

model we next examine, in details, the switching process of the bistable mechanism. The sec-

ond goal deals with numerical results among them the bistable response to localized actuating

force according to the application position on the beam and switching scenarios. The present

analysis based on an extensible elastic beam reveals interesting buckling mode contributions

to the snapping effect by applying a punctual force and controlling the displacement of the

vertical position of the actuating force. The governing beam equations for large-displacement

and finite-strain hypotheses have been deduced from a correct variational formulation based on

the virtual work principle under the Euler-Bernoulli beam kinematics.

The most pertinent results describing the behavior of the bistable buckled beam are obtained
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by using a numerical algorithm based on continuation scheme and Newton-Raphson method.

This apparently more or less simple bistable structure is rich enough to provide particularly

interesting results :

• The role played by extensibility parameter k in the post-buckling regime has been put in

evidence for the bifurcation diagram analysis. It is interesting to note that for small end-

shortenings of the beam and in the post-buckling regime, the beam extensibility becomes

appreciable.

• Important results concern the response of the bistable system to the action of a transver-

sally localized force. For a given YC - the vertical position of the actuating force - there

exist several branches of solution to the static problem. Nevertheless, only one solution

is really admissible. The branch selection has been done using an energetic criterium, the

solution corresponding to the lowest energy is possible. Two kinds of results have been

obtained (i) for central actuation (δ̂ = 0.5) and (ii) for shifted force actuation (δ̂ = 0.39).

In each situation the response of the bistable buckled beam is different according to the

parameter k (extensibility parameter) and the end-shortening ∆L. Especially, the number

of branches of solution increases while k is getting smaller and ∆L increases as well.

• The numerical simulations are performed for the end-shortening ∆L maintained fixed

while the bistable switches, this means that the buckling loading depends on the vertical

position of the actuating force. Accordingly, the relation between the buckling force and

the position YC has been computed for both situations central and shifted actuations.

The results are illustrated in Figures 6 and 9.

• In the framework of the reduced model (two degrees-of-freedom model), the transition

from stable equilibrium position to the other one follows equilibrium path passing through

the unstable region of the bistable energy. The switching scenarios involve both first and

second buckling modes. More precisely, the buckled beam starts switching using the first

buckling mode and very quickly the second mode increases at the cost of the first mode.

At this stage the switching process is largely dominated by the second buckling mode.

The process is then reversed when the bistable buckled beam goes out of the unstable

domain to reach the other stable position.

• An optimal position of the actuating force has been placed in evidence. For an actuation

localized at about 39 % from the left or the right of the beam we have the minimum

actuating force. This result was already pointed out by Cazottes et al. (Cazottes et al.

, 2010), but on using another approach. These results can be of relevant interest for

engineering applications such as micro-switches or MEMS.

A natural extension of the present work would be comparisons of the present numerical results

to experimental tests in order to validate the proposed model based on the elastica beam
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theory. Experimental identifications of the bistable buckled beam are in progress and will be

proposed in future works. Moreover, one of the most interesting studies would be the dynamical

response of the bistable system under time dependent excitations, the latter extension will be

also explored in forthcoming researches.
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Figure 1: Elastic beam simply supported : (a) the non loaded beam, (b) beam in its buckled configuration with
the actuating force.
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Figure 2: Reference configuration (underformed state) R0 and current configuration R (deformed state) with
the parameters of the beam configuration.
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Figure 3: Bifurcation diagram : the end-shortening ∆L v.s. the buckling force P (for k = 1/5000, k = 1/20000
and k = 0). The inset shows the details around the critical force and comparison to inextensible beam.
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Figure 4: Bifurcation diagram : the rotation amplitude θ0 as function of the buckling force. Comparison to the
inextensible elastica and comparison to the moderate rotation approximation nearby the critical buckling force.
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Figure 5: Response of the bistable beam for central actuating force v.s. the vertical position YC (for k = 1/2500
and ∆L = 0.03).
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Figure 6: The buckling force as function of the position YC in the case of central force actuation. The lower
branch is that of associated with the admissible solution (for k = 1/2500 and ∆L = 0.03).
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Figure 7: The total energy as function of the position YC in the case of central force actuation. Two branches
are present. The admissible solution corresponds to the lowest energy (for k = 1/2500 and ∆L = 0.03).
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Figure 8: The influence of the actuating force position on the maximum of the applied force (for k = 1/2500
and ∆L = 0.03).
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Figure 9: Graph for the shifted actuating force (at 39 %) as function of the its vertical position YC (for
k = 1/2500 and ∆L = 0.03). The graph possesses several branches of solution to the static problem. Only
the branches in solid line correspond to the admissible solution while the one in dashed-line is for higher total
energy.
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Figure 10: The buckling force as function of the position YC for a non-central actuation (at 39 %). The lowest
branch corresponds to the admissible solution (for k = 1/2500 and ∆L = 0.03).
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Figure 11: The total energy as function of the position YC (non-central actuation at 39 %) (for k = 1/2500 and
∆L = 0.03).
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Figure 12: Influence of the end-shortening of right end of the beam on the bistable buckled beam response,
actuating force v.s. the position YC (for central actuation δ̂ = 0.5, k = 1/2500) : (a) ∆L = 0.02, (b) ∆L = 0.03,
(c) ∆L = 0.04 and (d) ∆L = 0.05.
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Figure 13: Influence of the extensibility parameter k on the bistable buckled beam response, actuating force
(in Newton) v.s. the position YC (for central actuation and ∆L = 0.03) : (a) k = 1

20000 , (b) k = 1
5000 and (c)

k = 1
2500 .
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Figure 14: The amplitudes of the first three buckling modes as function of the actuating force vertical displace-
ment (black : A1, red : A2, blue : A3) for k = 1

2500 , ∆L = 0.03 and central actuation.

Figure 15: The 3D plot of the beam Lagrangian functional in the (A1 −A2)-plane. The graph displays (i) two
stable equilibrium positions, (ii) one unstable equilibrium position at (0, 0) and (iii) two saddle points.
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Figure 16: The contourplot of the bistable Lagrangian functional. The white closed curve is the limit of the
instability region. The red curve corresponds to the central actuation and the blue curve is for shifted actuation
at 39 %.
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