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Abstract
We propose an efficient and accurate approach to piezoelectric bimorph based on a refined
expansion of the elastic displacement and electric potential. The field approximation of the
through-the-thickness variation accounts for a shear correction and a layerwise modelling
for the electric potential. A particular attention is devoted to the boundary conditions on
the bottom and top faces of the plate as well as to the interface continuity conditions for
the electromechanical variables. The continuity condition on the electric potential imposes
some restrictions on the approximation of the electric potential. Moreover, the continuity
condition on the normal component of the electric induction at the bimorph interface is
ensured by a Lagrange multiplier. The equations of the piezoelectric bimorph are obtained
by using variational formulation involving the appropriate boundary and continuity condi-
tions.
A selection of numerical illustrations is presented for the series and parallel piezoelectric
bimorphs simply supported under cylindrical bending conditions. Two types of electrome-
chanical load are considered (i) a surface density of force applied on the top face and (ii) an
electric potential applied on the bottom and top faces of the bimorph. The results thus ob-
tained are compared to those provided by finite element computations performed for the full
3D model and by a simplified model without shear effect. At last, the problem of piezo-
electric bimorph vibration is also examined for both closed and open circuit conditions.
Excellent predictions with low error estimates of the local (profile) and global responses as
well as resonant frequencies are observed. The comparisons assess of the effectiveness of
the present approach to piezoelectric bimorph.

Keywords : Piezoelectric bimorph, higher order plate theory, actuators, vibration control.

1 Introduction
The study of novel materials made of composite structures equipped with piezoelectric compo-
nents remains an active research area and success of adaptive devices has attracted the attention
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of industry and engineering researchers due to numerous technological applications [1, 2, 3].
The analysis of piezoelectric composites such as laminated plates requires modelling with effi-
ciently accurate approximation of both sensor and actuator functions. One of the most popular
advantage of piezoelectric material is when an electric potential is applied to a piezoelectric
component its dimensions change. Conversely, when it is stressed mechanically by a force, it
generates electric charges on its faces. If the electrodes are not short-circuited an electric current
associated with the electric charges can be measured. The most popular simple piezoelectric
actuator consists usually of a slab of piezoelectric ceramics when an electric field is placed
across its thickness, the layer expands or contracts mainly in its length direction. However,
the motion of a single layer is extremely small (the order of fewer micrometer for a voltage
of 100 volts). To overcome this limitation, piezoelectric composites using flexural-extensional
deformation becomes necessary. One of the most practical multilayer piezoelectric composites
commonly used is the piezoeletric bimorph or bender. The application of an electric field across
the two layers of the bender produces one layer to expand while the other one contracts. The
global result is thus a flexural deformation much greater than the length or thickness deforma-
tion of the individual layers (of the order of few hundreds of micrometers for 100 Volts). More
sophisticated multiplayer piezoelectric composites could be considered to improve the motion
amplification and performance of the adaptive structure [4]. Wide range of interesting tech-
nological applications have been proposed, going from aeronautical and automotive structures
(shape control of space antennas, active or passive control of vibrations, etc.) to many other
engineering devices [5, 6, 7, 8, 9].

The main objective of the present study attempts to present a consistent and efficient approach
to piezoelectric bimorph structure. Although a number of consistent and efficient approaches to
piezoelectric bimorph have been proposed [10, 11, 12], most of these models are mostly based
on the kinematic assumption of Love-Kirchhoff theory of thin elastic plates or Bernoulli-Euler
theory of beams [13, 14]. These models are able to accuratly predict the global responses of the
bimorph, especially the deflection, but they cannot provide excellent estimates of the local re-
sponses such as the through-the-thickness variations of the displacements, electric potential and
stresses. The classification of the various approaches is mainly based on the kinematic assump-
tion for approximating the through-the-thickness variation of the electromechanical state vari-
ables and representation method of the piezoelectric layers [15]. Here, we propose an alterna-
tive approach based on a combination of mixed through-the-thickness approximation including
shear correction for the elastic displacement. More precisely, the present modelling combines
an equivalent single-layer representation for the mechanical displacement with a layerwise-type
approximation for the electric potential. Moreover, the modelling, presented hereafter, accounts
for the conservation law of electric charge (Gauss equation). We do not therefore consider any
hypothesis on the form of the electric induction.

The plate equations are derived from a variational formulation extended to piezoelectric me-
dia. A particular attention is devoded to the continuity conditions at the layer interface and
to the boundary conditions on the top and bottom faces of the plate. The present study is a
continuation of work mostly dedicated to single layer plate model [16] where all the requisite
ingredients have been discussed in detail. Extension of the later approach to multilayer plate
has been proposed leading to particularly interesting comparisons to finite element computation
for different kinds of electromechanical loads [17]. In order to assess the capability and perfor-
mance of the model, a number of benchmark tests are given for a piezoelectric bimorph subject
to (i) a force density normal to the upper face and (ii) an electric potential applied to the bottom
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and top faces of the plate and eventually at the layer interface. Some comparisons to numerical
results provided by finite element method performed on the fully 3D model are considered. The
comparison leads to very excellent predictions of both global (displacement, electric charge)
and local (thickness variations of the electromechanical state) responses of the piezoelectric bi-
morph. The vibration of the piezoelectric structure is then examined for the shorted and open
circuit providing also very accurate results.

