
HAL Id: hal-03767986
https://hal.sorbonne-universite.fr/hal-03767986v1

Submitted on 2 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Combinatorial Study of Async/Await Processes
Matthieu Dien, Antoine Genitrini, Frederic Peschanski

To cite this version:
Matthieu Dien, Antoine Genitrini, Frederic Peschanski. A Combinatorial Study of Async/Await Pro-
cesses. The 19th International Colloquium on Theoretical Aspects of Computing, Sep 2022, Tbilisi,
Georgia. pp.170-187, �10.1007/978-3-031-17715-6_12�. �hal-03767986�

https://hal.sorbonne-universite.fr/hal-03767986v1
https://hal.archives-ouvertes.fr

A Combinatorial Study of Async/Await Processes

Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

1 Université de Caen – GREYC – CNRS UMR 6072 matthieu.dien@unicaen.fr
2 Sorbonne Université, CNRS, LIP6, UMR7606.

{antoine.genitrini,frederic.peschanski}@lip6.fr

Abstract. In this paper we study families of async/await concurrent
processes using techniques and tools from (enumerative) combinatorics
and order theory. We consider the count of process executions as the pri-
mary measure of “complexity”, which closely relates to the (in general,
difficult) problem of counting linear extensions of partial orders. Interest-
ingly, the control structures of async/await processes fall into the subclass
of what we call the BIT-decomposable posets, providing an effective way
to count executions in practice. We also show that async/await processes
can be seen as generalizations of families of interval orders, a well-studied
class of partial orders. Based on this combinatorial study, we define a va-
riety of uniform random generation algorithms. We consider on the one
side the generation of process structures, and on the other side the gen-
eration of execution paths – which is performed without requiring the
explicit construction of the state-space.

Keywords: Async/await · Enumerative Combinatorics · Uniform ran-
dom generation

1 Introduction

Programming concurrent systems is a notoriously difficult task with various
sources of complexity, among which asynchronism (the lack of a global clock),
non-determinism (the existence of multiple distinct executions/outcomes) and
state explosion (the exponential growth of such executions) appear to stand
out. Various design patterns have been proposed to simplify the task at hand.
Bulk-synchronous parallelism (BSP) [22] is such an example of a simplified ar-
chitecture for (a limited form of) parallel computing. For asynchronous systems,
the principle of async/await concurrency has emerged as a popular abstrac-
tion, based on the concepts of promises and/or futures [18] but with dedicated
syntactic constructs. Widely used programming languages offer async/await ab-
stractions, notably Javascript (the ECMAScript 9th edition [8]), Python [20]
and others3.

The main guiding idea of our research is that the complexity of synchroniza-
tion patterns for concurrent processes is closely related to the relative difficulty of
counting process executions. For example, counting executions of series-parallel
3 see https://en.wikipedia.org/wiki/Async/await

https://en.wikipedia.org/wiki/Async/await

2 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

structures (such as in BSP) is easy (see e.g. [16]). At the other end of the spec-
trum, the lack of any obvious control structure makes counting executions akin
to counting linear extensions of arbitrary posets, a ♯P -complete problem (cf. [4]).

In this paper, we consider the async/await processes as combinatorial ob-
jects – considering the execution count as their fundamental “measure” – and
study them with the hopeful objective of corroborating the common belief that
this would be a “simpler” concurrency model. As a starting point, we develop
a minimal process calculus with not much more than the basic principles of
async/await. We first provide an operational interpretation of such programs in
the form of computation trees. In this semantic representation, counting execu-
tions is easy: it is the number of distinct branches (thus leaves) of the trees. We
then describe an alternative representation of the control structure of processes
as directed acyclic graphs (DAGs). The advantage of this representation is that
it is exponentially more compact than the corresponding computation tree. And
we can still count executions, although the task is now more complex. As a first
contribution, we show that the corresponding structure falls into the subclass
of what we call the BIT-decomposable posets. Based on our previous work [4],
we obtain a way to formulate the counting problem as a compact multivariate
integral which can be solved by a computer algebra system. This is discussed
in Section 3. In Section 4, we establish interesting links between subclasses of
async/await processes and the mathematical structures known as interval or-
ders. In the last part of the paper (Section 5), we build on our combinatorial
investigations to experiment uniform random generation algorithms. We discuss
the generation of process structures as well as the generation of execution paths.

Related work

Alternative combinatorial models of concurrency have been proposed in the liter-
ature, especially based on the trace monoid (see e.g. [1]). Closely related are the
so-called unfoldings [9] which provides a compact representation of computation
trees as occurrence nets (a subclass of Petri nets). However as discussed in [9]
(e.g. page 29) the potentially exponential growth of the unfoldings is directly con-
nected to the degree of synchronization exposed by the processes. The situation
is similar in [3], which models synchronized automata as a product automaton
of a size whose (exponential) growth is tightly connected to the number of re-
quired synchronizations. While the partial order representation we adopt is more
restricted in terms of expressivity, it is less sensitive to the number of synchro-
nizations and thus well-suited for “principled” synchronization models such as
async/await. The counting of linear extensions of (unconstrained) partial orders
is shown a ♯P -complete problem in [6]. This is also the case for posets of height
2 or dimension 2 [7]. Polynomial algorithms exist for series-parallel posets [16].
In [4] we introduce the class of BIT-decomposable processes together with a
compact representation of the counting problem as a multivariate integral for-
mula. While this does not directly yield a counting algorithm, computer algebra
systems can be used for the numerical resolution. More generic algorithms have

