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Two-dimensional modelling of laminated piezoelectric
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Université Pierre et Marie Curie, Case 162, 4 Place Jussieu

75252 Paris Cedex 05, France

Abstract - We propose a new approach to laminated piezoelectric plates based on a refinement of the

electric potential as function of the thickness coordinate of the laminate and accounting for shear effects.

Moreover, the variation of the electric potential as function of the thickness coordinate is modelled for

each layer of the laminate. The equation for the laminated piezoelectric plate are then obtained by using

a variational formulation involving mechanical surface loads or prescribed electric potential on the top

and bottom faces of the plate. In addition to the equations for the generalized stress resultants (due to

the shear effects), the equation of the electric charge conservation is also deduced for the 2D model.

A particular attention is devoted to the single piezoelectric plate and bimorph structure and the through-

thickness distribution of the displacements, electric potential as well as stresses are given for different

kinds of electromechanical loads. The results thus obtained are compared to those provided by a finite

element method performed for the full 3D model. A good agreement is observed for plates made of layers

of PZT-4 piezoelectric material. The comparison ascertains the effectiveness of the present 2D approach

to piezoelectric laminates.

Keywords : piezoelectric plates, adaptive materials, piezoelectric bimorph.

1. Introduction

Application of induced strain actuators are spreading widely in various fields of engi-
neering such as precise positioning, intelligent control of shapes and active damping of
vibrations [1-4]. Among the different types of actuators, the piezoelectric actuators are
the most popular, probably because of their simple and versatile design. The most simple
piezoelectric actuator is usually made of single-component system (for instance, a slab of
piezoelectric material). Typically, such a actuator produces displacements in the order of
10 to 100 µm when applying an electric field of 2 kV/mm. To overcome this limitation,
an actuator using flexural-extensional deformation of the structure requires several com-
ponents and it will be a composite material rather than a monolithic structure. One of the
advantages of the multilayer technique with piezoelectric materials is to induce strain of
the order of 1200 p.p.m. by applying voltage less than 200 volts. In order to obtain large
amplitude motions in piezoelectric devices, a bilayer or sandwich structure is commonly
used in which a piezoelectric layer, with its direction of polarization perpendicular to the
layer faces, is glued back to back with a strip of nonresponsive but elastic layer. The
contraction of the piezoelectric layer in response to an applied field will be hindered by
the elastic layer and the bilayer composite will bend. This is the reason for modelling and
understanding composite structures made of a stacking of piezoelectric plates.
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Several versions of linear piezoelectric plate have been proposed by H.F. Tiersten [5],
R.D. Mindlin [6] and C.K. Lee [7]. A first approach is based usually on Love’s first-
approximation including the Gauss equation for the electric charge and extended to lam-
inated plate using first-order shear deformation theory [8]. An interesting refined theory
of layerwise approach to the electric potential has been introduced by J.N. Reddy [9].
Nevertheless, most models are based on a classical laminated plate theory which neglects
the transverse shear effects. More refined and higher-order theories for piezoelectric plates
become a necessity to well understand strain sensing and actuating in piezoelectric lami-
nated plates.
In the present work, we intend to study a refined approach to piezoelectric laminated plate
involving shear effects and layerwise description of the electric potential. The model ex-
amined, here, includes the charge equation, so that we do not consider any hypothesis
on the electric displacement. The shear distribution across the plate thickness is approx-
imated by a trigonometric function [10]. Our particular choice for the approximation of
the displacement field and electric potential must satisfy the boundary conditions. Es-
pecially, the plate can be subject either to an applied electric potential on the top and
bottom faces of the plate or to a density of force on the top face. However, the bound-
ary conditions can be extended to applied electric charge density as well. A variational
formulation is considered to reduce the equations of the full 3D model to those of 2D for
the piezoelectric plate. The variational formulation is then generalized to plates made of
piezoelectric layers and accounts for the continuity conditions at the layer interfaces.

The next section, Section 2, is devoted to the variational formulation of piezoelectric me-
dia. The approximation model is presented in Section 3. In Section 4, the equations for
the piezoelectric plate are deduced from the variational formulation and some generalized
stress resultants and electric charges are defined, as well. The boundary conditions are
discussed in Section 5. A special attention is addressed to a single piezoelectric plate in
Section 6. The full equations for the single piezoelectric plate are investigated in Sec-
tion 7 and the solution for piezoelectric plates in cylindrical bending is presented and
the comparison to finite element simulations is also considered. The bilayer structure is
given in Section 8, the piezoelectric bimorph structure is studied for different kinds of
electromechanical loads. The comparison to numerics by means of finite element method
leads to a good accuracy of the present model. At length, by way of conclusion, some
extensions of the model and further works are evoked in Section 9.