The outline of the study is organized as follows, the piezoelectricity formulation is briefly stated
in Section 2. The approximation of the electromechanical fields is given in Section 3, the ap-
proach is then specialized according to the bimorph arrangement. A particular emphasis is
placed, in Section 4, on the boundary and interface conditions for the series and parallel config-
urations. In Section 5, the bimorph equations are then derived from the variational formulation
along with the associated mechanical and electric boundary conditions around the plate con-
tour. The study of the piezoelectric bimorph under cylindrical bending is examined in Section
6 and numerical results and comparisons to finite element computations are also given. Section
7 is devoted to vibration modes of the piezoelectric bimorph and comparisons to finite element
method are also presented. At last the closing remarks and discussion of the most relevant re-
sults are evoked in Section 8.

2 Piezoelectricity formulation : pre-requisites
In this section, we summerize the ingredients concerning piezoelectricity needed for the present
plate approach. The formulation is based on Hamilton’s principle extended to piezoelectric-
ity [18]. The variational principle can be stated as

δ

∫ t2

t1

∫
Ω

Ldvdt+

∫ t2

t1

δWdt = 0 , (1)

where L = K − H (Sij, Ei) is the density of the Lagrangian functional with K the kinetic
energy K = 1

2
ρu̇iu̇i and H the electric enthalpy density function. In addition, ρ is the mass

density, ui the elastic displacement (the dot means derivative with respect to time). The enthapy
density function for piezoelectricity takes on the form

H (Sij, Ei) =
1

2
σijSij −

1

2
DiEi , (2)

where Sij = 1
2

(ui,j + uj,i) is the strain tensor component, Ei is the electric field vector, σij are
the components of the stress and Di represents the electric displacement or induction vector.
The last term in Eq.(1) is the virtual work of the prescribed mechanical and electric quantities
on the domain boundary ∂Ω given by

δW =

∫
∂Ω

Tiδuids+

∫
∂Ω

Qδφds . (3)

In Eq.(3), T is the surface traction and Q is the surface density of electric charge applied to
the domain boundary ∂Ω. The scalar variable φ is the electric potential. In addition, in the
framework of the quasi electrostatic approximation, the electric field derives from an electric
potentialEi = −φ,i. On using a classical argument of integration by part and assuming arbitrary
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variations δui and δφ throughout the domain Ω subject to the conditions δφ(t1) = δφ(t2) = 0
and δui(t1) = δui(t2) = 0. The field equations (in absence of body force) are

σij,j = ρüi , Di,i = 0 . (4)

The above field equations are completed by boundary conditions for the prescribed surface
traction and surface density of electric charge or electric potential, namely σijnj = Ti on ∂Ωσ,
ui = ūi on ∂Ωu andDini = Q on ∂ΩD, φ = φ̄ on ∂Ωφ ( ∂Ω = ∂Ωσ∪∂Ωu and ∂Ω = ∂ΩD∪∂Ωφ

with ∂Ωσ ∩ ∂Ωu = ∂ΩD ∩ ∂Ωφ = φ). For linear piezoelectricity the enthalpy density function
usually has the form [19]

H (Sij, Ei) =
1

2
CE
ijpqSijSpq − eipqEiSpq −

1

2
εSijEiEj . (5)

It has been assumed isothermal process and thermomechanical coupling and pyroelectric effects
have been neglected. The constitutive equations for σ and D derive from the enthalpy functional
as follows  σij = ∂H

∂Sij
= CE

ijpqSpq − ekijEk ,

Di = − ∂H
∂Ei

= eipqSpq + εSijEj .

(6)

In Eq.(6), CE is the fourth-order tensor of elasticity coefficients measured at a constant electric
field, e is the third-order tensor of piezoelectric coefficients and εS is the second-order tensor of
the dielectric coefficients measured at a constant strain. According to the material symmetry the
number of independent constants can be reduced. In the case of isotropically transverse sym-
metry we have 5 elastic coefficients, 3 piezoelectric constants and 2 dielectric constants which
are independent [19, 20].

3 Field approximation
Along with the accepted kinematic assumptions for the displacement field in most plate the-
ories [21], we consider an expansion of the elastic displacement as a series function of the
thickness coordinate. The level of truncation of the expansion leads to the order of the plate
theory [22]. In the framework of the present approach, the elastic displacement and electric
potential are assumed to be of the form

uα(x, y, z, t) = Uα(x, y, t)− zw,α(x, y, t) + f(z)γα(x, y, t), α ∈ {1, 2} ,

u3(x, y, z, t) = w(x, y, t) ,

φ(`)(x, y, z, t) = φ
(`)
0 (x, y, t) + z`φ

(`)
1 (x, y, t) + P`(z`)φ

(`)
2 (x, y, t) + g(z)φ

(`)
3 (x, y, t) ,

(7)

with ` = 1 for the lower layer and ` = 2 for the upper layer in the case of bimorph structure
(the notations of the geometry and coordinates are given in Figure 1). We have set z1 = z +
h/4 and z2 = z − h/4 the local thickness coordinates attached to the lower and upper layers,
respectively. It is worthwhile commenting the expressions (7) : (i) In Eq.(7)1 Uα holds for the
middle plane displacement component, w is the deflection and γα represents the shear function.
All the functions are defined at the middle plane coordinate (x, y, 0). (ii) If f(z) = 0, we
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recover the classical Kirchhoff-Love thin plate theory [23], if f(z) = z we obtain the Mindlin-
Reissner model or the first-order theory [24]. The expansion of f(z) at higher-order leads to a
refined model as developped by J.N. Reddy [21]. (iii) In the present modelling, we propose the
following functions P1 (z) = z (z + h/2) , P2 (z) = z (z − h/2) ,

f (z) = h
π
sin
(
πz
h

)
, g (z) = h

π
cos
(
πz
h

)
,

(8)

where h is the plate thickness which is supposed to be uniform. The case of purely elastic plates
has been extensively studied by M. Touratier [25] with extension to elastic shells [26]. (iv) For
the electric potential, the first two terms are associated with the applied electric potential on the
plate faces since P1 (−h/2) = 0, P2 (h/2) = 0 and g (±h/2) = 0. The third terms is referred
as to the induced electric potential by piezoelectric coupling in the upper or lower layer. The
term factor of g(z) is associated with the shearing effect.