A Combinatorial Study of Async/Await Processes 3

Listing 1.1. Async/await example in Javascript

function promise(arg) {
return new Promise(resolve => {

result = someComputation(arg);
resolve(result)});

}

async function main() {
// main program
doThis ();
w1 = promise (1);
w2 = promise (2)
doThat ();
w3 = promise (3)
result1 = await w1;
use1(result1);
result2and3 = await Promise.all([w2, w3]);
use2and3(result2and3);

}

been proposed in e.g. [14] (for sparse posets, with interesting applications in arti-
ficial intelligence) and [19] (based on a fast enumeration of linear extensions, not
suitable for actual counting). In [4] we describe a linear extension sampler for
BIT-decomposable processes, which we experiment on async/await processes in
the present paper. An alternative approach is proposed in [13] which is based on
a coupling from the past (MCMC) procedure. The advantage of this approach
is that it can be applied on arbitrary posets, but its running time is aleatory.
Other random generation methods have been proposed in e.g. [17] but, unlike
our approach, they require in one way or another the explicit construction of the
state-space of processes.

Interval orders [11] have been thoroughly studied in the literature, with the
notable mention of [5] which provides a thorough study in the domain of enu-
merative combinatorics.

2 Async/await concurrency

In this section we present a very simple process calculus whose purpose is
to capture the fundamental ingredients of async/await concurrency. Listing 1.1
shows a somewhat minimal Javascript example4. Putting aside the classical lan-
guage features (function calls, assignments, etc.), we focus on the construct re-
lated to concurrency. First, the async keyword enables async/await concurrency
in the scope of a function body (the function main() in the example). In our

4 A more complete, runnable version of the Javascript example is available online at
the following address: https://jsfiddle.net/boah97dm/

https://jsfiddle.net/boah97dm/

4 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

own terminology, we will say that the body of such a function becomes a control
thread. Such a control thread can perform three kinds of (concurrency-related)
operations:

– perform basic atomic actions that have no further meaning than “something
happened” as far as concurrency is concerned (in the example these are the
doThis(), doThat() and use..() calls)

– spawn a new promise that will run asynchronously (this corresponds to the
promise() calls in the example)

– await the completion of the spawned promises, based on a principle of barrier
synchronization (in the example, the barriers are w1, w2 and w3). Note that
a control thread may wait for multiple barriers at once, in an atomic manner
(using Promise.all(...)).

Each promise is associated to a dedicated barrier, which it has to use to
signal its termination to the control thread (in Listing 1.1, this is the role of the
resolve() callback). The promises can also perform atomic actions and indeed
be labeled async to become control threads themselves. In this case, we will say
that the system has a promise depth greater than 1 (we will come back to this
important characteristic later on).

Process P,Q ::= 0 : terminate the control thread
| α.P : perform action α and continue as process P
| ν(ω)[Q].P : spawn promise Q with barrier ω,

and continue to run P asynchronously
| ω : signal on barrier ω (from a promise)
| ⟨Ω⟩.P : await all barriers in set Ω, and

after synchronization continue as Pdepth(0) = depth(ω) = 0
depth(α.P) = depth(⟨Ω⟩.P) = depth(P)
depth(ν(ω)[Q].P) = max(depth(Q) + 1, depth(P))

Table 1. A calculus for async/await concurrency, and the definition of promise depth

Table 1 presents the syntax of a process calculus that captures the features
listed above, and nothing much beyond that. There is also the formal definition
of the promise depth introduced previously. Using the proposed syntax, our
example can be abstracted as follows:

this.ν(ω1)[prom1.ω1].ν(ω2)[prom2.ω2].that.ν(ω3)[prom3.ω3]
.⟨w1⟩.use1 .⟨w2, w3⟩.use2,3.0

Once the syntactic objects under study set, we have to give them a semantic
interpretation. One way of explaining the behavior of processes is to provide

A Combinatorial Study of Async/Await Processes 5

this

that prom1 prom2

prom1 prom2 that prom2 prom1 that

prom2 prom3 use1 prom1

prom3 use1 prom2 use1 prom2 prom3

use1 prom3

use2,3 use2,3

use1 prom2

use2,3 use2,3

prom3 prom2

use2,3 use2,3

prom3 use1

use1 prom3

use2,3 use2,3

prom2 prom3 use1 that

prom3 use1 prom2 use1 prom2 prom3

use1 prom3

use2,3 use2,3

use1 prom2

use2,3 use2,3

prom3 prom2

use2,3 use2,3

prom3 use1

use1 prom3

use2,3 use2,3

that prom1

prom3 use1

use1 prom3

use2,3 use2,3

prom3 use1

use1 prom3

use2,3 use2,3

Fig. 1. A computation tree corresponding to the example of Listing 1.1

an operational semantics5, which enables the construction of a first combinato-
rial object worth studying: what is colloquially called a computation tree. Fig. 1
depicts the operational semantics of our example as a computation tree. Each
directed edge in the tree corresponds to a possible labeled transition (implicitly
performing the silent steps). For example, in the initial state only the atomic
action labeled “this” is possible, which leads to a state from which three dis-
tinct transitions are possible: “that”, “prom1” and “prom2” (the other actions
being blocked by await constructs), and so on. Each possible execution path is
depicted by a distinct branch in the tree. This representation has the interest-
ing combinatorial characteristic of relating a structural notion of a size – the
number of atomic actions to perform identified with the length of each path –
to a corresponding semantic notion of a size – the number of execution paths
identified with the number of leaves of the tree. In the example there are 20
distinct execution paths and each path has length 7.

