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Single-layered plate
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75252 Paris Cedex 05, France

Abstract - The paper presents an efficient two-dimensional approach to piezoelectric plates in the frame-

work of linear theory of piezoelectricity. The approximation of the through-the-thickness variations then

considered accounts for the shear effects and a refinement of the electric potential. On using a variational

formalism the fully electromechanically coupled plate equations are obtained for the generalized stress

resultants as well as for the generalized electric inductions. The latter are, in fact, deduced from the con-

servative electric charge equation which plays a crucial role in the present model. The emphasis is also

placed on the boundary conditions on the plate faces. The model is then used to examine some problems

for the cylindrical bending of a single plate simply supported. In this configuration a number of situations

are examined : a piezoelectric plate subject to (i) an applied electric potential, (ii) a surface density of

force and (iii) a surface density of electric charge. The through-thickness distributions of electromechan-

ical quantities (displacements, stresses, electric potential and displacement) are obtained and compared

to the results provided by finite element simulations and by a simplified plate model without shear effects

as well. A good agreement is observed between the results coming from the present plate model and finite

element computations, which ascertains the effectiveness of the proposed approach to piezoelectric plates.

1. Introduction

The important economic and technical developments of piezoelectricity have attracted
the attention of lot of interest in the research of theoretical and computational models of
piezoelectric composites. Among interesting materials capable of being viable candidates
for actuators or sensors, piezoelectric materials have received the most attention [1]. One
of the key factors for this choice is that piezoelectric materials act either as actuators or
sensors and relate electric signals directly to material strains or stresses and vice versa.
Piezoelectric materials and especially piezoelectric composites are usefully utilized for
multi-purpose devices or smart materials and numerous technological applications have
been proposed, running from aerospace structures (shape control of large space antennas,
active control of vibrations, etc.) [2,3] to miniature medical apparatus (micro-robots,
pumps, micro-positioning devices, etc.) [4]. Nevertheless, it turns out that producing
practically meaningful actuation or sensing capabilities significant piezoelectric materials
should be included into the structures in the form of laminated plates such as bimorphs,
piezoelectric layers joined to a non piezoelectric slab or sandwich structures or even em-
bedded piezoelectric patches in elastic materials. A great deal of attention should be given
to the piezoelectric plate as a basic component of multi-layered structures. In the present
work, a special attention is then devoted to the single piezoelectric plate formulation.
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Although quite a number of recent studies have been shown considerable progress toward
establishing correct and efficient plate models along with their corresponding equations, a
better modelling of electromechanical field distribution through the thickness coordinate
becomes now a necessity for engineering. The objective of the present work is twofold (i)
to construct an accurate model based on an approximation of the elastic displacements
and electric potential as function of the thickness coordinate of the plate and (ii) to assess
the capability of the model to describe the global plate response, local variations of both
mechanical and electric variables, stresses as well as the limitations of the model. At this
end, we propose an efficient plate model which accounts for shearing effects of the ”sine”
type. Such a refinement satisfies the vanishing condition of shear stress at the top and
bottom faces of the plate [5]. Moreover, our piezoelectric plate approach is valid for any
kind of electromechanical loads (surface density of force, electric potential or charges).
The present version of plate model is quite complete in comparison to the most piezoelec-
tric plate models considering only applied electric potential as load. A significant number
of works have been devoted to piezoelectric plates. These works attempt to incorporate
various representations of approximation through-the-thickness of laminated piezoelectric
beams, plates and shells [6]. One of the first piezoelectric plate approach was the work
of H.F. Tiersten [7] follows by R.D. Mindlin [8] and C.K. Lee [9]. The simplest model
is based on the kinematic assumptions of the Love’s first approximation including the
electric degree of freedom. R.D. Mindlin has considered an expansion of the elastic dis-
placements and electric potential as polynomial functions, the level of truncation of the
expansion leading to the order of the plate theory. X.D. Zhang and C.T. Sun [10] have
derived governing plate equations using the kinematic of the first order shear deformation
theory assumption developed by E. Reissner and R.D. Mindlin for purely elastic plates.
Some formulations of piezoelectric plates assume, a priori, that the normal component of
the electric displacement is constant through the thickness [11]. As a consequence, the
electric charge conservative law or the Gauss equation is dropped out. Nevertheless, it
turns out that such an assumption is no longer satisfied in most situations and we must
consider the approximation of the electric charge equation. Due to the limitation of the
standard plate theory, it seems to be necessary to investigate more refined and efficient
approach to piezoelectric plates.

In the present study we attempt of developing a consistent approach to piezoelectric
plates based on approximate equations deduced from a generalized variational formula-
tion. The latter involves the prescribed electromechanical loads on the plate boundary
in a natural way. Moreover, from the variational formulation, equations for the general-
ized stress and electric charge or induction resultants are then obtained. The final set of
two-dimensional effective equations governs the extensional (or membrane deformation),
flexural and shear deformations coupled to the applied and induced electric potential.
Various benchmark tests are then proposed in order to valid the present approach. Espe-
cially, differents situations with particular electromechanical loads are retained (i) density
of applied forces, (ii) applied electric potential on the top and bottom faces of the plate and
(iii) applied surface density of electric charges on both faces of the plate. In order to draw
the attention on the capabilities of the model some comparisons to finite element compu-
tations for the identical situations performed directly on the 3D problem are proposed. In
addition, the results are compared to those coming from a classical plate model based on
the Love’s first approximation (no shear effects), which underlines the performance of the
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present approach. The practical situation is the cylindrical bending of simply supported
piezoelectric plate for which solutions to the plate equations are looked for as Fourier series.