x

z
I

(0)
= −h/2

z
I
(2)= h/2

z
I
(1)

= 0

z
1

2

1

z
2

0

z

Fig.1 : piezoelectric bimorph : coordinates and geometry

4 Boundary and continuity conditions
Two piezoelectric bimorph arrangements are commonly considered and manufactured. The first
kind of bimorph shown in Figure 2(a) is often called series bimorph or antiparallel bimorph.
In this situation both piezoelectric layers are made of identical materials and have the same
thickness 0.5h, however, the piezo-active axes are in opposite direction. The electric potential
is applied to the bottom and top faces through thin metallic electrodes. The second arrangement
is known as parallel piezoelectric bimorph and it has an intermediate electrode at the layer
interface as depicted in Figure 2(b). In this case the piezo-active axes are in the same direction.
For both arrangements the electric field along the thickness coordinate across each layer is of
the order of 2V/h.

4.1 Series or antiparallel piezoelectric bimorph
Now, we must consider the boundary and continuity conditions along with the symmetry prop-
erties of the bimorph. The boundary conditions on the electric potential on the plate faces can
be written as  φ(1) (x, y,−h/2) = φ

(1)
0 − h

4
φ

(1)
1 = −V ,

φ(2) (x, y,+h/2) = φ
(2)
0 + h

4
φ

(2)
1 = V .

(9)

5



+h/2

−h/2

z
p(x)

+V

−V
x

(a)
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

+h/2

−h/2

z
p(x)

x

(b)

+V

+V

V=0

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

������
������
������
������
������

������
������
������
������
������

Fig.2 : piezoelectric bimorph (a) series arrangement, (b) parallel arrangement

The continuity condition at the bimorph interface z = 0 can be expressed as φ(1) (x, y, 0) = φ(2) (x, y, 0) ,

D
(1)
3 (x, y, 0) = D

(2)
3 (x, y, 0) .

(10)

For the electric potential we use the expansion Eq.(7)3

φ
(1)
0 +

h

4
φ

(1)
1 +

π

h
φ

(1)
3 = φ

(2)
0 −

h

4
φ

(2)
1 +

π

h
φ

(2)
3 . (11)

The continuity condition on the normal electric induction component can be written by using
the constitutive equation (6). Moreover, piezoelectric layers are made of identical transversaly
isotropic material but having their piezoelectric axis in opposite direction along the z-axis.
Then we have D(`)

3 = e
∗(`)
3αβSαβ + ε

∗(`)
33 φ

(`)
,3 with ` ∈ {1, 2}. The symmetry conditions leads to

e
∗(2)
3αβ = −e∗(1)

3αβ = e∗3αβ (α, β ∈ {1, 2}) and ε∗(1)
33 = ε

∗(2)
33 = ε33. Where the effective piezoelectric

constant e∗3αβ and dielectric constants ε∗33 are derived from the hypothesis on the normal shear
stress σ33 ( σ33 negligible, see the Appendix A for the definitions of the effective material
constants). Finally, the continuity condition on D3 takes on the form

−e∗3αβS
(0)
αβ − ε

∗
33

(
φ

(1)
1 −

h

2
φ

(1)
2

)
= e∗3αβS

(0)
αβ − ε

∗
33

(
φ

(2)
1 +

h

2
φ

(2)
2

)
,

or
−2e∗3αβS

(0)
αβ = ε∗33

(
φ

(1)
1 − φ

(2)
1

)
− h

2
ε∗33

(
φ

(1)
2 + φ

(2)
2

)
. (12)

Where S(0)
αβ = U(α,β). The solution φ(2)

0 = −φ(1)
0 = V/2, φ(1)

1 = φ
(2)
1 = 2

h
V and φ(1)

3 = φ
(2)
3

satisfies the conditions given by Eqs(9) and (11). The condition (12) reduces to (with indice
summation on α and β)

Aθ = φ
(1)
2 + φ

(2)
2 −

4

h

e∗3αβ
ε∗33

S
(0)
αβ = 0 . (13)

The above equation tells us that if there is no global elongational motion of the bimorph, there-
fore φ(1)

2 + φ
(2)
2 = 0, which occurs for a pure flexural motion. At last, the form of the electric

potential is

φ(`) = 2
V

h
z + P` (z)φ

(`)
2 + g (z)φ3 , (14)

with ` ∈ {1, 2}. With the view of solving the piezoelectric bimorph problem we must find the
9 unknown functions {Uα, w, γα, φ(1)

2 , φ
(2)
2 , φ3, θ} with α ∈ {1, 2} and θ being the Lagrange

multiplier. The problem can be now stated as follows, find the 9 unknown functions under the
constraint Eq.(13) relating φ(`)