JP K = JP K◦⊤ \ {◦⊥, ◦⊤}
J0Kx = {x 7→ ◦⊥}
Jα.P Kx = JP K•α ∪ {x 7→ •α}
Jν(ω)[Q].P K•u = Jν(ω)[Q].P K◦v ∪ {•u 7→ ◦v} with ◦v fresh
Jν(ω)[Q].P K◦v = JQK◦v ∥ω JP K◦v
JωKx = {x 7→ ◦ω}
J⟨Ω⟩.P K•u = J⟨Ω⟩.P K◦v ∪ {•u 7→ ◦v} with ◦v fresh
J⟨Ω⟩.P K◦v = JP K◦v ∪ {◦ω 7→ ◦v | ω ∈ Ω}

with X1 ∥ω X2 = {x1 7→ y1 ∈ X1 | y1 ̸= ◦ω} ∪ {x2 7→ y2 ∈ X2 | x2 ̸= ◦ω}
∪ {x 7→ y | x 7→ ◦ω ∈ X1 ∧ ◦ω 7→ y ∈ X2}

Table 2. Async/await processes: partial order semantics

5 In [4] we provide an operational semantics for a calculus of “barrier synchronization”,
which subsumes the async/await processes.

6 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

•
this

◦ •
that

◦ •
use1

◦ •
use2,3

•
prom1

•
prom2

•
prom3

this

prom1that

prom2

use1 prom3

use2,3

Fig. 2. The control graph (chord process, left) and the associated partial order (right)
of the example of Listing 1.1

The main problem we are concerned with is the counting of possible execu-
tion paths of processes. With computation trees the solution is trivial since we
only have to count the leaves of the tree. However, the construction of the tree
itself suffers from combinatorial explosion, making this approach impractical. We
thus adopt an alternative construction scheme, which is defined in Table 2. The
idea is to interpret an async/await process as a directed acyclic graph (DAG) –
namely its control graph. Fig. 2 (left) depicts the result of the construction for
our example process. In the constructed graph the nodes are events from two
complementary kinds. The white nodes ◦ encode the control-structure of the
processes, i.e. when processes are forked or when they synchronize. Each black
node, denoted by •α, encodes the occurrence of an atomic action α. The dashed
line at the bottom corresponds to the control thread, and the chords above cor-
respond to promises. This DAG has several good properties. First of all, its size
is linear in the syntactic size of processes, hence there is no “explosion” involved
at this step. Moreover, (intransitive) DAGs are tightly related to partial orders
in that they correspond to their transitive reduction. In the computation tree
of Fig. 1 only the labels of the atomic actions are considered. We can perform
a similar abstraction on the control graph be removing the white nodes while
maintaining the relations among the black ones.

Definition 1 (Partial orders of async/await processes).
Let P be an async/await process. We define: PO(P) = {α > β | •α 7→ ◦u, ◦u 7→
•β ∈ JP K}refl-trans with, for a binary relation R, Rrefl-trans =

⋃
n≥0 R

n.

On the right of Fig. 2 is depicted the resulting poset using the most common
representation as a Hasse diagram. There is an important connection between
computation trees and such partial order semantics.

Theorem 1. The number of (non-silent) transitions of an async/await process
P , hence the number of leaves of its computation tree, corresponds to the number
ΨP of linear extensions of PO(P)

Proof. This is a corollary of [4, Proposition 2.1], in which we consider a class of
concurrent systems more general than that of async/await processes. ⊓⊔

A Combinatorial Study of Async/Await Processes 7

3 Partial order decomposition and the counting problem

We now investigate the problem of counting the execution paths of an async/await
process P , based on the DAG representation JP K or, alternatively, its abstrac-
tion PO(P) as discussed in the previous section. The problem boils down to the
counting of linear extensions in families of posets closely related to async/await
processes6.

Series P ⊙Q = (XP ⊎XQ, >P ∪ >Q ∪(XP ×XQ)) ΨP⊙Q = ΨP · ΨQ

Parallel P ∥ Q = (XP ⊎XQ, >P ∪ >Q) ΨP∥Q =
(|P |+|Q|

|P |

)
· ΨP · ΨQ

with P = (XP , >P) and Q = (XQ, >Q)

Table 3. Series-parallel constructions and associated counting formulas (cf. [16]).

To our knowledge, there are very few (non-trivial) poset subclasses for which
the counting problem can be said to be “easy”. One remarkable example is that of
series-parallel posets with dedicated and simple counting formulas, as described
in Table 3. Async/await processes are not, in general, decomposable with only
series and parallel operators. However, some of them are and, most importantly,
one can often find series-parallel substructures in larger processes. This means
that it is sometimes possible to use the series-parallel counting formulas, which
we take advantage of in Section 5.