2. Reminder : variational formulation of piezoelectricity

In this section, we briefly recall all the requisites about piezoelectricity and the associated
variational formulation based on Hamilton’s principle. The advantage of this method is
that it accounts for both the mechanical and electrical aspects simultaneously. Moreover,
the formulation considers the natural boundary conditions connected with the mechanical
and electrical quantities. The variational principle is stated as [6]

δ

∫ t2

t1

(L+W )dt =

∫ t2

t1

(δK − δU + δW )dt = 0 , (1)

where L is the Lagrangian, K is the kinetic energy, U is the potential energy and W is the
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external work. For a piezoelectric medium the associated potential energy density can be
identified with the electric enthalpy density function which can be expressed in terms of
the strain and electric field as follows

U = H(εij, Ei) =
1

2
σijεij −

1

2
DiEi , (2)

where σij are the components of the stress tensor, εij are the components of the strain
tensor, Di is the electric displacement and Ei is the electric field vector. The stress tensor
and the electric displacement vector are derived from the enthalpy

σij =
∂H

∂εij
, Di = − ∂H

∂Ei
. (3)

The formulation must be completed with the use of the piezoelectric constitutive equa-
tions. Here, the study is restricted to the classical linear piezoelectricity within the elec-
trostatic framework for which we have rot E = 0 and the electric field is derivable from
an electric potential φ by

Ei = −φ,i . (4)

On using the above definition and assuming there are no body forces the variational
formulation takes on the following form

−
∫ t2

t1

∫
Ω

(ρüiδui + σijδεij +Dj(δφ),j)dvdt+

∫ t2

t1

∫
∂Ω

(Tiδui + qδφ)dSdt = 0 . (5)

The second part of Eq.(5) represents the virtual external work involving the surface trac-
tion Ti and applied surface electric charge q on the domain boundary ∂Ω. The variational
formulation will be applied to derive a set of approximate governing equations for lami-
nated piezoelectric plates by accounting for the approximation of the displacement field
and electric potential as function of the thickness coordinate of the plate. In Hamilto-
nian’s principle, it is assumed that the virtual displacements and electric potential are
zero at t1 and t2. The coupled linear constitutive equations for piezoelectric materials are
given by [6] {

σij = CE
ijklεkl − ekijEk ,

Di = eijkεjk + χijEj ,
(6)

where the strain εij = u(i,j) = 1
2
(ui,j+uj,i) and u is the displacement vector. In Eq.(6), CE

is the fourth-order tensor of elasticity coefficients at zero electric field, e is the third-order
tensor of piezoelectricity coefficients and χ is the second-order tensor of dielectric con-
stants at vanishing strain. In the following, we will focus our attention to materials which
possess three mutually perpendicular planes of symmetry, it is referred to as orthotropic.
Therefore only the following material coefficients are non zero (we use the Voigt notation
with indices)

CE
αβ = {CE

11, C
E
12, C

E
13, C

E
22, C

E
23, C

E
33, C

E
44, C

E
55, C

E
66} ,

eiα = {e15, e24, e31, e32, e33} ,
χij = {χ11, χ22, χ33} .

If the material system has an axis of symmetry (hexagonal system) the number of inde-
pendant material coefficients is reduced according to CE

11 = CE
22, CE

13 = CE
23, CE

44 = CE
55
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and CE
66 = 1

2
(CE

11 − CE
12), e31 = e32, e15 = e24, and χ11 = χ22.

3. Approximation of the displacement field and electric potential

Most plate models consider an expansion of the displacements in power series of the
thickness coordinate. The level of truncation of the expansion leads to the order of the
plate theory. In the present model, the displacement field and electric potential are as-
sumed to be of the form

uα(x, y, z, t) = Uα(x, y, t)− zw,α(x, y, t) + f(z)γα(x, y, t), α ∈ {1, 2} ,
u3(x, y, z, t) = w(x, y, t) ,
φ(x, y, z, t) = φ0(x, y, t) + zφ1(x, y, t) + P (z)φ2(x, y, t) + g(z)φ3(x, y, t) .