The prerequisite of the piezoelectric formulation (variational principle, equations of con-
servation and constitutive laws) is briefly stated in the next section. The through-the-
thickness approximation of the elastic displacements and electric potential is presented
in Section 3 and some comments are also given. The equations for the two-dimensional
approach to piezoelectric plate as well as the associated mechanical and electric bound-
ary conditions are presented in Section 4. The problem of a single piezoelectric plate
under cylindrical bending is given in Section 5 in the cases of applied electric charge and
applied electric potential. In Section 6, the numerical results for different kinds of elec-
tromechanical loads and slenderness ratios are discussed, the results are also compared
to those provided by the finite element simulations and by an elementary plate model.
Finally, Section 7 is devoted to the discussion on the results and extensions of the model
to piezoelectric laminated plates.

2. Formulation of piezoelectricity

In this section, we briefly recall the necessary ingredients of linear piezoelectricity and the
associated variational formulation based on the Hamilton’s principle. Assuming that the
deformations are infinitesimal and electric field is small enough and there are no body
forces, the Hamilton’s principle can be stated as follows

δ

∫ t2

t1

∫
Ω

Ldvdt+

∫ t2

t1

δWdt = 0 . (1)

In Eq.(1), the Lagrangian functional is given by

L =
1

2
ρu̇iu̇i −H(Sij, Ei) , (2)

where ui is the displacement component, ρ is the mass density, H(Sij, Ei) is called the
electric enthalpy density function with Sij = u(i,j) = 1

2
(ui,j + uj,i) is the linear part of the

strain tensor component and Ei is the electric field vector. For the linear piezoelectricity
the enthalpy density function takes on the form [12]

H(Sij, Ei) =
1

2
σijSij −

1

2
DiEi . (3)

In Eq.(3), σij and Di represent the components of the stress tensor and electric displace-
ment vector, respectively. Furthermore, in Eq.(1), the virtual work of the prescribed
mechanical and electric quantities on the domain boundary is given by

δW =

∫
∂Ω

TiδuidS +

∫
∂Ω

QδφdS . (4)

The above virtual work involves the surface traction vector T and applied surface density
of electric chargeQ on the boundary ∂Ω. The quantity φ is the electric potential. A further
step in the simplification can be made by assuming a quasi electrostatic approximation,
which allows for the electric field to be derived from the electric potential as follows

Ei = −φ,i . (5)
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Moreover, it is also supposed that the piezoelectric material is a perfect isolator (no
volumic electric charges) and that the magnetic field and magnetization have no influence.
On using the classical integration by part and assuming the variations δui and δφ are
arbitrary throughout the domain Ω, field equations in Ω are

σij,j = ρüi ,

Di,i = 0 .
(6)

The associated boundary conditions read as

σijnj = Ti or ui = ūi on ∂Ω ,

Dini = Q or φ = φ̄ on ∂Ω .
(7)

The equations of field are completed by the constitutive equations. The latter for the
linear piezoelectricity can be deduced from the following form for the enthalpy density
function [12]

H(Sij, Ei) =
1

2
CE
ijpqSijSpq − eipqEiSpq −

1

2
εSijEiEj , (8)

where CE
ijpq, eipq and εSij are called the elastic, piezoelectric and dielectric permittivity

constants, respectively. Accordingly, the constitutive laws for linear piezoelectricity are

σij =
∂H

∂Sij
= CE

ijpqSpq − elijEl ,

Di = − ∂H
∂Ei

= eipqSpq + εSijEj .

(9)

The set of Eqs(5), (6), (7) and (9) are the essentially basic equations of linear piezoelec-
tricity which are going to be used in the following.

3. The plate approximation for displacement field and electric potential

It is commonly considered, in plate theory, an expansion of the displacement in power
series of the thickness coordinate. Different refined models can be introduced according
to the form of the expansion approximation. Other approaches to plates are based on an
asymptotic theory of the full 3D problem [13]. In the present work, the displacement field
and electric potential are assumed to be of the form

uα(x, y, z, t) = Uα(x, y, t)− zw,α(x, y, t) + f(z)γα(x, y, t) , α ∈ {1, 2} ,

u3(x, y, z, t) = w(x, y, t) ,

φ(x, y, z, t) = φ0(x, y, t) + zφ1(x, y, t) + P (z)φ2(x, y, t) + g(z)φ3(x, y, t) .