(B)ottom (I)ntermediate (T)op (S)plit

x

y

x

x

y

z

x

z

y

z

z

x y

x y

x y

Ψ ′ =
∫ x

0
Ψ.dy Ψ ′ =

∫ x

z
Ψ.dy Ψ ′ =

∫ 1

z
Ψ.dy Ψ ′ = Ψx>y + Ψy>x

Fig. 3. BITS-decomposition and associated counting formula (from [4])

In [4] we define an alternative decomposing scheme for arbitrary partial or-
ders. This so-called BITS-decomposition, summarized in Fig. 3, consists in ap-
plying “elimination rules” on the transitive reduction of a partial order, or equiv-
alently on any intransitive DAG. The B-rule allows to remove a bottom node y,
hence with in-degree 1 and out-degree 0. The T-rule is the complement for top

6 We denote by X1 ⊎X2 the disjoint sum of the two sets X1 and X2.

8 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

nodes. The I-rule eliminates internal nodes with in and out degrees 1. Finally the
S-rule consists in replacing two nodes x and y that are incomparable in the poset
(they could both have parents or children in the DAG, which is not represented
here), by two cases: first x is larger than y or the reverse y is larger than x.
Obviously this rule induces a split requiring to consider then two distinct sub-
orders. Most importantly, a symbolic formula Ψ for the linear extensions count
(of the induced poset) can be constructed along the decomposition. Moreover,
if one manages to only use the BIT-rules for decomposing a poset – which is
then qualified as BIT-decomposable – then the formula we obtain is of a linear
size. This does not mean that the counting problem itself becomes easy (in fact
we conjecture it remains ♯P -complete), however we get: (1) a concise way to
formulate it, and (2) an effective way of computing the result using a computer
algebra system.

One of the main result of the present paper follows.

Theorem 2. The control graph JP K of an async/await processes P is BIT-
decomposable.

Proof (Proof sketch). The construction ensures that the black nodes have all in-
degree and out-degree exactly one. Indeed, only white nodes can have in-degree
or out-degree > 1 representing join or spawn events. The I-rule of the construc-
tion is thus powerful enough to remove the black nodes. Now, we consider the
promises with maximal depth (i.e. promises not making further promises). Since
such a promise cannot spawn a process, it has no white node except its fork
and join events. Since we can remove its black nodes the promise itself can be
removed, which means the out-degree of its fork node is reduced by one, and
so is the in-degree of its join node. Hence, all promises of maximal depth can
be removed by the BIT-rules. Once removed, their parent promises become of
maximal depth, and by a simple inductive argument we conclude that the whole
structure is decomposable. ⊓⊔

Here is an example of the counting formula generated thanks to the decom-
position of the control graph of Fig. 2 (white nodes are labeled by w1, w2 and w3

from left to right):∫ 1

0

∫ w1

0

∫ w2

0

∫ w3

0

∫ 1

w1

∫ w1

w3

∫ w2

w3

∫ w1

w2

∫ w1

w2

∫ w2

w3

1

duse1dthatdprom1dprom3dprom2dthisduse2,3dw3dw2dw1.

Once evaluated, this multivariate integral formula produces the value 24, which
corresponds to the number of possible executions paths in the control graph. Note
that this is more than the 20 possible execution branches of the computation tree
of Fig. 1, since the white nodes are also taken into account and not just the atomic
actions. If we consider the partial order PO(P) with all white nodes abstracted
away, then BIT-decomposability is not guaranteed anymore. In the next section
this is discussed more thoroughly but we can still consider the poset of (the right
of) Fig. 2 as an illustration. The only node with input/output arity one is the

A Combinatorial Study of Async/Await Processes 9

node labeled “prom2” and the other nodes have an arity > 1 even if “prom2“
is deleted. Hence, this poset is not BIT-decomposable. However, luckily, it can
be decomposed in series-parallel, as follows: this ⊙ (((that ∥ prom1) ⊙ (use1 ∥
prom3)) ∥ prom2)⊙ use2,3.

We can compute the number of linear extensions according to Table 3, which,
schematically, gives:

1 · ((
(
2

1

)
· 1 · 1) · (

(
2

1

)
· 1 · 1) ∥ 1) · 1 = (2 · 2) ∥ 1 =

(
4 + 1

4

)
· 4 · 1 = 5 · 4 = 20.

This is of course the number of leaves of the computation tree of Fig. 1.

4 Chord processes, interval orders and related families

We now plunge more deeply into combinatorics questions. Our objective is to
characterize relevant subclasses of async/await processes in a constructive way,
following the principles of the symbolic method [12, part A]. The basic idea is
to use generating functions to enumerate, symbolically, the constructed objects
of a given size in the considered combinatorial class, and to derive an inductive
equation (or less constrained, a functional equation) satisfied by such function.
Most importantly, our ultimate goal is to relate such process subclasses to cor-
responding classes of partial orders. This imposes that we somewhat restrict the
possibilities of constructing processes. In this section, we adopt the following
constraints. First, we require that a promise spawned by a process performs ex-
actly one atomic action at start-up time, which means that atomic actions and
promises are somehow identified. Then, the promise may spawn one of several
promises of greater depth, but ultimately it has to signal on its dedicated barrier.
Moreover, we will make sure that the number of white nodes is minimized in
the control graphs. Because of its proximity to what is called a chord diagram
elsewhere [21], the class we study in this section will be named chord processes.

Our first subclass of interest, named S1, considers chord processes with two
further restrictions: (1) the depth of the process is one, and (2) there is no
redundant promise. The first constraint means that there is exactly one control
thread, thus promises cannot spawn further promises. For the second constraint,
we consider two promises to be redundant if they are spawned and synchronized
at the same time (i.e. they have the same origin and destination white nodes in
the control graph). The class S1 corresponds to so-called non-redundant chord
processes.

An example of a control graph of a process in the class S1 is depicted in Fig. 4
(left). We consider the size of such a process to be the number of black nodes
in the control graph, hence here the size is 8. The abstraction from white nodes
is essential to properly capture the order-theoretic nature of the construction.
Note however that the white nodes are still part of the construction, only they
do not participate in the size of the objects.