(7)

Some comments on the above expansions are in order, (i) f(z) = 0, we recover the
classical Kirchhoff-Love thin plate theory [11], (ii) at the first order in the expansion of
f(z), f(z) = z we obtain the Mindlin-Reissner model [12] and (iii) the expansion of f(z)
to the third order leads to a refined model of the same order as that of M. Levinson [13]
and J.N. Reddy [14]. In the present approach, we have considered

f(z) =
h

π
sin
(πz
h

)
, g(z) =

h

π
cos
(πz
h

)
, P (z) = z2 −

(
h

2

)2

, (8)

where h is the plate thickness which is supposed to be uniform. The case of the purely
elastic plates has been extensively examined by M. Touratier [10] and extended to elastic
shells [15].
In the approximation of the electric potential, the first two terms, the linear part, can be
connected with the applied electric potential. The third term represents the induced elec-
tric potential by material deformation through piezoelectric coupling. Such a quadratic
term has been suggested by J.S. Yang [16] and N.N. Rogacheva [17]. The last term cor-
responds to the shearing effects approximated by the function f(z) in the displacement.
Most theories of piezoelectric plate are limited to a classical Kirchhoff-Love model for the
elastic part and to the linear approximation for the electric potential. Some approaches
are based on discrete layer approximation for the electric potential using Lagrange inter-
polation functions [18]. They are equivalent to finite element methods. In the present
approach, we point out the usefulness of the refinement introduced in the approximation
of the elastic displacements and electric potential, especially if the plate is not really thin.

4. Boundary conditions

Two kinds of electromechanical boundary conditions are considered on the top and bot-
tom faces of the plate :
(a) an electric potential is applied on the plate faces, such as

φ(x, y, z = ±h/2, t) = V ±(x, y, t) . (9)

Since P (±h/2) = 0 and g(±h/2) = 0 (see Eq.(8)), the boundary conditions (9) yield

φ0 =
1

2

(
V + + V −

)
and φ1 =

1

h

(
V + − V −

)
. (10)

Accordingly, the functions φ0 and φ1 are not arbitrary and they depend on the applied
electric potential. For the sake of simplicity, we take V + = V and V − = −V so that we
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have φ0 = 0 and φ1 = 2V/h. Moreover, the applied electric potential is supposed to be
uniform.
(b) The second kind of boundary condition is a charge density of force p per unit area
and perpendicular to the plate faces.

Remarks. The Maxwell equations for the electromagnetic fields lead to the associated
boundary conditions [19], especially for the electric field ([[E]] × n = 0), which imposes
the continuity of the tangential component of the electric field through the interface. In
order to apply the electric potential, the top and bottom faces of the plate are coated
with thin metallic electrodes of negligeable thickness and playing no role mechanically.
Nevertheless, it is assumed that the stresses and displacements are perfectly transmitted
through the electrodes. Therefore, the potential is uniform on the electrode. Since in a
conductor the electric field is zero, the boundary condition on the electric field can be
written as E1 = E2 = 0 on the top and bottom faces of the plate. At last, it is worthwhile
noting that electric charges can be imposed on the top and bottom of the plate, in this
situation the boundary conditions on the electric displacement is [[D]] · n = q, which is,
in our case, read as D3(±h/2) = q.

5. The plate equations

The variational formulation presented in Section 2 is used to derive a two-dimensional
model from the fully three-dimensional theory of piezoelectricity. By substituting the
approximation made for the displacement field and electric potential as given in Section
3, it is possible to eliminate the dependency of the field on the thickness coordinate z.
To obtain the equations and boundary conditions for the two-dimensional model, dis-
placement and electric potential approximations (see Eq.(7)) along with the boundary
conditions (10) are substituted into the variational principle (5). The dependency on z
is integrated out by introducing generalized stress and electric charge resultants. The
variational formulation can be written as∫ t2

t1

(−δU + δW1 + δW2) dt = 0 . (11)

In the present study only static processes are investigated so that the kinetic energy is
dropped out. The first term in Eq.(11) is the variation of the internal force work

δU =

∫
Σ

{Nαβ (δUα),β −Mαβ (δw),αβ + M̂αβ (δγα),β + Q̂αδγα

+D
(2)
α (δφ2),α +D

(3)
α (δφ3),α +D

(2)
3 δφ2 +D

(3)
3 δφ3}dS .