(10)

It is important to discuss the above expansion in detail.
(i) In the case of purely elastic media, if f(z) = 0 we recover the classical theory of
Love-Kirchhoff of elastic thin plates [14]. Particular forms of the function f(z) give rise
to different models which have been investigated by E. Reissner [15], S.A. Ambartsumian
[16] or J.N. Reddy [17] to quote just only the most known approaches. In the first equation
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of Eq.(10) Uα represents the middle plane displacement components, w the deflection and
γα is associated with the shearing effects. The subscript α takes the value 1 or 2. All the
functions are defined at the middle plane coordinate (x, y, 0). In the present model, the
through-thickness distribution of the shearing effect is approximated by a trigonometric
function.
(ii) Insofar as the electric potential is concerned, the first two terms in Eq.(10) (linear part)
hold for the influence of the applied electric potential on the plate faces. The third term
can be referred as to the induced electric potential by the elastic deformation mediated
by the piezoelectric coupling. The last term is due to the shearing effect through the
piezoelectric coupling. As a consequence, we adopt the following functions

f(z) =
h

π
sin
(πz
h

)
, g(z) =

h

π
cos
(πz
h

)
, P (z) = z2 −

(h
2

)2

, (11)

where h is the plate thickness which is supposed to be uniform. The case of the purely
elastic plates has been examined by M. Touratier in detail for the single and multi-layered
plates [5]. Extension to elastic shells has been also considered [18]. In the classical theory
of piezoelectric plates, the shearing effect is removed and the second order term in the
approximation of the electric potential is often neglected. Nevertheless, most applications
of the piezoelectric adaptive plates are based mainly on the first-order shear deformation
assumption [10]. We are going to see the implications of the present approximation in the
plate equations.

Boundary conditions - Three kinds of electromechanical conditions are considered on
the plate boundaries.
(a) We assume that the plate undergoes a force density per unit area on the top face of
the plate and perpendicular to this face.
(b) The second kind of boundary conditions that we are interested in is an applied electric
potential on the top and bottom faces of the plate such as

φ(x, y, z = ±h/2, t) = V ±(x, y, t) . (12)

From Eq.(11), we note that P (±h/2) = 0 and g(±h/2) = 0. Then we deduce that

φ0 =
1

2

(
V + + V −

)
and φ1 =

1

h

(
V + − V −

)
. (13)

Accordingly, the unknown functions φ0 and φ1 are no longer arbitrary and they depend on
the applied electric potential. For practical cases, it is more convenient to take V + = +V
and V − = −V so that we have φ0 = 0 and φ1 = 2V/h.
(c) An other possible electric boundary condition is electric charges imposed on the top
and bottom faces of the plates. In this situation the electric boundary condition on the
electric displacement is given by [[D]] · n = q, where n is the unit outward normal vector
to the boundary and q is the surface density of electric charge. In the case of a plate
geometry, the condition reads as

D3 (x, y, z = ±h/2, t) = q (x, y, t) . (14)

Comments
(i) We should underline the boundary conditions associated with the electric field. This
boundary condition deduced from the formulation of the Maxwell equations reads as
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[[E]] × n = 0, which means that the tangential components of the electric field must be
continuous through the interface [19]. In order to apply an electric potential to the plate
faces, the latter are coated with thin metallic electrodes of negligeable thickness and play-
ing no role mechanically. Moreover, it is assumed that the stresses and displacements are
perfectly transmitted through the electrodes. Since in a conductor the electric field is zero
(or the electric potential is constant), the boundary condition on the electric field can be
written as E1 = E2 = 0 on the top and bottom faces of the piezoelectric plate.
(ii) It is worthwhile specifying that the surface density of electric charge −q is applied
on the bottom face while we have +q on the top. Then, the boundary condition on the
electric displacement is −D3 = −q at z = −h/2 and D3 = +q at z = +h/2, whence
Eq.(14).

4. Plate equations

The plate equations are deduced by using the variational formulation presented in Sec-
tion 2. By taking the approximation of the displacement field and electric potential as
defined by Eq.(10), the dependency of the field (u1, u2, u3, φ) upon the thickness coor-
dinate z can be cancelled out by integrating over the plate thickness. The procedure
leads, in a natural way, to the definition of the generalized stresses and electric charges
or inductions. More precisely, the equations of motion and the associated boundary con-
ditions are obtained by, first, substituting the approximation (10) into the variational
principle (1)-(4) and, next, assuming independant variations of the unknown functions
((Uα, w, γα, φA) ; α ∈ {1, 2} and A ∈ {0, 1, 2, 3}). After a straightforward algebras, the
Hamiltonian’s principle can be put in the sum of integrals∫ t2

t1

(δK − δU + δW1 + δW2) dt = 0 . (15)

The first part holds for the kinetic energy that we do not write down here since we deal
only with static processes in the following. The second term in Eq.(15) is the variation of
the internal force work defined on the middle plane surface Σ of the plate

δU =

∫
Σ

{Nαβ (δUα),β −Mαβ (δw),αβ + M̂αβ (δγα),β + Q̂αδγα

+D
(0)
α (δφ0),α +D

(1)
α (δφ1),α +D

(2)
α (δφ2),α +D

(3)
α (δφ3),α

+D
(1)
3 δφ1 +D

(2)
3 δφ2 +D

(3)
3 δφ3}dS .

(16)

Where the generalized stresses and electric inductions are computed using the three di-
mensional stresses σij and electric displacement Di(

Nαβ,Mαβ, M̂αβ

)
=

∫ +h/2

−h/2
(1, z, f(z))σαβdz , (17)

Q̂α =

∫ +h/2

−h/2
f ′(z)σα3dz , (18)

(
D(0)
α , D(1)

α , D(2)
α , D(3)

α

)
=

∫ +h/2

−h/2
(1, z, P (z), g(z))Dαdz , (19)
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(
D

(1)
3 , D

(2)
3 , D

(3)
3

)
=

∫ +h/2

−h/2
(1, P ′(z), g′(z))D3dz , (20)

with α, β ∈ {1, 2} and f ′(z) = df(z)
dz

, P ′(z) = dP (z)
dz

, g′(z) = dg(z)
dz

.
The last two terms in Eq.(15) denotes the variational works of the applied force densities
and electric charges applied on the upper and lower faces of the plate as well as those
applied to the lateral boundary of the same plate. These variational works take on the
form