In order to explain the construction of the class S1 properly, we need to con-
sider a slightly larger class, named S+1 , whose multivariate generating function

10 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

◦ ◦ ◦ ◦ ◦ ◦

•
•

•

•
•

••

• ◦
u

◦
u

→ y

◦
y

◦
u

◦
y

◦
y

•
z

•
z

•
z

•
z

•
z

z5 · y3 · u2

•
z

•
z

z7 · y4 · u2

Fig. 4. (left) A process of class S1; (right) A process with monomial z5y3u2, preceded
by a new node u that spawns 2 promises (the new monomial is z7y4u2).

can be written as follows:

S+
1 (z, y, u) =

∑
n,k,ℓ≥0

sn,k,ℓ z
n yk uℓ

We need no less than three parameters in this definition. First, the main pa-
rameter is z which represents the size of the objects7. The variable y is used to
count the white nodes that can be simultaneous async and await events, while u
counts the remaining white nodes that are “only async”. Thus, in the definition
above, the coefficient sn,k,ℓ corresponds to the number of processes in the S+1
class with n black nodes, k async and await white nodes, and ℓ async only nodes.

In the right part of Fig. 4, we illustrate how a larger process can be con-
structed from a smaller one while preserving the constraints of the considered
combinatorial class S+1 . The process delimited by the “interior” brace is of size 5
(its number of black nodes), with 3+2 white nodes. The “exterior” brace delimits
a larger process consisting in prepending a “async only” (u) white node on the
control thread, here with two non-redundant spawned promises8. This process
increases the size by 2 because each promise performs an action, and we can see
that a previously “async only” (u) white node now serves as an await and thus
becomes a y node. Hence the larger process is characterized by the monomial
z7 · y4 · u2.

Summarizing all the possibilities of such incremental constructions, we now
define more formally the combinatorial class S+1 as follows.

Definition 2. The generating function for the combinatorial class S+1 is such
that:

S+
1 (z, y, u) = u+ u

(
S+
1 (z, y + y · z, u+ y · z)− S+

1 (z, y, u)
)
. (1)

The smallest process satisfying the equation is of size 0, consisting in just a
single white node u (the first summand of the right-hand side of the equation).
7 We remind the reader that generating function are formal power series, counting

“things” through polynomial degrees.
8 To be non-redundant from the same origin, the promises must have distinct desti-

nation white nodes.

A Combinatorial Study of Async/Await Processes 11

The basic principle to obtain a larger processes S′ from a smaller process S is
given by the second summand. This consists in adding a new white node of kind
u at the beginning of the control thread (as illustrated on the right of Fig. 4),
which corresponds to the u in factor in the equation. We then have to account
for all the possibilities to connect this new “async” node with the rest of the
process S with new promises. We consider each white node of S in turn. If it is
a y node then either it stays the same, or it receives a new promise originating
from the new u, hence becoming y · z, the new z corresponding to the action of
the spawned promise. If it is a u then either it is left untouched or it becomes a
y · z. In the construction, we force the new white node u to spawn at least one
promise to the previous process, which is why we subtract the term S+

1 (z, y, u)
in the equation above, where no promise has been spawned.

Proposition 1. Definition 2 is a sound and non-ambiguous construction.

Proof. For the soundness part we need to prove that S+1 effectively describes
a combinatorial class. This means that for a given size n (the number of black
nodes), there is a finite number of structures satisfying the equation of Defini-
tion 2. First, we identify the number of promises and the number of black nodes,
thus there are exactly n promises for size n. The equation also enforces that each
u or y node spawns at least one promise (except for the rightmost white node),
so there are at most n + 1 such white nodes. Hence, for each such promise it
remains in the worst case n + 1 white nodes as destination so a simple upper
bound in the number of possibilities is (n+1)n. Thus, the number of admissible
structures of size n is indeed finite.

The second important characteristics of a functional equation enumerating a
combinatorial class is that it does not construct several times the same object
(i.e. it is non-ambiguous). This is a fundamental characteristics because we use
this functional equation to derive the number of objects of a given size. This
property can be demonstrated by structural induction. For the base case, we
consider the fact that there is a single minimal structure, namely z0 ·y0 ·u1. And
for the inductive case, if we suppose that a structure S has been constructed
non-ambiguously then all the possible “one-step” larger structures S′ are also
obtained non-ambiguously through the equation of Definition 2. ⊓⊔

The process class we are looking for is not directly S+1 but a slightly restricted
variant in which all the white nodes must be of the y kind, with the exception
of the leftmost one of kind u. This accounts for our initial constraint that white
nodes are minimized. Thus, the subsequence we consider is (∪k≥0sn,k,1)n∈N in
which only one parameter remains: the size n. We regroup all processes of size
n regardless their number of white nodes. From this we obtain one of the main
technical results of this paper.

Theorem 3. The univariate generating function enumerating the processes from
S1 by their number of atomic actions is given by the explicit equation:

S1(z) =
∂S+

1

∂u
(z, 1, 0) = 1 +

∑
k≥1

k∏
i=1

(
1− 1

(1 + z)i

)
.

12 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

The intuition here follows from Definition 2 taking into account the restriction to
S1 (having one white node), and abstracting away from the counting of the other
white nodes. This explains the derivative on the left-hand side of the equation
followed by the partial assignment y ← 1;u← 0.
Proof. We are starting from Definition 2, but the exact enumeration for S1,
where only the actions are counted and the white nodes do not count anymore is
such that in the processes enumerated by S+

1 (z, y, u) only the last added white
node u is not an await node (all other white nodes are thus been marked by y)
and we do not care about the number of these white nodes. So the generating

function for S1 is given by
∂S+

1

∂u
(z, 1, 0). In fact, since we are interested in the

monomials γ zn yk u, once differentiated according to u, they are not depending
on u anymore, and then evaluating at u = 0 erases monomials where there still
remains the u variable. Finally, letting y = 1, regroups together all monomials
γ′zn. Thus, with a partial differentiation in u:

∂S+
1

∂u
(z, y, u) =

1

(1 + u)2

(
1 + S

+
1 (z, y · (1 + z), u + y · z)

)
+

u

1 + u

∂S+
1

∂u
(z, y · (1 + z), u + y · z).