(12)

In the above variation we have introduced some stress and electric charge or induction
resultants as follows (

Nαβ,Mαβ, M̂αβ

)
=

∫ +h/2

−h/2
(1, z, f(z))σαβdz , (13)

Q̂α =

∫ +h/2

−h/2
f ′(z)σα3dz , (14)
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for α, β ∈ {1, 2} and f ′(z) = df(z)
dz

. In addition, we have

(
D(2)
α , D(3)

α

)
=

∫ +h/2

−h/2
(P (z), g(z))Dαdz , (15)

(
D

(2)
3 , D

(3)
3

)
=

∫ +h/2

−h/2
(P ′(z), g′(z))D3dz , (16)

with P ′(z) = dP (z)
dz

and g′(z) = dg(z)
dz

. Finally, the last two terms in Eq.(11) denote the
variation of the works of applied forces and electric charges on the plate boundary which
is the sum of the works of the forces and electric charges applied on the top and bottom
faces of the plate and those of the same quantities applied on the lateral boundary of the
plate, namely

δW1 =

∫
Σ

(fαδUα − pδw + m̂αδγα) dS , (17)

δW2 =

∫
C

(
FαδUα + Tδw + Cαδγα −Mf (δw),n

)
d`−

∑
p

Zpδwp . (18)

In Eq.(17), fα and p are densities of force per unit of area, m̂α is a surface moment
density. In Eq.(18), Fα and T are densities of force per unit of length, Mf and Cα are
lineic moment densities and Zp are transverse forces applied at angular points of the edge
boundary contour C of the plate. In Eq.(18) (δw),n is the derivative of the variation δw
with respect to the normal direction to the boundary contour. The electric charges on
the top and bottom faces of the plate do not appear explicitly in the virtual works (they
are cancelled out by integrating on the plate thickness).

In order to obtain the Euler-Lagrange equations from the variational formulation, we
use integration by parts if needed and we collect the factors of the arbitrary variations
{δUα, δw, δγα, δφ2, δφ3}. By assuming that the variational formulation holds for any ar-
bitrary variations, we obtain the following set of equations (for the static case)

Nαβ,β + fα = 0 ,

Mαβ,αβ − p = 0 ,

M̂αβ,β − Q̂α + m̂α = 0 ,

(19)

and {
D

(2)
α,α −D(2)

3 = 0 ,

D
(3)
α,α −D(3)

3 = 0 .
(20)

The associated boundary conditions on the plate edge C are given by

Fα = Nαβnβ or Uα given ,

T = (ταMαβnβ),s + nαMαβ,β or w given ,

Mf = nαMαβnβ or w,n given ,

Cα = M̂αβnβ or γα given ,

D
(A)
α nα = 0 (A ∈ {2, 3}) or φA given ,

(21)
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and at the angular points Ap of the edge we write [[ταMαβnβ − Zp]]Ap = 0. In Eqs.(21) τ
is the tangent vector to the edge contour C.
The first two equations in Eq.(19) are strictly equivalent to those of the Kirchhoff-Love
model for the classical plate theory [12]. The third equation governs the shearing effects.
Equations (20) are deduced from the electric charge balance law. Moreover, it has been
supposed no electric charge on the lateral edge of the plate contour (no electrode), be-
cause the dielectric constant of the piezoelectric plate is much larger than the dielectric
constant of the outside air. Accordingly the left hand side of Eq.(21)5 is zero.

5. The plate constitutive laws

We consider the constitutive laws for the linear piezoelectricity (see Eqs.(6)) applied for
an orthotropic symmetry. On using the stress and electric induction resultants defined by
Eqs.(13-16), we are able to put the constitutive equations for the generalized resultants
in the matrix form N1

N2

N6

 =

 Q11 Q12 0
Q12 Q22 0
0 0 Q66


 S

(0)
1

S
(0)
2

S
(0)
6

+

 e∗31

e∗32

0

 2V , (22)

where we have set Qab = hC∗ab for (ab) ∈ {(11), (22), (12), (66)} (the Voigt notation is
used for convenience) and C∗ab are the modified modulus of elasticity due to the zero
normal shear stress hypothesis (σ33 negligeable), given by C∗ab = CE

ab − CE
a3C

E
3b/C

E
33. We

have the same for the piezoelectric and dielectric coefficients e∗ja = eja − ej3CE
a3/C