δW1 =

∫
Σ

(fαδUα − pδw + m̂αδγα + q1δφ1) dS , (21)

δW2 =

∫
C

(
FαδUα + Tδw + Cαδγα −Mf (δw),n

)
d`−

∑
p

Zpδwp . (22)

In Eq.(21), fα and p are the surface force densities, m̂α is a surface moment density and
q1 is the surface electric charge density. In Eq.(22) Fα and T are lineic force densities,
Mf and Cα are lineic torque densities defined along the plate contour. Zp are transverse
forces at the angular points of the edge boundary C of the plate, n is the unit normal
to C. Moreover, it has been assumed that there is no electric charge on the lateral plate
boundary, especially because the dielectric constant of the piezoelectric material is much
larger than the dielectric constant of the outside air for electric fields of the same order.

Remarks - In Eq.(21), concerning the applied electromechamical loads on the plate
faces, the electric charge density q1 is only considered, because the other generalized elec-
tric charges associated with the electric potential variations δφ0, δφ2 and δφ3 disappear.
Indeed, these generalized electric charges can be connected with the electric boundary
conditions on the top and bottom faces through the integration over the plate thickness
as follows (q0, q1, q2, q3) = [(1, z, P (z), g(z))D3]

+h/2
−h/2. Owing to P (±h/2) = g(±h/2) = 0

and the boundary conditions (14), therefore q1 is only the non vanishing electric charge.

On using the variational calculus arguments, Eq.(15) along with the variations (16), (21)
and (22) must be satisfied for any arbitrary variations (δUα, δw, δγα, δφA); α ∈ {1, 2},
A ∈ {0, 1, 2, 3}. After some cumbersome but straighforward computations we arrive at
(static case) 

Nαβ,β + fα = 0 ,

Mαβ,αβ − p = 0 ,

M̂αβ,β − Q̂α + m̂α = 0 ,

(23)

and 
D

(0)
α,α = 0 ,

D
(1)
α,α −D(1)

3 + q1 = 0 ,

D
(2)
α,α −D(2)

3 = 0 ,

D
(3)
α,α −D(3)

3 = 0 .

(24)

7



The associated boundary conditions on the lateral plate contour C are

Fα = Nαβnβ or Uα given ,

T = (ταMαβnβ),s + nαMαβ,β or w given ,

Mf = nαMαβnβ or w,n given ,

Cα = M̂αβnβ or γα given ,

D
(A)
α nα = 0 (A ∈ {0, 1, 2, 3}) or φA given ,

(25)

The vector τ is the unit tangent vector to C and s is the curvilinear coordinate along the
contour C. In addition to Eq.(25), we have [[ταMαβnβ − Zp]]Ap

= 0 the condition at the

angular points of the contour. The last equation of Eq.(25) are the boundary conditions
along C associated with the electric quantities. In addition, the right hand side of (25)5 is
zero according to the above remarks, there is no electric charge and no electrode on the
lateral surface of the plate.

Comments
(i) The first two Eq.(23) are similar to those of the Love-Kirchhoff first-order theory of
thin plates, third equation represents the equation of the shearing effects. The set of
equations (24) is, in fact, deduced from the conservation of the electric charge or the
Gauss equation, these equations govern the generalized electric displacements or electric
charges associated with the electric potential functions φA (A ∈ {0, 1, 2, 3}) introduced
in the third equation of the expansion (10). We note, in the second equation (24), the
generalized electric charge due to the surface density of electric charge applied to the top
and bottom faces of the plate.
(ii) In the case of an electric potential applied to the top and bottom faces of the plate,
the functions φ0 and φ1 are no longer unknown, but they are related to the applied elec-
tric potential through (13). Therefore, the first two equations of Eq.(24) do not appear
and the number of unknown functions as well as the equations are then reduced in this
situation.

5. The plate constitutive laws

A - Applied electric charges - We restrict the study to constitutive laws for linear piezoelec-
tricity (see Eqs.(9)) of materials with an orthotropic symmetry [12, 20]. At this end, we
compute the generalized stress and electric inductions resultants defined by Eqs(17)-(20)
by using the constitutive laws (9). The results can be put in the matrix form

N1

N2

N6

D
(1)
3

 =


Q11 Q12 0 a31

Q12 Q22 0 a32

0 0 Q66 0
a31 a32 0 f33



S

(0)
1

S
(0)
2

S
(0)
6

φ1

 , (26)

The other constitutive laws take on the matrix form
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M1

M2

M6

M̂1

M̂2

M̂6

D
(2)
3

D
(3)
3


=



D11 D12 0 d11 d12 0 R31 r31

D22 0 d12 d22 0 R32 r32

D66 0 0 d66 0 0

D̂11 D̂12 0 R̂31 r̂31

D̂22 0 R̂32 r̂32

(sym.) D̂66 0 0
P33 P 33

P 33





S
(1)
1

S
(1)
2

S
(1)
6

S
(2)
1

S
(2)
2

S
(2)
6

φ2

φ3


, (27)