Then by evaluating y at 1 and u at 0, it remains

∂S+
1

∂u
(z, 1, 0) = 1 + S+

1 (z, 1 + z, z).

Before going on, let us simplify Equation (1) so that:

S+
1 (z, y, u) =

u

1 + u

(
1 + S+

1 (z, y + y · z, u+ y · z)
)
.

Now by injecting the latter equation we obtain

∂S+
1

∂u
(z, 1, 0) = 1 +

z

1 + z

(
1 + S+

1 (z, (1 + z)2, z + (1 + z)z)
)
.

By iterating this substitution we get:

∂S+
1

∂u
(z, 1, 0) = 1 +

n∑
k=0

k∏
i=0

z
(1 + z)0 + · · ·+ (1 + z)i

1 + (1 + z)0z + · · ·+ (1 + z)iz

+

n∏
i=0

z
(1 + z)0 + · · ·+ (1 + z)i

1 + (1 + z)0z + · · ·+ (1 + z)iz

· S1(z, (1 + z)n+2, (1 + z)0z + · · ·+ (1 + z)n+1z).

Letting n tending to infinity we finally get

∂S+
1

∂u
(z, 1, 0) = 1 +

∑
k≥0

k∏
i=0

z
(1 + z)0 + · · · + (1 + z)i

1 + (1 + z)0z + · · · + (1 + z)iz
= 1 +

∑
k≥0

k∏
i=0

z

1−(1+z)i+1

1−(1+z)

1 + z
1−(1+z)i+1

1−(1+z)

= 1 +
∑
k≥1

k∏
i=1

(1 + z)i − 1

(1 + z)i
= 1 +

∑
k≥1

k∏
i=1

(
1 −

1

(1 + z)i

)
.

And the stated results are proved. ⊓⊔

A Combinatorial Study of Async/Await Processes 13

Based on this theorem, we can compute the counting sequence of S1 processes.
The first numbers from size 1 to 14 are as follows:

1, 1, 2, 5, 16, 61, 271, 1372, 7795, 49093, 339386, 2554596, 20794982, 182010945.

We think that this is a remarkable result since the sequence is in fact already
known as OEIS A1382659, which is the enumeration of rigid (unlabeled) inter-
val orders [15]. Indeed, this class of partial order is characterized by the same
functional equation, which establishes a one-to-one correspondence between the
thoroughly studied class of interval orders [11] and the async/await processes.
The interval orders are counted by the sequence of Fishburn numbers stored in
OEIS A022493. The numbers of interval orders of sizes 1 to 14 are

1, 2, 5, 15, 53, 217, 1014, 5335, 31240, 201608, 1422074, 10886503, 89903100, 796713190.

It is interesting to see if we can define a class of async/await processes that
exactly matches the interval orders. We of course consider the class S+1 as a
starting point, since it corresponds to a restriction of interval orders. In fact,
what distinguishes OEIS A138265 from OEIS A022493 is precisely the notion of
redundant promise we introduced previously. We thus consider the subclass S2
of the async/await processes, which corresponds to the class S1 but allowing
redundant promises.

Theorem 4. We consider the class S2 defined by the following equations:

S2(z) =
∂S+

2

∂u
(z, 1, 0) with S+

2 (z, y, u) = S+
1

(
z

1− z
, y, u

)
.

The processes in S2 are in one-to-one correspondence with interval orders.

Proof. Similarly to the previous results, we introduce an auxiliary class of pro-
cesses, namely S+2 , defined from S+1 (of Definition 2) but in which we allow to
substitute each promise by a finite sequence of redundant promises. Thus the z
in the definition becomes z/(1−z) which is the closed formula for non-empty se-
quences (of z’s). Now, from Theorem 3 and applying the substitution we obtain
the equation:

∂S+
2

∂u
(z, 1, 0) = 1 +

∑
k≥1

k∏
i=1

(
1− (1− z)i

)
.

This equation exactly matches the generating function proposed in [5] to count
the (unlabeled) interval orders. ⊓⊔

As an interesting corollary, we remark that the bivariate generating func-

tions y
∂S+

1

∂u
(z, y, 0) and y

∂S+
2

∂u
(z, y, 0) can be calculated easily from the previous

9 Throughout this paper, a reference OEIS A· · · points to an entry of Sloane’s Online
Encyclopedia of Integer Sequences www.oeis.org.

https://oeis.org/A138265
https://oeis.org/A022493
https://oeis.org/A138265
https://oeis.org/A022493
www.oeis.org

14 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

theorems. These characterize the distributions of the number of white nodes in
processes of a given size, which correspond to sequences already studied in the
context of interval orders (respectively in OEIS A137252 and OEIS A137251).
The concerned parameter of interval orders is called the magnitude [10]. There
is a simple interpretation of the magnitude in terms of concurrency: this is the
number of white nodes in the control thread of a chord process (respectively
without or with redundant promises).