E
33 and

χ∗ij = χij + ei3ej3/C
E
33. We have also the following matrix form



M1

M2

M6

M̂1

M̂2

M̂6

D
(2)
3

D
(3)
3


=



D11 D12 0 d11 d12 0 R31 r31

D22 0 d12 d22 0 R32 r32

D66 0 0 d66 0 0

D̂11 D̂12 0 R̂31 r̂31

D̂22 0 R̂32 r̂32

(sym.) D̂66 0 0
P33 P 33

P 33





S
(1)
1

S
(1)
2

S
(1)
6

S
(2)
1

S
(2)
2

S
(2)
6

φ2

φ3


, (23)



Q̂1

Q̂2

D
(2)
1

D
(2)
2

D
(3)
1

D
(3)
2


=



Â55 0 L15 0 L15 0

Â44 0 L24 0 L24

B11 0 B11 0

(sym.) B22 0 B22

B11 0

B22





γ1

γ2

φ2,1

φ2,2

φ3,1

φ3,2


, (24)
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All the coefficients in Eqs.(23-24) are defined by(
Dab, dab, D̂ab

)
=
(

1
12
, 2
π3 ,

1
2π2

)
h3C∗ab ,(

R3α, r3α, R̂3α, r̂3α

)
=
(
h
6
,− 2

π2 ,
4h
π3 ,− 1

2π

)
h2e∗3α ,(

P33, P 33, P 33

)
=
(
−h2

3
, 4h
π2 ,−1

2

)
hχ∗33 ,

ÂMN = h
2
C∗MN ,(

LαN , LαN
)

=
(
− 4h
π2 ,

1
2

)
h2

π
e∗αN ,(

Bαα, Bαα, Bαα

)
=
(
−h2

30
, 4h
π4 ,− 1

2π2

)
h3χ∗αα ,

with α ∈ {1, 2}, (MN) ∈ {(44), (55)} and (αN) ∈ {(24), (15)}. In addition, the

strain tensors which have been introduced in Eqs.(23-24) are defined by S
(0)
αβ = U(α,β),

S
(1)
αβ = −w,αβ and S

(2)
αβ = γ(α,β) and we use the appropriate Voigt notation, next. It should

be observed from the constitutive laws for the generalized resultants that if an electric
potential is applied on the top and bottom faces of the plate, an elongation or compression
will be produced only (see Eq.(22)).

7. Solution for piezoelectric plates in cylindrical bending

Now, we possess all the necessary ingredients to solve the plate problem. On substituting
the constitutive laws (22)-(24) into the plate equations (19)-(20), we are able to write down
the equations in terms of the unknown fields {U1, U2, w, γ1, γ2, φ2, φ3}. Next, we consider
a surface density of normal load on the top face and electric potential imposed on the top
and bottom surfaces of the plate. The shear traction is zero on the top and bottom faces
(fα = 0). In addition, there is no surface moment density (m̂α = 0). The simple support
conditions for a rectangular plate of length L are simulated by σ11(0, z) = σ11(L, z) = 0,
σ13(0, z) = σ13(L, z) = 0 and u3(0, z) = u3(L, z) = 0 (Fig.1). All stresses, strains,
displacements, electric field and potential do not depend on the y variable and the dis-
placement u2 plays any role in the problem, it can be dropped out (u2 = 0, γ2 = 0). The
electromechanical load functions can be expressed in the form of Fourier series as follows

(p(x), V (x)) =
∞∑
n=1

(Sn, Vn) sinλnx , (25)

with
λn = nπ/L, Sn = 4S0/nπ, Vn = 4V0/nπ . (26)

The loads defined by Eq.(25) represent uniform applied surface density of force S0 and
electric potential V0. A solution to Eqs.(19-20) along with the constitutive equations (22)-
(24) which satisfies the boundary conditions of the cylindrical bending of a plate simply
supported takes on the form

(U1(x), γ1(x)) =
∞∑
n=1

(Un,Γn) cosλnx ,

(w(x), φ2(x), φ3(x)) =
∞∑
n=1

(Wn,Φ2,n,Φ3,n) sinλnx .