The shear and electric induction resultants are



Q̂1

Q̂2

D
(0)
1

D
(0)
2

D
(2)
1

D
(2)
2

D
(3)
1

D
(3)
2


=



Â55 0 l15 0 L15 0 L15 0

Â44 0 l24 0 L24 0 L24

f11 0 F11 0 F 11 0

f22 0 F22 0 F 22

B11 0 B11 0

(sym.) B22 0 B22

B11 0

B22





γ1

γ2

φ0,1

φ0,2

φ2,1

φ2,2

φ3,1

φ3,2


. (28)

At last, we have as well [
D

(1)
1

D
(1)
2

]
=

[
b11 0
0 b22

] [
φ1,1

φ1,2

]
. (29)

All the coefficients introduced in the matrices are defined in Appendix A. These coefficients
depend on the material constants of the piezoelectric plate and its thickness.
In addition, the strain tensors which has been introduced in the above constitutive laws
(26)-(27) are defined from Eq.(10) by

S
(0)
αβ = U(α,β) , S

(1)
αβ = −w,αβ , S

(2)
αβ = γ(α,β) . (30)

It is worthwhile observing that we have electromechanical couplings between some gener-
alized stress and electric induction resultants.

B - Applied electric potential - In the case of an applied electric potential the functions φ0

and φ1, in the approximation (10) are no longer arbitrary and they are given by φ0 = 0
and φ1 = 2V/h. Consequently, the constitutive law defined by Eq.(26) must be replaced
by  N1

N2

N6

 =

 Q11 Q12 0
Q12 Q22 0
0 0 Q66


 S

(0)
1

S
(0)
2

S
(0)
6

+

 e∗31

e∗32

0

 2V . (31)
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The effective piezoelectric constants e∗31 and e∗32 are given in Appendix A. The constitutive
law (27) is unchanged. However, in Eq.(28) the lines and columns corresponding to the
function φ0 disappear and the matrix in Eq.(28) is of the 6×6 order, in addition, Eq.(29)
is not considered. We note that, according to Eq.(31), if an electric potential is applied
on the top and bottom faces of the plate, an elongation or compression of the plate will
be produced only.

6. Piezoelectric plate in cylindrical bending

Now, we intend to solve the problem of piezoelectric plate undergoing applied surface
force density or surface electric charge or electric potential in the cylindrical bending
configuration. In addition, the shear traction is zero on the plate faces (fα = 0) and there
is no surface moment density (m̂α = 0). The simple support conditions for a rectangular
plate of length L are simulated by (see Fig.1)

σ11 (0, z) = σ11 (L, z) = 0 ,

σ13 (0, z) = σ13 (L, z) = 0 ,

u3 (0, z) = u3 (L, z) = 0 .

(32)

It is noticed that the boundary conditions along the contour C are obviously satisfied in
the cylindrical bending configuration.

x

y

l

z

h

L
Fig.1 : Piezoelectric plate on simple supports

All the stresses, strains, displacements, electric field and potential do not depend on the y
variable and the displacement u2 plays no role in the problem, it can be cancelled out and
we set u2 = 0, γ2 = 0. With a view toward satisfying the boundary conditions (32) the
load functions are expanded in a Fourier series over the segment [0, L]. Consequently, the
surface density of force, surface density of electric charge and electric potential applied to
the plate faces can be expressed in the form

(p(x), Q(x), V (x)) =
∞∑
n=1

(Sn, Qn, Vn) sinλnx , (33)

with

λn = nπ/L, (Sn, Qn, Vn) =
4

nπ
(S0, Q0, V0) . (34)
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Such loads defined by the above equations represent uniform applied surface density of
force S0, density of electric charge Q0 and electric potential V0, respectively. On account
of the load functions (33) and the boundary conditions of the cylindrical bending of a
plate simply supported (32), it is natural to search for a solution to the plate problem
given by Eqs(23)-(24) along with the constitutive laws (26)-(29) as also Fourier series as
follows

(U1(x), γ1(x)) =
∞∑
n=1

(Un,Γn) cosλnx ,

(w(x), φ0(x), φ1(x), φ2(x), φ3(x)) =
∞∑
n=1

(Wn,Φ0,n,Φ1,n,Φ2,n,Φ3,n) sinλnx .

(35)

We should recall that, in the case of an applied electric potential, the number of unknown
functions is reduced, especially, φ0 and φ1 are not accounted for. In this situation, the
applied electric charge Q(x) is not considered as a load.

Now, we have all the ingredients in view of solving the cylindrical bending of a piezoelec-
tric plate simply supported. The Fourier coefficients in the series (35) are determined by
first substituting the solution (35) into the constitutive laws (26)-(29) and the results into
the plate equations (23)-(24). The Fourier coefficients are then solution to a set of linear
algebraic equations for each n, which can be written in matrix form.