Once the connection with existing mathematical structures established, it is
interesting to look for possible variations inspired by concurrency aspects. For
now we considered chord processes of depth 1 and identified them with interval
orders. It seems thus quite natural to investigate the process structures of depth
> 1. The basic technical principle at work is the possibility to substitute subpro-
cesses within processes through substitutions in the equations for the associated
generating functions. For example, to construct S+2 from S+1 we substituted a
promise by a sequence of promises. Accordingly, it seems possible to substitute
a promise by a whole chord process. This way, from a subprocess of depth n
we can construct a process of depth n+ 1. In order to obtain a sound and non-
ambiguous generalization of interval orders (of depth > 1), we must ensure that
the elementary subprocesses are proper chord processes (hence “simple” interval
orders). This leads to the following definition.

Definition 3. The class S3 of generalized interval orders is defined by the equa-
tion:

S3(z) =
∂S+

3

∂u (z, 1, 0)

with S+
3 (z, y, u) = u

1+u

(
1 + S+

3

(
z, y

1−z(1+S3(z))
, u+ y z(1+S3(z))

1−z(1+S3(z))

))
.

If compared to the previous equations, this definition is recursive so that
whole sub-processes can be substituted.

Despite this extra complexity, it is still quite possible to enumerate efficiently
the terms of the counting sequence. The number of processes in class S3 from
size 1 to 14 are

1, 3, 12, 56, 289, 1606, 9471, 58790, 382496, 2604284, 18564013, 138808595, 1092001289, 9070517772.

This sequence is not present yet in OEIS and will thus be submitted for contri-
bution.

5 Uniform random generation: experimental study

In this section we present an experimentation of combinatorial algorithms di-
rectly connected to our study. Our objective is more to highlight the kinds of
problem that can be solved in practice based on our combinatorial study, rather
than a detailed description of the algorithms themselves. However, the whole
source code of the experiment is available online in a complement repository10

with detailed instructions.
10 cf. https://gitlab.com/ParComb/async-await-randgen

https://oeis.org/A137252
https://oeis.org/A137251
https://gitlab.com/ParComb/async-await-randgen

A Combinatorial Study of Async/Await Processes 15

Generating structures We investigate the generation of process structures using
three complementary ways. First, there is the systematic enumeration of the
structures by size. Since for each finite size we know that there is a finite number
of possible structures, the second interesting way of generating a structure is
through what is called unranking : construct the k-th structure of a given size n.
Last but not least the generation of structures uniformly at random represents
an interesting way to validate experimentally conjectures about said structures.
In our case, this provides us a way to compare algorithms based on different
techniques, without having too much of bias in the comparison.

x1

x10

x2

x65

x11

x19

x21

x96

x66

x68

x35
x22

x3

x4

x36

x23

x25

x20

x37

x38

x39

x69

x33

x26

x70

x72

x73

x76

x84

x92

x12

x13

x14

x40

x41

x53

x54

x56

x15

x16

x42

x43

x44

x45

x46

x47

x48

x34

x97

x27

x28

x30

x67

x31
x32

x93

x85

x5

x24

x57

x58

x55

x59

x60

x63

x17

x77

x98

x64

x6

x7

x74

x29

x75

x61

x86

x8

x9

x87

x88

x18

x49

x50

x89

x71

x78

x83

x94

x51

x52

x62

x90

x99

x79

x81

x82

x91

x95
x80

x100

Fig. 5. The chord process corresponding to the unranking of ascent sequence of size
n = 100 and rank k = S2[100]/2− 1

For all these needs, our starting point is [5] in which a constructive bijec-
tion between interval orders and ascent sequences is proposed. Quoting OEIS
A022493:

An ascent sequence is a sequence [d(1), d(2), . . . , d(n)] where d(1) = 0,
d(k) ≥ 0, and d(k) ≤ 1 + asc([d(1), d(2), . . . , d(k − 1)]) where asc(.)
counts the ascents of its argument.

The enumeration of ascent sequences is easy, and moreover counting the num-
ber of such sequences of a given size n can be performed in polynomial time (in
O(n3) arithmetic operations). This gives us first a quick way for unranking a
sequence. Ascent sequences of a given length n can be recursively decomposed
so the classical recursive method of [2] can be used to design a relatively efficient
random sampler (in O(n2), once the complete counting of the number of struc-
tures until size n has been performed). The output of the sampler is an ascent
sequence, i.e. a list of numbers, which we have to convert to an interval order
exploiting the bijection of [5]. In a further step we can use the inverse of the
construction of Table 2 to obtain a corresponding control graph, from which a
process expression can be easily obtained. This way, we obtain a uniform random
sampler for chord processes. As an illustration, in Fig. 5 we give an example of
a generated chord process of size 100 from an unranked ascent sequence. More
precisely, the sequence has rank S2[100]/2 − 1 (where S2[100] is the number of
sequences of size 100).

https://oeis.org/A022493
https://oeis.org/A022493

16 Matthieu Dien, Antoine Genitrini, and Frédéric Peschanski

Uniform random generation of execution paths Based on the algorithm described
in [4], we now experiment the uniform random generation of execution paths of
chord processes. The main interest of this algorithm is that it does not require
the explicit construction of the state space of processes.

Size Rank Nb. paths Counting time (s) Random Gen. (avg. s)
10 81694 ≈ 8.0 e5 4.1 e−4 s 3.1 e−3 s
15 7122308736 ≈ 1.9 e6 2.2 e−3 s 4.5 e−3 s
20 230090562434702 ≈ 1.3 e13 4.1 e−2 s 2.3 e−2 s
25 113615274237648394333 ≈ 2.2 e17 1.5 s 6.3 e−1 s
30 314109479073694330556823298 ≈ 2.2 e24 3.4 s 1.3 s

Table 4. Uniform random generation of execution paths.