(27)
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The Fourier coefficients in the above series are determined by putting the solution (27)
into the plate equations and solving simultaneously a set of linear algebraic equations for
each n. The set of linear algebraic equations takes on the matrix form


−λ2

nQ11 0 0 0 0

−λ4
nD11 λ3

nd11 −λ2
nR31 −λ2

nr31

−
(
Â55 + λ2

nD̂11

)
λn

(
R̂31 − L15

)
λn

(
r̂31 − L15

)
(sym.) −

(
P33 + λ2

nB11

)
−

(
P33 + λ2

nB11

)
−

(
P33 + λ2

nB11

)




Un

Wn

Γn

Φ2,n

Φ3,n

 =

 −2λne
∗
31Vn

Sn

0

0

0

 . (28)

The matrix possesses real elements and is symmetric. Now the resolution of the problem
consists of finding the Fourier coefficients by solving Eq.(28) and substituting the result
into the Fourier series (27) to go back to the displacement field and electric potential.
Afterwards, the stresses and the normal component of the electric displacement are also
computed by using the constitutive equations (6) and taking the approximations defined
by Eq.(7) into account.

x

y

l

z

h

L
Fig.1 : Piezoelectric plate on simple supports

Numerical results for the single plate problem
We apply the above results to a single plate made of PZT-4 ceramics, whose the nonzero
material constants are given in Table 1 [20]. The geometry of the plate is L = 0.1 m
and the slenderness ratio is L/h = 10. The resulting displacements, stresses and electric
potential are given in nondimensional unit as follows
(i) for the density of normal force S0 6= 0 (S0 = 1000 N/m2), we set

(U,W,Φ) =
C11

hS0

(u1, u3, φ/E0) , (Tij,Dl) =
1

S0

(σij, E0Dl) ,

(ii) for a uniform electric potential V0 6= 0 (V0 = 50 volts), we have

(U,W,Φ) =
E0

V0

(u1, u3, φ/E0) , (Tij,Dl) =
hE0

C11V0

(σij, E0Dl) .

For the present numerical illustration we take E0 = 1010 volts/m. Only 30 terms are
retained in series (25) for the applied force density and 50 terms for the applied electric
potential in order to ensure the convergence. The results obtained in the case of a plate
subject to a uniform normal load S0 are presented in Fig.2 in dimensionless variables. The
plate, in this case, undergoes a bending. In Fig.2.a, the displacement U at x = 0 is almost
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CE
11 CE

12 CE
33 CE

13 CE
44 e31 e33 e15 χ11 χ33

(GPa) (C/m2) (nF/m)
PZT-4 139. 77.8 115. 74.3 25.6 −5.2 15.1 12.7 13.06 11.51
ZnO 209.7 210.9 121.1 105.1 42.5 −0.61 1.14 −0.59 0.074 0.078

Table 1: Independent elastic, piezoelectric and dielectric constants of piezoelectric mate-
rials (transversely isotropic symmetry).

linear through the plate thickness. The flexural displacement W at x = L/2 is given in
Fig.2.b, the straight line corresponds to the plate model, but the discrepancy between the
maximum value of the deflection for the 3D computation and that of the 2D model is less
than 1 %. The most interesting curve is the electric potential at the plate center given
in Fig.2.c, this is the induced electric potential through the piezoelectric coupling by the
elastic deformation. This ascertains the existence of the φ2 term in the electric potential
expansion (7). The stress component T11 at x = L/2 is drawn in Fig.2.d. We observe a
pretty good agreement with the results obtained with finite element computations. The
latter have been performed with ABAQUS code using 8-node tetrahedral elements and
3600 elements have been considered.
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Fig.2 : Force density applied on the top face of a piezoelectric single plate

2D model (full line) and finite element (small circles)

Regarding the case of an applied electric potential, the results are collected together in
Table 2 for the displacement U at x = L, the electric displacement D3 and the stress T22

at the plate center. Note that, in this simple situation, there is no deflection (W = 0),
an elongational deformation along the x-axis is only produced. In this situation, a thick-
ness deformation is obviously produced for the 3D plate problem due to the piezoelectric
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2D model Finite element difference
U −16.2 −16.42 1.4 %
T22 −1.477 −1.447 2 %
D3 −23.42 −22.96 2 %

Table 2: Single piezoelectric plate, applied electric potential.

constant e33. The present plate approach does not account for the thickness variation
since the deflection w is constant through the plate thickness. In spite of this limitation,
the thickness variation represents however less than 1 % of the elongation or compression
in the direction of the plate length. The deflection approximation could be improved by
setting u3 (x, y, z) = w (x, y) + h (z)w1 (x, y) where h(z) is an appropriate function which
must satisfy some boundary conditions on the top and bottom faces of the plate.