2 to Uα .
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4.2 Parallel piezoelectric bimorph
For this arrangement, a zero voltage (V = 0) is applied to the intermediate electrode, while
the voltage V is applied to the bottom and top faces of the plate. In such a situation, the
components of the electric field along the thickness direction E3 across the lower and upper
layers are in opposite directions. Accordingly, regarding to the piezoelectric couplings, this
case is, in fact, similar to the antiparallel situation. The boundary and interface conditions on
the electric potential are the following

φ(1) (x, y,−h/2) = φ
(1)
0 − h

4
φ

(1)
1 = V ,

φ(1) (x, y, 0) = φ
(1)
0 + h

4
φ

(1)
1 + h

π
φ

(1)
3 = 0 ,

φ(2) (x, y, 0) = φ
(2)
0 − h

4
φ

(2)
1 + h

π
φ

(2)
3 = 0 ,

φ(2) (x, y,+h/2) = φ
(2)
0 + h

4
φ

(2)
1 = V .

(15)

The continuity condition at the bimorph interface on the electric potential is fulfilled. On using
symmetry argument on the electric potential, it can be shown φ(1)

0 = φ
(2)
0 = φ0, φ(1)

1 = −φ(2)
1 =

φ1, and φ
(1)
3 = φ

(2)
3 = φ3. It is worthwhile noting, in this situation, there is no continuity

condition on the normal component of the electric induction. The electric potential for both
layers takes on the form φ(1) = 1

2

(
1− 4 z

h

)
V + P1 (z)φ

(1)
2 + ĝ1 (z)φ3 ,

φ(2) = 1
2

(
1 + 4 z

h

)
V + P2 (z)φ

(2)
2 + ĝ2 (z)φ3 .

(16)

Where we have set ĝ1 (z) = h
π
[π
h
g (z) − 1 − 2 z

h
] and ĝ2 (z) = h

π
[π
h
g (z) − 1 + 2 z

h
]. Now, the

problem amount to finding the 8 unknown functions {Uα, w, γα, φ(1)
2 , φ

(2)
2 , φ3} with α ∈ {1, 2}.

However, in the present situation there is no condition on the electric induction as in the series
bimorph.

Remark. Surface density of electric charge can be applied on the top and bottom faces of
the bimorph. In this situation, the boundary condition on the electric induction is reduced to
D3 (x, y,±h/2) = Q (x, y), where Q is the prescribed electric charge per unit of area [16].
The continuity of the electric potential and normal component of the electric induction must be
satisfied, thereby, there is no difference between the series and parallel arrangements except if
the intermediate electrode is at the ground for the parallel bimorph (no continuity condition on
D3).

5 Equations of motion for the bimorph structure
The variational formulation stated in Section 2 is then used to derive the equations of motion
of the two-dimensional model from the full three-dimensional formulation of piezoelectricity.
The expansion of the elastic displacement and electric potential Eqs(7) and (14) or (16) accord-
ing to the arrangement are substituted into the formulation Eq.(1) and the dependency of the
field on the thickness coordinate z is rubbed out by integrating over the plate thickness. The
variational formulation must be written under the constraint Eq.(13) involving the introduction
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of a Lagrange multipliers θ. At last the Hamiltonian principle can be cast into the form (see for
details A. Fernandes and J. Pouget [17])∫ t2

t1

(δK − δU + δW1 + δW2 + δΛ) dt = 0 . (17)

In Eq.(17) the first term represents the variation of the kinetic energy given by

δK = −
∫

Σ

(
Γ(u)
α δUα + Γ(w)δw + Γ(γ)

α δγα
)
ds

−
∫
C

Γ̂(w)
α nαδwd` .

(18)

The different acceleration quantities are defined by
Γ

(u)
α = I0Üα ,

Γ(w) = I0ẅ + I1γ̈α,α − I2ẅ,αα ,

Γ
(γ)
α = I3γ̈α − I2ẅ,α ,

Γ̂(w) = I1ẅ,α − I2γ̈α

(19)

where the different inertial momenta are given by

(I0, I1, I2, I3) =

∫ +h/2

−h/2
ρ
(
1, z2, f 2(z), zf(z)

)
dz . (20)

In Eq.(18), n is the outwards unit normal to the plate contour C. The second term in Eq.(17) is
the variation of the internal force work

δU =

∫
Σ

{Nαβ (δUα),β −Mαβ (δw),β + M̂αβ (δγα),β + Q̂αδγα

+ D
(2)(1)
α δφ

(1)
2,α +D

(2)(2)
α δφ

(2)
2,α +D

(3)
α δφ3,α

+ D
(2)(1)
3 δφ

(1)
2 +D

(2)(2)
3 δφ

(2)
2 +D

(3)
3 δφ3}dS .

(21)

Where the stress and electric charge resultants are computed using the three dimensional stresses
σij and electric displacement Di(

Nαβ,Mαβ, M̂αβ

)
=

∫ +h/2

−h/2
(1, z, f(z))σαβdz , (22)

Q̂α =

∫ +h/2

−h/2
f ′(z)σα3dz , (23)

(
D(2)(`)
α , D

(2)(`)
3

)
=

∫ z
(`)
I

z
(`−1)
I

(
P`(z)D(`)

α , P
′

`(z)D
(`)
3

)
dz , (24)

(
D(3)
α , D

(3)
3

)
=

2∑
`=1

∫ z
(`)
I

z
(`−1)
I

(
ĝ` (z)D(`)

α , ĝ
′

`(z)D
(`)
3

)
dz , (25)
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with P ′(z) = dP (z)
dz

, f ′(z) = df(z)
dz

and g′(z) = dg(z)
dz

.
Remark. There is no fundamental difference between the equation of motion for the series and
parallel bimorph since the independent electric potential variation {δφ(`)

2 , δφ3} (see Eqs.(14)
and (16)) are the same. Nevertheless, the difference between both approximations for the elec-
tric potential appears in the definition of the electric charge resultants D(3)

α and D(3)
3 , in fact

g (z) must be replaced by ĝ` (z) in Eqs(24) and (25). The corresponding constitutive equations
are then modified.