A - Applied surface density of force and/or electric charge. The set of linear equations
for the Fourier coefficients takes on the form

AQnX
Q
n = BQ

n , (36)

with the matrix and vectors

AQn =



−λ2nC∗
11 0 0 0 λne∗31 0 0

−
λ4n
12
C∗

11

λ3n
π3
C∗

11 0 0 −
λ2n
6
e∗31

2λ2n
π2

e∗31

−
1

2

(
C∗

55 +
λ2n
π2
C∗

11

)
2λn

π
e∗15 0

4λn

π3
(e∗31 + e∗15) −

λn

2π
(e∗31 + e∗15)

λ2nε
∗
11 0 −

λ2n
6
ε∗11

2λ2n
π2

ε∗11

ε∗33 +
λ2n
12
ε∗11 0 0

(sym.)
1

3

(
ε∗33 +

λ2n
10
ε∗11

)
−

4

π2

(
ε∗33 +

λ2n
π2
ε∗11

)
1

2

(
ε∗33 +

λ2n
π2
ε∗11

)


[XQ

n ]T = (Un,Wn,Γn,Φ0,n,Φ1,n,Φ2,n,Φ3,n) ,

[BQ
n ]T = (0, Sn, 0, 0,−Qn, 0, 0) .
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B - Applied surface density of force and/or electric potential. In this case the set of linear
algebraic equations is simpler since the number of equations is thus reduced

AVnX
V
n = BV

n , (37)

with the matrix and vectors

AVn =



−λ2
nC
∗
11 0 0 0 0

−λ
4
n

12
C∗11

λ3
n

π3
C∗11 −λ

2
n

6
e∗31

2λ2
n

π2
e∗31

−1

2

(
C∗55 +

λ2
n

π2
C∗11

)
4λn
π3

(e∗31 + e∗15) −λn
2π

(e∗31 + e∗15)

(sym.)
1

3

(
ε∗33 +

λ2
n

10
ε∗11

)
− 4

π2

(
ε∗33 +

λ2
n

π2
ε∗11

)
1

2

(
ε∗33 +

λ2
n

π2
ε∗11

)


[XV

n ]T = (Un,Wn,Γn,Φ2,n,Φ3,n) ,

[BV
n ]T = (−2λne

∗
31Vn, Sn, 0, 0, 0) .

In both cases the matrices possess real elements and are symmetric. Now the way of
solving the plate problem is straightforward, first solve Eq.(36) or (37) to find the Fourier
coefficients, then substitute the results into the Fourier series (35), go back to the dis-
placement field and electric potential by means of Eq.(10). Afterward, the stresses and
electric displacement are computed through the constitutive laws of linear piezoelectricity
specialized for orthotropic materials.

7. Numerical investigations and comparisons

Numerical simulations of the present plate model are considered for a single plate made
of PZT-4 ceramics whose nonzero material constants are listed in Table 1 [20]. The
geometry of the plate is h = 0.001m and two slenderness ratios are considered L/h = 10
and L/h = 50. The numerical results for the mechanical and electric quantities are given
with the following dimensionless units.
(i) for a surface density of normal force S0 6= 0 ( S0 = 1000N/m2), we set

(U,W,Φ) =
CE

11

hS0

(u1, u3, φ/E0) , (Tij,Dl) =
1

S0

(σij, E0Dl) ,

(ii) for a surface density of electric charge Q0 6= 0 ( Q0 = 10C/m2 ), we set

(U,W,Φ) =
CE

11

hE0Q0

(u1, u3, φ/E0) , (Tij,Dl) =
1

E0Q0

(σij, E0Dl) ,

(iii) for an applied electric potential V0 6= 0 ( V0 = 50 volts), we have

(U,W,Φ) =
E0

V0

(u1, u3, φ/E0) , (Tij,Dl) =
hE0

CE
11V0

(σij, E0Dl) .
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For the numerical simulations we take E0 = 1010 volts/m. Moreover, the number of terms
retained in series (35) are adjusted according to the slenderness ratios and electrome-
chanical loads then considered in order to ensure the convergence. The finite element
computations for comparison are performed with ABAQUS code by using plane strain
elements of 8-node biquadratic type and 800 elements are considered for both L/h = 10
and L/h = 50.

CE
11 CE

12 CE
33 CE

13 CE
44 e31 e33 e15 ε11 ε33

(GPa) (C/m2) (nF/m)
PZT-4 139. 77.8 115. 74.3 25.6 −5.2 15.1 12.7 13.06 11.51

Table 1: Independent elastic, piezoelectric and dielectric constants of a piezoelectric ma-
terial (transversely isotropic symmetry).

-400 -300 -200 -100 0 100 200 300 400
-0,50

-0,25

0,00

0,25

0,50

(a)

z
/h

U

-2100 -2070 -2040 -2010
-0,50

-0,25

0,00

0,25

0,50

(b)

z
/h

W

-3,0 -2,5 -2,0 -1,5 -1,0 -0,5 0,0
-0,50

-0,25

0,00

0,25

0,50

(c)

z
/h

Φ

-5 -4 -3 -2 -1 0 1
-0,50

-0,25

0,00

0,25

0,50

(d)

z
/h

T
13

Fig.2 : Force density applied on the top face of a piezoelectric single plate in closed circuit
for L/h = 10. Plate model (full line), finite element (small circles)

and simplified plate model (dashed-line)

Case 1.a - Surface density of normal force applied to the top face of the plate, closed cir-
cuit. It means that V0 = 0. In the present situation, the set of linear algebraic equations
(37) is only considered. The through-thickness distribution for U , W , Φ and T11 are col-
lected together in Fig.2 for the ratio L/h = 10. The displacement U at x = 0 is plotted in
Fig.2.a and it is almost linear through the plate thickness. The flexural displacement W
at x = L/2 is given in Fig.2.b, the straight line corresponds to the present plate approach
while the small circles are the finite element computations and the straight dashed-line
is the result provided by the classical thin plate theory based on the Love’s assumption
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Fig.3 : Force density applied on the top face of a piezoelectric single plate in closed circuit
for L/h = 50. Plate model (full line), finite element (small circles)

and simplified plate model (dashed-line)