8. Bilayered piezoelectric structure

8.1. General formulation
Here, we are concerned with a plate made of two piezoelectric layers of different thick-
nesses and materials. The main difficulty, in the model, is the interface continuity of cer-
tain mechanical and electrical quantities. In this situation, the present approach combines
an equivalent single-layer theory for the mechanical displacements with a layerwise-type
approximation for the electric potential. Accordingly, the approximation for the elastic
displacements defined by Eqs.(7) is still valid while the electric potential is assumed to
be of the form

φ(`)(x, y, z) = φ
(`)
0 (x, y) + z`φ

(`)
1 (x, y) + P`(z`)φ

(`)
2 (x, y) + g(z)φ

(`)
3 (x, y) , (29)

with ` = 1 or 2 corresponding to the lower or upper layer, respectively and where P`(z) =
z2 − (h`/2)2 and g(z) is still defined by Eq.(8). The potential is defined in the local
coordinates of the layer where z` is the thickness coordinate with respect to the mid-plane
of the `th layer while z is the thickness coordinate measured from the laminate geometric
mid-plane (see Fig.3).

1

z
1

h
1

z
I

(0)
= -h/2

z
I
(2)= h/2

z
I
(1)

= zI

2

z

z
2

h
2

0

Fig.3 : Piezoelectric bilayer plate

The variable change is given by

z1 = z + h2/2 and z2 = z − h1/2 .
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Next, we discuss the continuity conditions. It is clear that the elastic displacements are
continuous at z = zI = 1

2
(h1 − h2). However, the continuity of the electric potential as

well as the normal component of the electric displacement must be imposed, which can
be written as {

A = φ(1) (x, y, zI)− φ(2) (x, y, zI) = 0 ,

B = D
(1)
3 (x, y, zI)−D(2)

3 (x, y, zI) = 0 .
(30)

Moreover, the boundary conditions for the electric potential on the top and bottom faces
of the plate must be satisfied and they are given by{

φ(1) (x, y,−h/2) = φ
(1)
0 − h1

2
φ

(1)
1 = −V ,

φ(2) (x, y,+h/2) = φ
(2)
0 + h2

2
φ

(2)
1 = +V .

(31)

Now, the study amount to finding the set of unknown functions {U1, w, γ1, φ
(`)
1 , φ

(`)
2 ,

φ
(`)
3 ; ` ∈ {1, 2}} subject to the continuity conditions (30). In order to account for the

conditions (30) in the variational formulation we introduce Lagrange multipliers λ and µ
in the Hamilton principle. Then the virtual works due to the continuity conditions

δ

∫ t2

t1

∫
Σ

(λA+ µB) dSdt , (32)

must be added to the formulation (11). The variation of the Lagrange multipliers leads to
the conditions (30), but additional terms containing the Lagrange multipliers appear in
the plate equations. As consequence, the Lagrange multiplers are considered as unknown
functions and a total of 11 unknown quantities should be determined for the bilayer prob-
lem.

8.2 - Numerical results for the piezoelectric bimorph.
An interesting and practical situation can be considered [21]. In this situation, both
piezoelectric layer are made of the identical material and have the same thicknesses, how-
ever, the piezo-active axes are in opposite directions. When an electric potential is then
applied to the bimorph, one layer elongates while the other one shrinks, resulting in a
global bending of the plate. As in the single plate case, the bimorph structure is assumed
to be simply supported. The hypotheses for the single plate hold in the present case. The
same form for the electromechanical loads is considered (see Eq.(25)) and solutions to the
bimorph equations are searched for in the Fourier series (see Eq.(27)).
The numerical results are collected in Fig.4 in dimensionless variables as defined in the
single plate problem. In a first situation, the bimorph structure, composed of PZT-4
material, undergoes an applied force density on the top face with the electric potential
and shear stresses at the top and bottom faces specified to be zero. The elongational
displacement U at x = 0 is shown in Fig.4.a. The flexural displacement W at x = L/2 is
presented in Fig.4.b, as in the single plate case, the straight line corresponds to the plate
model, nevertheless the discrepancy between the maximum values of the deflection, at the
center of the plate, for the plate approximation and the finite element computation for
the 3D model is less than 1 %. Figure 4.c provides the through-thickness distribution of
the induced electric potential at x = L/2, the latter is very close to the 3D computation.
Finally the stress T11 also at x = L/2 is plotted in Fig.4.d, exhibiting the usual disconti-
nuity at the interface. A rather good accuracy is observed for the present plate approach
in comparison to the results obtained from the finite element method.
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Fig.4 : Force density applied on the top face of a piezoelectric bimorph