The third and fourth terms in the variational formulation Eq.(17) hold for the variational works
of applied forces and electric charges on the faces and lateral contour of the plate. This varia-
tional work is the sum of works of prescribed loads on the top and bottom faces of the plate and
those on the lateral boundary of the plate, namely

δW1 =

∫
Σ

(
fαδUα − pδw + m̂αδγα + q

(1)
2 δφ

(1)
2 + q

(2)
2 δφ

(2)
2 + q3δφ3

)
dS , (26)

δW2 =

∫
C
[FαδUα + Tδw + Cαδγα −Mf (δw),n +Q

(1)
2 δφ

(1)
2 +Q

(2)
2 δφ

(2)
2

+ Q3δφ3]d`−
∑
p

Zpδwp .

(27)

In Eq.(26), fα and p are surface densities of force, m̂α is a surface moment density. The gen-
eralized surface density of electric charges q(`)

2 and q3 are zero due to ĝ` (±h/2) = 0, and
P1 (−h/2) = P2 (+h/2) = 0 (see [17]).
In Eq.(27), Fα and T are densities of force per unit of length, Mf and Cα are lineic moment
densities and Zp are transverse forces applied at angular points of the boundary contour C of
the plate. In Eq.(27), (δw),n is the derivative of the variation δw with respect to the normal

direction to the boundary contour. The electric charges per unit of length Q(`)
m are supposed to

be zero (the lateral boundary of the plate is not coated with metallic electrode).

Finally the last term in Eq.(17) is the virtual work of force due to the Lagrangian multiplier
associated with the constraint Eq.(13) and it reads as [17]

δΛ =

∫
Σ

δ (θAθ) dS , (28)

On accounting for Eq.(13) the virtual work Eq.(28) can be written as

δΛ =

∫
Σ

{Aθδθ + θ

[
−2e∗3αβ δUα,β +

h

2
ε∗33

(
δφ

(2)
2 + δφ

(1)
2

)]
}dS , (29)

Now, by employing integration by part if needed and collecting all the factor of the arbitrary
variations {δUα, δw, δγα, δφ(`)

2 , δφ3, δθ} with ` ∈ {1, 2} to be zero at t1 and t2, we arrive at the
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field equations for the piezoelectric bimorph

Nαβ,β + fα = Γ
(u)
α ,

Mαβ,αβ − p = Γ(w) ,

M̂αβ,β − Q̂α + m̂α = Γ
(γ)
α ,

D
(2)(`)
α,α −D(2)(`)

3 = 0 ,

D
(3)
α,α −D(3)

3 = 0 .

(30)

where we have introduced the modified in-plane force resultant and electric induction resultant Nαβ = Nαβ − 2e∗3αβθ ,

D(2)(`)
3 = D

(2)(`)
3 + h

2
ε∗33θ .

(31)

At last the variation of the Lagrange multiplier θ gives rise to the continuity condition Eq.(13)
(i.e. Aθ = 0). The associated boundary conditions along the plate contour C are also deduced
from the variational principle Eq.(17)

Fα = Nαβnβ or Uα given ,

T = (ταMαβnβ),s + nαMαβ,β + Γ̂
(w)
α nα or w given ,

Mf = nαMαβnβ or w,n given ,

Cα = M̂αβnβ or γα given ,

D
(2)(`)
α nα = 0 or φ

(`)
2 given ,

D
(3)
α nα = 0 or φ3 given ,

(32)

where s is the curvilinear coordinate along the plate contour C.
Moreover, we have [[ταMαβnβ]]Ap = Zp at the angular points Ap of the contour where τ is the
tangent vector to the contour C.

It is worthwhile noting that the equations of motion thus obtained is a particular case of more
complete equations for piezoelectric plate made of arbitrary layers presented by the authors [17].
The first two Eq.(30) are similar to those of the Love-Kirchhoff theory of elastic thin plates, the
third equation governs the shearing effects. The last two equations are deduced from the con-
servation law of electric charges for the generalized electric induction resultants often absent
in most theories. It should be noticed that the Lagrange multiplier θ has the dimension of an
electric field. It plays the role of an electric field to enforce the continuity of the normal electric
induction component at the interface z = 0. In the case of the parallel arrangement there is no
Lagrange multiplier and we set θ = 0 in Eq.(31).

The constitutive equations for the stress and electric charge resultants can be written down as
function of the plate deformation and generalized electric potentials {Uα, w, γα, φ(`)

2 , φ3} and
Lagrange multiplier θ by using Eqs.(22)-(25). We substitute the results thus obtained into the
plate equations Eq.(30), we arrive at a set of linear partial derivative equations subject to the
boundary conditions of the particular problem being traited.