(no shear correction, that is, f(z) = 0 and g(z) = 0 in Eq.(10)). We observe that the
discrepancy between the maximum values of the deflection (at z = 0) for the 3D compu-
tation and that of the plate model is less than 0.02 %, however the difference becomes
bigger, about 3 %, for the classical thin plate model. Nevertheless, the most interesting
result is the electric potential at x = L/2 plotted in Fig.2.c. The electric potential is, in
fact, induced through the piezoelectric coupling by the elastic deformation. We first note
a very good accuracy with the finite element method and next the result ascertains the
existence of the φ2 term in the electric potential approximation (10). However, if the φ2

term is absent from the expansion (10) there is no induced electric potential through the
plate thickness. At last, the shear stress component T13 at x = L/4 is drawn in Fig.2.d.
The identical simulations are performed with the slenderness ratio L/h = 50, the results
are presented in Fig.3 for the same electromechanical quantities as in the previous figure.
The difference between the results coming from the plate model and those of the finite el-
ement simulations are very small since we are closer to thin plate assumption. Especially,
the discrepancy between the maxima of the deflection displacement at the plate center
for the present plate model and finite element results is now less than 0.01 %, whereas
this difference is about 0.1 % for the classical plate theory. Going back to the physical
units, we have an estimate of 9µm for the deflection at the plate center and the maxi-
mum of the induced electric potential is about 4.8 volts for the slenderness ratio L/h = 50.
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Case 1.b - Surface density of normal force applied to the top face of the plate, open circuit.
In this situation, the algebraic equations are given by Eq.(36) with S0 6= 0 and Q0 = 0.
The electromechanical response of the piezoelectric plate is shown in Fig.4 for the pro-
files of U , W , Φ and D3 as functions of the thickness coordinate for the thickness aspect
ratio L/h = 10. Figure 4.a presents the displacement U at x = 0. The deflection W at
x = L/2 is given in Fig.4.b. The difference between maxima of the deflection at the plate
center for the present plate approach (straight line) and finite element simulation (small
circles) is evaluated at 0.1 %, whereas the same comparison to the simplified plate theory
(dashed-line curve) yields an error of 2.8 %. The induced electric potential at x = L/2 is
plotted in Fig.4.c and the potential variation possesses a parabolic profile. Finally, Fig.4.d
shows the normal component of the electric displacement or induction D3 at x = L/2.
The comparison of the latter electrical quantity particularly speaks for itself, indeed, we
have an excellent agreement with the finite element results, whereas the classical thin
plate theory (dashed-line curve) does not give the correct through-the-thickness profile.
Similar results are presented in Fig.5 for the same quantities with the slenderness ratio
L/h = 50. The present plate model gives accurate predictions for the different electrome-
chanical variables, displacements, stresses, electric potential and displacement. Especially,
the estimate error between the deflection at the plate center for the finite element method
and our improved plate model is about 0.01 % and 0.1 % for the simplified thin plate
approach. The comparison between the results provided by the finite element method
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Fig.4 : Force density applied on the top face of a piezoelectric single plate in open circuit
for L/h = 10. Plate model (full line), finite element (small circles)

and simplified plate model (dashed-line)
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Fig.5 : Force density applied on the top face of a piezoelectric single plate in open circuit
for L/h = 50. Plate model (full line), finite element (small circles)

and simplified plate model (dashed-line)

and those coming from the present model illustrates the performance of the plate model
and gives very good predictions with minor differences. The comparison made with the
classical thin plate theory (no shear effect) ascertains the efficiency of our plate modelling.

Case 2 - Applied electric potential. In this situation the set of linear algebraic equations
(37) is solved with V0 6= 0 and S0 = 0. The results are collected together in Table 2 in
dimensionless unit for the displacement U at x = L, stress T22 at the plate center and the
normal component of the electric displacement for two slenderness ratios L/h = 10 and
L/h = 50. Only an elongational deformation along the x−axis is obviously produced and,
in this case, the shear effect does not play any role. A comparison is done with the finite
element computations and the plate model providing rather quite good estimates. We
note that the thickness aspect ratio has obviously no influence on the stress T22 and the
electric displacement component D3. In addition, the electric potential is linear through
the plate thickness going from −V at z = −h/2 to +V at z = +h/2. The elongation of
the plate produced by the applied electric potential is about 0.4µm for the ratio L/h = 50.

Case 3 - Applied electric charges. For this case, we solve the set of linear algebraic equa-
tions (36) with S0 = 0 and Q0 6= 0. As in the problem of an applied electric potential,
elongational deformation is only obtained. Table 3 gives the essential numerical results in
dimensionless unit for U , T22 and the electric potential Φ for two characteristic thickness
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L/h=10 L/h=50
Plate Finite Error Plate Finite Error
Model Elements ( % ) Model Elements ( % )

U at x = L 16.41 16.42 0.05 82.06 82.11 0.06
T22 at x = L/2 −1.447 −1.446 0.09 −1.447 −1.446 0.09
D3 at x = L/2 −22.96 −22.94 0.08 −22.96 −22.94 0.08

Table 2: Single piezoelectric plate, applied electric potential.

aspect ratios L/h = 10 and L/h = 50. The comparison with the finite element method
performed on the 3D problem shows a rather good accuracy of the present plate model
except for the elongational displacement. As in the case of an applied electric potential,
the shear effect is obviouly zero and there is no difference with the simplified model (Love-
Kirchhoff approach).