2D model (full line) and finite element (small circles)
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Fig.5 : Applied electric potential to a piezoelectric bimorph

2D model (full line) and finite element (small circles)
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A second series of results are presented in Fig.5 for the case of an applied electric potential
at the top and bottom faces of the bimorph structure. Here, in Fig.5.a we have the
through-thickness distribution of the longitudinal displacement U at x = 0 which is
almost linear including small shear effects. The induced flexural displacement W at the
plate center is displayed in Fig.5.b. The electric potential at x = L/2 is given in Fig.5.c
and the stress component T11 also at x = L/2 is plotted in Fig.5.d. In this situation,
we note a good agreement of the through-thickness distribution with the corresponding
results provided by the finite element computations. In dimensional units, the deflection
displacement produced by an applied electric potential of 100 volts is of the order 0.6 µm
at the plate center. Larger deflections can be obtained with higher voltages and larger
slenderness ratios.
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Fig.6 : Force density applied on the top face of a piezoelectric bilayer plate

2D model (full line) and finite element (small circles)

8.3 - Numerical results for the piezoelectric bilayer.
Here, we briefly summerize the results for a plate made of two piezoelectric layers of differ-
ent materials and thicknesses. The lower layer is made of ZnO piezoelectric crystal with
h1 = 0.3h while the upper layer consists of PZT-4 piezoelectric material with h2 = 0.7h.
Two situations are considered. (i) Applied force density at the top surface of the plate
: the distributions of the elongational displacement at x = 0, deflection displacement,
electric potential and stress component T11 at x = L/2 along the plate thickness are pre-
sented in Fig.6.a, b, c and d, respectively. (ii) Applied electric field at the top and bottom
faces of the plate : the induced elongational displacement at x = 0, electric potential,
stress component T11 and electric displacement component D3 at x = L/2 are drawn in
Fig.7.a, b, c and d, respectively. It is worthwhile noting the rather good accuracy of the
results in comparison to those provided by the finite element computation performed on
the 3D piezoelectric body. An additional comparison can be done to an exact solution for
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laminated piezoelectric plates in cylindrical bending which is merely an extension of the
Pagano’s works for elastic laminates [22] to piezoelectric plates [23].
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Fig.7 : Applied electric potential to a piezoelectric bilayer plate

2D model (full line) and finite element (small circles)

9. Closing remarks.

In this paper, an approximation theory for laminated plates including piezoelectric layers
is presented. The model is based on the combination of an equivalent single-layer approach
for the mechanical displacement with a layerwise-type modelling for the electric potential.
Moreover, the theory accounts for the shearing effects, which play an important role in
the accuracy of the results. The approach thus presented, here, has been tested for two
kinds of electromechanical loads (force density and electric potential) applied on faces of
the laminate. A complete set of coupled equations for the generalized stress resultants
(membrane resultant and moments) and electric inductions is obtained from a variational
formulation accounting for the continuity conditions at the layer interfaces by means of
Lagrange multipliers. The latter procedure is more elegant than the use of the equa-
tions of continuity to reduce the number of unknowns. In order to ascertain the validity
of our piezoelectric plate approach, we have considered some numerics for (i) a single
piezoelectric plate, (ii) a piezoelectric bimorph and (iii) a plate composed of two different
piezoelectric layers for an applied normal force density at the top surface of the plate and
applied electric potential at the top and bottom faces of the laminate. The results indi-
cate that the present model provides some interesting comparisons to the results obtained
from the finite element computations for the full 3D model. The through-thickness distri-
butions for the mechanical and electric quantities are computed with quite good accuracy
(discrepancy less than 2 %). One of the limitations is that the averaged transverse shear
stress over the plate thickness can be only estimated in the framework of the present
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approach. Nevertheless, the model can be improved by introducing a layerwise approach
for the mechanical quantities in order to ascertain the shear stress continuity at the layer
interfaces.
Finally, in view of these first results, we are encouraged to extend the present approach
to the study of vibrations of piezoelectric laminated plates [24]. Some other boundary
conditions can be considered, for instance, applied electric charges on the plate faces or
applied electric potential at the layer interfaces. The case of clamped plates is also an
interesting and practical situation to be examined. Some of these extensions will be in-
vestigated in further works.
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