10



6 Numerical solutions for piezoelectric bimorph in cylindri-
cal bending

We consider a piezoelectric bimorph (see Fig.2) undergoing a surface density of normal force
and electric potential applied to the top and bottom faces of the plate. We assume that the shear
traction is zero (i.e. fα = 0) and there is no surface density of moment (m̂α = 0). The simple
support conditions for a rectangular plate of length L are simulated by σ11 (0, z) = σ11 (L, z) =
0, σ13 (0, z) = σ13 (L, z) = 0 and u3 (0, z) = u3 (L, z) = 0. In this case the electromechanical
variables do not depend on the y variable, accordingly the displacement u2 plays any role in the
problem and we set U2 = 0 and γ2 = 0.
The electromechanical load functions are written as Fourier series as follows

(p(x), V (x)) =
∞∑
n=1

(Sn, Vn) sin (λnx) , (33)

with λn = nπ/L, Sn = 4S0/nπ and Vn = 4V0/nπ if n odd and Sn = Vn = 0 if n even. Then,
the loads thus defined represent uniform applied force density per unit of area S0 and electric
potential V0. Sketches of the bimorph setting is given in Fig.2. A solution to the set of linear
equations for the unknown functions which satisfies the boundary conditions for the cylindrical
bending of a plate simply supported can be searched for as Fourier series in both series and
parallel bimorph arrangements

(U(x), γ(x)) =
∞∑
n=1

(Un,Γn) cos (λnx) , (34)

(
w(x), φ

(`)
2 (x), φ3(x)

)
=
∞∑
n=1

(
Wn,Φ

(`)
2,n,Φ3,n

)
sin (λnx) , (35)

and the same kind of series is considered for the Lagrangian multiplier

θ(x) =
∞∑
n=1

Θnsin (λnx) , (36)

The Fourier coefficients in Eqs(34)-(36) are determined by substituting the solution into the
equations of motion and solving simultaneously a set of linear algebraic equations for each n
where the right hand side contains the electromechanical loads given by Eq.(33). The set of
linear algebraic equations can be put in matrix form

AnXn = Bn , (37)

where An is 7 × 7 matrix, the vector Xn = {Un,Wn,Γn,Φ
(1)
2,n,Φ

(2)
2,n,Φ3,n,Θn} contains the

Fourier coefficients and the vector Bn defined the applied fields as functions of the Fourier
factors Sn and Vn. The matrix An and vector Bn depend on λn, the thickness h and material
constants of the bimorph. The detailed components of the matrix An and Bn are given in Ap-
pendix A. For the parallel bimorph, no Lagrange multiplier is considered and A is a matrix of
6× 6 order.

The geometry of the plate is L = 25mm and ` = 12.5mm and different slenderness ratios
are considered L/h = 5, 10 and 50. Two kinds of electromechanical loads are considered
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corresponding to (i) sensor function with a force density per unit area applied to the upper face
of the bimorph and (ii) actuator function with an electric potential applied to the top and bottom
faces of the plate. However, the numerical results for state variables are given in dimensionless
units as follows.

(i) for a surface density of force S0 6= 0 (S0 = 1000N/m2, V0 = 0) we set

(U,W,Φ) =
CE

11

hS0

(u1, u3, φ/E0) , (Tij,Dk) =
1

S0

(σij, E0Dk) , (38)

(ii) for an applied electric potential V0 6= 0 (V0 = 50Volts and S0 = 0) we set

(U,W,Φ) =
E0

V0

(u1, u3, φ/E0) , (Tij,Dk) =
hE0

CE
11V0

(σij, E0Dk) , (39)

for numerical convenience we take E0 = 1010Volts/m. The number of terms in the series
Eq.(33)-(36) are adjusted in order to satisfy the series convergence. The finite element compu-
tations for comparison are carried out with ABAQUS code by considering plane strain elements
of 8-node biquadratic type and 800 elements are used. The results are also compared to those
provided by a simplified model based on kinematic assumptions of Love-Kirchhoff’s theory, it
means that the shear correction is neglected. The bimorph is made of two identical layers of
PZT-4 piezoelectric ceramics of which the material constants are given in Table 1 [19].

CE
11 CE

12 CE
33 CE

13 CE
44 e31 e33 e15 εS11 ε§33

(GPa) (C/m2) (nF/m)

PZT-4 139. 77.8 115. 74.3 25.6 −5.2 15.1 12.7 13.06 11.51

Table 1: Independent elastic, piezoelectric and dielectric constants of piezoelectric materials (transver-
sally isotropic symmetry).

6.1 Series bimorph configuration
6.1.1 Sensor function

For this configuration the electric potential is set to zero and a surface density of normal force is
applied to the top face of the bimorph. The numerical results are collected in Figure 3 in dimen-
sionless unit for the profiles with L/h = 10 and some estimating errors between the different
approaches are given in Table 2 for three different aspect ratios. The elongation displacement
U at x = 0 is plotted in Figure 3(a), the profile is almost linear. The flexural displacement w
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Fig.3 : Force density applied on the top face of a piezoelectric series bimorph in closed circuit
for L/h = 10. Plate model (full line), finite element (small circles)

and simplified plate model (dashed-line).

at the middle of the plate (x = L/2) is given in the Figure 3(b), the straight line corresponds
to the present plate approach. In Figure 3(c) we have the induced electric potential showing an
asymmetric profile. The shear stress σ13 computed at x = L/4 is depicted in Figure 3(d). In
this situation, it is clear that there is no global elongational motion of the plate, so that U = 0,
as consequence φ(1)