In Table 4 we provide the results of a preliminary benchmark of our ran-
dom sampler for execution paths. The computer used for the experiments runs
on GNU/Linux (Ubuntu 20.04), with a Intel Core i7-6700 CPU cadenced at
3.40GHz and 8Go of RAM. The input of the algorithm are random chord pro-
cesses generated as explained previously. For each sampled process (described by
its size and rank), we give the result of the counting procedure and the associ-
ated timing. And finally we generate 10 execution paths and provide the average
generation time. While the implementation of the algorithm is at a very early
stage of development, we think that the timing results show promising figures.
Indeed, it is possible to generate execution paths uniformly at random in pro-
cesses in a reasonable time, in the order of a few seconds in a size 30 process
with quite a large state-space.

6 Conclusion and future work

The interpretation of concurrent systems as combinatorial objects is, we think,
quite an insightful perspective. Our measure of the “complexity” of concurrent
systems is that of counting execution paths. From this point of view, we show
that thanks to BIT-decomposability the counting problem is in a way “simpler”
for async/await processes than for arbitrary ones (in [4]). Complementary, in-
terval orders can be seen as basic generators for async/await control paths, as
suggested by our combinatorial investigation. While it is arguably a kind of a
stretch, this correlates the practical experience that async/concurrency is a “sim-
pler” form of concurrency, easier to deal with than less constrained forms. Taking
this perspective upside-down, async/await processes can be seen as a generaliza-
tion of interval orders, and are thus worth studying from a purely combinatorial
point of view. Our section on experimenting with uniform random generation
algorithms is mostly proposed as a proof of concept. We argue that there is an
interest in developing analysis methods based on such building blocks. A strong
argument in favor is that the algorithms can be applied directly on (the control
graph of) processes without having to unfold the state-space.

A Combinatorial Study of Async/Await Processes 17

References

1. Abbes, S., Mairesse, J.: Uniform generation in trace monoids. In: MFCS 2015.
LNCS, vol. 9234, pp. 63–75. Springer (2015)

2. Albert, N., S., W.H.: Combinatorial Algorithms. Academic Press, New York (1978)
3. Basset, N., Mairesse, J., Soria, M.: Uniform sampling for networks of automata.

In: Meyer, R., Nestmann, U. (eds.) CONCUR 2017, September 5-8, 2017, Berlin,
Germany. LIPIcs, vol. 85, pp. 36:1–36:16 (2017)

4. Bodini, O., Dien, M., Genitrini, A., Peschanski, F.: Quantitative and algorithmic
aspects of barrier synchronization in concurrency. Discret. Math. Theor. Comput.
Sci. 22(3) (2021)

5. Bousquet-Mélou, M., Claesson, A., Dukes, M., Kitaev, S.: (2+2)-free posets, ascent
sequences and pattern avoiding permutations. J. Comb. Theory, Ser. A 117(7),
884–909 (2010)

6. Brightwell, G., Winkler, P.: Counting linear extensions is ♯p-complete. In: Proceed-
ings of the Twenty-Third Annual ACM Symposium on Theory of Computing. p.
175–181. STOC ’91, Association for Computing Machinery, New York, NY, USA
(1991)

7. Dittmer, S., Pak, I.: Counting linear extensions of restricted posets. Electron. J.
Comb. 27(4), P4.48 (2020)

8. ECMA international: ECMAScript Language Specification, 9th edition edn. (2018)
9. Esparza, J., Heljanko, K.: Unfoldings. Springer (2008)

10. Fishburn, P.C.: Interval lengths for interval orders: A minimization problem. Dis-
crete Mathematics 47, 63–82 (1983)

11. Fishburn, P.C.: Interval graphs and interval orders. Discrete Mathematics 55(2),
135–149 (1985)

12. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press
(2009)

13. Huber, M.: Fast perfect sampling from linear extensions. Discret. Math. 306(4),
420–428 (2006)

14. Kangas, K., Hankala, T., Niinimäki, T.M., Koivisto, M.: Counting linear extensions
of sparse posets. In: IJCAI 2016. IJCAI/AAAI Press (2016)

15. Khamis, S.M.: Exact counting of unlabeled rigid interval posets regarding or dis-
regarding height. Order 29(3), 443–461 (2012)

16. Mörhing, R.H.: Algorithms and Order (Edited by Ivan Rival), chap. Computation-
ally tractable classes of ordered sets, p. 127. Kluwer Academic Publishers (1987)

17. Oudinet, J., Denise, A., Gaudel, M.C., Lassaigne, R., Peyronnet, S.: Uniform
monte-carlo model checking. In: International Conference on Fundamental Ap-
proaches to Software Engineering. pp. 127–140. Springer (2011)

18. Prasad, K., Patil, A., Miller, H.: Programming Models for Distributed Computing,
chap. Futures and Promises (2017)

19. Pruesse, G., Ruskey, F.: Generating linear extensions fast. SIAM J. Comput. 23(2),
373–386 (1994)

20. Selivanov, Y.: PEP 492 – Coroutines with async and await syntax. Python Org.
(2015)

21. Stoimenow, A.: Enumeration of chord diagrams and an upper bound for vassiliev
invariants. Journal of Knot Theory and Its Ramifications 07(01), 93–114 (1998)

22. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (aug 1990)

	A Combinatorial Study of Async/Await Processes