L/h=10 L/h=50
Plate Finite Error Plate Finite Error
Model Elements ( % ) Model Elements ( % )

U at x = L 0.6785 0.716 5.2 3.54 3.58 1.0
T22 at x = L/2 0.063043 0.063044 0.001 0.063043 0.063044 0.001
Φ at x = L/2 0.043597 0.0436 0.007 0.043597 0.0436 0.007

Table 3: Single piezoelectric plate, applied electric charges.

In the case of an applied electric potential or charges on the plate faces, a thickness de-
formation is obviously produced for the real 3D plate. Such a thickness variation is not
accounted for in the present approach since the deflection displacement w is constant
through the plate thickness, which explains the rather small discrepancy observed in the
cases 2 and 3. In spite of this limitation, the thickness variation represents however less
than 1 % of the elongation or compression in the direction of the plate length.
Additional comparisons can be done, but not shown here, to exact solutions for laminated
piezoelectric plates in cylindrical bending which are merely an extension of the Pagano’s
works for elastic laminates [21] to piezoelectric plates [22].

8. Closing remarks and future directions

In the present work we attempt to promote an efficient and interesting approach to piezo-
electric plates. The field approximation accounts for the shear effects modelled by a ”sine”
function and a refined electric potential distribution through the plate thickness. Some
comparative tests between, first, our improved plate model and the finite element com-
putations and, next, the classical thin plate theory allow us to ascertain the validity and
the capability of the piezoelectric plate model then considered. Especially, the different
benchmark tests have been carried out for different kinds of electromechanical loads (i)
an applied normal force at the top surface of the plate, (ii) an applied electric potential
at the top and bottom faces of the plate and (iii) applied electric charges on both faces of
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the plate. In the case of an applied normal force density for an open and closed circuits,
the through-thickness distribution of the most pertinent electromechanical variables have
been computed for the present model, for the finite element computations for the 3D plate
and for the simplified plate model (no shear correction) and compared each other. The
comparisons yield an excellent agreement of the present model with the finite element
method. Furthermore, the efficient approach to piezolectric plates provides very accurate
predictions (error less than 0.1 % for the deflection displacement), whereas the classical
thin plate theory gives less accurate results. It should be underlined (i) the influence
of the shear correction described by a ”sine” function on the computation of the shear
stress through the plate thickness, (ii) the accurate approximation of the electric potential
(see the third expansion in Eq.(10)) giving rise to the induced electric potential (often
absent in most oversimplified model) and (iii) the usefulness of the approximate charge
equation for the generalized electric charges or inductions (see Eq.(24)), which escapes
from assuming constant electric displacement through the plate thickness.

An important extension of the present work concerns laminated piezoelectric plates, that
is, plates made of piezoelectric and purely elastic layers. This extension will be presented
in the second part of the present work. Here, a particular attention will be paid to the
continuity conditions of the electromechanical quantities at the layer interfaces [23, 24].
Moreover, in view of the results for the single-layered plate, we are encouraged to study
the vibrations of laminated piezoelectric plates [25], which is particularly usefull for active
or passive control of vibrations. Some other challenging problems that must still be con-
sidered include the geometric and material nonlinearities. The nonlinear strain becomes
a necessity if large deflections of the plate are produced and nonlinear electric and piezo-
electric behaviors can appear if rather large electric fields are applied to the piezoelectric
plate due to hysteresis of ferroelectric materials [26]. At last, the edge effects, such as
electric field concentration, can be interesting to investigate, especially for plates partly
coated with piezoelectric slabs.

Appendix A

All the different coefficients introduced in the matrices (26)-(29) are defined by

(
Qab, Dab, dab, D̂ab

)
=
(
1, h

2

12
, 2h2

π3 ,
h3

2π2

)
hC∗ab ,

ÂMN = h
2
C∗MN ,(

a2α, R3α, r3α, R̂3α, r̂3α

)
=
(
1, h

2

6
,− 2h

π2 ,
4h3

π3 ,− h
2π

)
he∗3α ,(

lαN , LαN , LαN
)

=
(

2
π
,−4h2

π3 ,
h
2π

)
he∗αN ,(

bαα, Bαα, Bαα, Bαα, fαα, Fαα, Fαα

)
=
(
− h2

12
,−h4

30
, 4h3

π4 ,− h2

2π2 ,−1, h
2

6
,− 2h

π2

)
hε∗αα ,(

f33, P33, P 33, P 33

)
=
(
− 1,−h2

3
, 4h
π2 ,−1

2

)
hε∗33 ,

with the definitions (ab) ∈ {(11), (22), (12), (66)}, α ∈ {1, 2}, (MN) ∈ {(44), (55)} and
(αN) ∈ {(24), (15)} (the Voigt notation is used for convenience). The modulus of elastic-
ity due to the normal shear stress hypothesis ( σ33 negligeable in comparison to the other
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stress components) are then given by C∗ab = CE
ab − CE

a3C
E
3b/C

E
33. On using the same argu-

ment, we have the effective piezoelectric and dielectric coefficients e∗ja = eja − ej3CE
a3/C

E
33

and ε∗ij = εij + ei3ej3/C
E
33 (with a ∈ {1, ...., 6}, j ∈ {1, 2, 3}).
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