2 + φ
(2)
2 = 0 (see Eq.(13)). In addition the continuity condition for D3 is

then satisfied. This explains the asymmetric form of the electric potential profile. Comparisons
to the finite element method and to the simplified model are presented in Table 2 for three typ-
ical slenderness ratios (L/h = 5, 10 and 50). The most interesting result is the discrepency
between the maximum values of the deflection at the plate center for the approaches. Indeed,
the estimating errors for the deflection for the present model is about 0.007 % for L/h = 50,
0.07 % for L/h = 10 up to 2.5 % for L/h = 5 (thick plate) while the error overtakes 13.8 % for
the simplified model. It is worthwhile noting the continuity of the shear stress σ13 through the
interface between both piezoelectric layers while it is identically zero for the simplified model.
The discrepency for the maximum shear stress is 1.7 % for L/h = 50, 2.9 % for L/h = 10 and
5.67 % for L/h = 5.

L/h Approaches W Error Φ Error T13 Error

(L/2, 0) % (L/2,−h/4) % (L/4, 0) %

F.E.M. −1.4286× 106 19.0 −18.31

50 Present −1.4287× 106 0.007 18.986 0.007 −18.625 1.7

L.K. −1.4268× 106 0.12 18.986 0.007 0.0 100.0

F.E.M. −2360.0 0.7925 −3.62

10 Present −2358.36 0.07 0.775 2.15 −3.726 2.9

L.K. −2283.18 3.25 0.7574 4.43 0.0 100.0

F.E.M. −165.7 0.2234 −1.80

5 Present −161.468 2.55 0.2063 7.64 −1.86 5.67

L.K. −142.74 13.85 0.188 15.7 0.0 100.0

Table 2: Piezoelectric series bimorph, applied density force.
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6.1.2 Actuator function

In this situation, the piezoelectric bimorph suffers an electric potential applied to the top and
bottom faces of the plate (−V at z = −h/2 and +V at z = h/2, with p = 0). The profile
or local responses of the electromechanical variables are shown in Figure 4. The longitudinal
displacement u is plotted in Figure 4(a), it displays very clearly a linear variation through the
plate thickness with u (z = 0) = 0. This shows that the bimorph undergoes a bending motion.
The deflection at the plate center and electric potential variations are presented in Figure 4(b)
and (c), respectively. An interesting result is the normal component of the electric induction
D3 shown in Figure 4(d) which is almost constant through the plate thickness. The errors
in estimating values between the present approach, the simplified model and finite element
computation are given in Table 3 for three different aspects ratios. It should be noticed that the
discrepancy of the deflection at the plate center does not exceed 2.3 % for L/h = 5 (thick plate)
in comparison to 4.8 % for the simplified model (no shear correction). Moreover, for L/h ≥ 10
the error is smaller than 0.5 % which is excellent. With an applied electric potentiel of the order
of 100 Volts, the bender produces a deflection of the order of 30 µm for L/h = 50. Table 3
also exhibits the errors in estimating the electric charge at the upper plate face and the jump of
the longitudinal stress T11 at the interface for the three different slenderness ratios. The above
results show the efficiency of the present refined approach to predict correctly both local state
(through-the-thickness variation) and global responses for the sensor and actuator functions of
the piezoelectric bimorph.
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Fig.4 : Electric potential applied to a piezoelectric series bimorph for L/h = 10.
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L/h Approaches W Error [[T11]] Error D3 Error

(L/2, 0) % (L/2, 0) % (L/2, h/2) %

F.E.M. 2945.0 2.431 −21.94

50 Present 2943.3 0.02 2.422 0.36 −21.97 0.15

L.K. 2945.3 0.05 2.413 0.74 −21.89 0.22

F.E.M. 116.6 2.43 −21.94

10 Present 116. 0.5 2.425 0.26 −21.995 0.25

L.K. 118. 1.2 2.412 0.78 −21.88 0.27

F.E.M. 28.296 2.43 −21.94

5 Present 27.653 2.3 2.425 0.26 −21.99 0.25

L.K. 29.651 4.8 2.412 0.78 −21.88 0.27

Table 3: Electric potential applied to a piezoelectric series bimorph.

6.2 Parallel bimorph configuration

6.2.1 Sensor function

As in the case of the series arrangement, the electric potential is zero and a surface density of
normal force is applied to the top face of the plate. The variation through the plate thickness
for the deflection is given in Figure 5(a) for the aspect ratio L/h = 10 at the plate center. The
results of the present approach corresponds to the straight line while the simplified model is
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Fig.5 : Force density applied on the top face of a piezoelectric parallel
bimorph in closed circuit for L/h = 10.
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given by the dash-line and the small circle is for the finite element computation. The electric
potential produced by the plate deformation through the piezoelectric coupling is shown in
Figure 5(b). The curve is symmetrical with respect to the plate mid-plane and it is piecewise
parabolic curves. This demonstrates the usefulness of the quadratic part in the expansion of the
electric potential (see Eq.(7) or (16)). The shear stress σ13 at x = L/4 is plotted in Figure 5(c),
in the present configuration the continuity condition of the shear stress is fulfilled. We notice
the excellent agreement with the finite element result while it is almost zero for the simplified
model. In Figure 5(d), we have the normal component of the electric induction exhibiting a
jump at the layer interface at the plate center. The jump in the electric induction provides
the surface electric charge on the intermediate electrode. The Table 4 gives some errors in
estimating the global response of the bimorph structure for three different slenderness ratios
(L/h = 5, 10 and 50). It is worthwhile noting that the error in estimating the deflection at the
plate center is small (less then 1.5 %) for the present model even for thick plates whereas it
overtakes 10 % for the simplified approach. The same remark holds for the induced electric
potential. In the case of a bimorph structure with L/h = 50, the maximum electric potential
induced within piezoelectric layers is about 0.7 V. In addition, the electric charge produced at
the layer interface is Qtot = [[D3]]z=0 × L× l and it is of the order of 1 C (L× ` is the surface
of the intermediate metallic electrode).

L/h Approaches W Error Φ Error T13 Error

(L/2, 0) % (L/2,−h/4) % (L/4, 0) %

F.E.M. −1.4285× 106 −18.977 −17.94

50 Present −1.4287× 106 0.016 −18.986 0.047 −18.62 3.8

L.K. −1.4268× 106 0.116 −18.968 0.049 0.0 100.0

F.E.M. −2349.4 −0.766 −3.587

10 Present −2358.4 0.38 −0.775 1.15 −3.724 3.8

L.K. −2283.2 2.82 −0.757 1.21 0.0 100.0

F.E.M. −159.21 −0.197 −1.793

5 Present −161.47 1.4 −0.206 4.45 −1.861 3.8

L.K. −142.74 10.3 −0.188 23.7 0.0 100.0

Table 4: Piezoelectric parallel bimorph, applied density force.

6.2.2 Actuator function

In this situation the piezoelectric bimorph is subject to an electric potential applied to the bottom
and top faces of the plate (V at z = ±h/2) and the intermediate electrode is set to zero voltage.
The through-the-thickness variation of the electromechanical quantities are collected together
in Figure 6 for L/h = 10. The longitudinal or axial displacement is given in Figure 6(a), it has
almost linear variation. The resulting deflection at the plate center is shown in Figure 6(b). The
full straight line corresponds to the present model while the dash-line curve is for the simplified
model (no shear correction). It is noticed that the deflection for the present model is closer to the
finite element result than the simplified model is. In figure 6(c), we have the axial stress with a
discontinuity at the layer interface. Nevertheless, the most interesting result is the profile of the
normal component of the electric induction D3 depicted in Figure 6(d). It is observed that the
electric induction undergoes a jump at the bimorph interface, this means that a surface density
of electric charge is then produced on the intermediate electrode given by [[D3]]z=0 = Q. Some
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Fig.6 : Electric potential applied to a piezoelectric parallel bimorph for L/h = 10.

estimates are given in Table 5 for three slenderness ratios (L/h = 5, 10 and 50) and comparisons
with finite element computation and simplified model are also considered. The Table 5 tells us
that the present model provides quite good results, especially the discrepancy in the deflection at
the plate center is less than 6 %, for the jump of the axial stress and that of the electric induction
at the layer interface, it is less than 1.5 %. Going back to the physical dimensions, a deflection
of about 30µm is obtained when a voltage of 100 V is applied for L/h = 50. The deflection
thus produced is of the same order than that of the series arrangement (see Section 6.1.2). The
jump of the axial stress at z = 0 is of the order of 13.6 MPa. The electric charge measured on
the intermediate metallic electrode at z = 0 is about 40 C.

L/h Approaches W Error [[T11]] Error [[D3]] Error

(L/2, 0) % (L/2, 0) % (L/2, 0) %

F.E.M. 2943.9 4.89926 44.222

50 Present 2943.3 0.02 4.89817 0.02 44.213 0.02

L.K. 2945.3 0.05 4.89645 0.06 44.198 0.054

F.E.M. 115.5 4.8614 43.88

10 Present 116.0 1.27 4.8974 0.74 44.195 0.72

L.K. 118.0 3.0 4.8007 1.25 43.343 1.22

F.E.M. 26.197 4.8413 43.879

5 Present 27.654 5.56 4.9251 1.31 44.436 1.27

L.K. 29.651 13.2 4.7853 1.56 43.205 1.53

Table 5: Electric potential applied to a piezoelectric parallel bimorph.
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7 Vibration of piezoelectric bimorph
In this section, we consider dynamical processes for the piezoelectric bimorph based on the
present modelling. Then we propose the prediction of modal frequencies of the structure for
both open circuit (D3 = 0) and close-circuit (φ = 0) conditions on the top and bottom faces
of the bimorph, for the typical aspect ratio L/h = 10. The knowledge of modal frequencies
of such piezoelectric elements plays an increasingly important role in the control process of
vibrations [27]. In particular, piezoelectric composites can be used as components of a pas-
sive damping device, thereby avoiding complex control and feedback systems. Piezoelectric
composites have the ability to convert kinetic energy to electric energy during vibration process
and vice versa. This enables the dissipation of electric energy through a passive electric cir-
cuitry (i.e., shunt resistor). Works have been reported on passive control of vibration through
piezoelectric elements [28, 29]. The sensitivity of the performance of such a passive control of
vibrations to the optimal tuning of the resonant electric circuitry is only obtained by an accurate
prediction of the modal frequencies. At this end, piezoelectric bimorph structures turn out to be
an interesting element for vibration control.

The solution to the piezoelectric plate equations Eq.(30) depends on time by introducing the
factor eiωt in the Fourier series Eqs(33)-(36). Now, the Fourier coefficients of the solution are
searched for by solving an homogeneous set of linear equations taking on the form

An (Ω)Xn = 0 , (40)

instead of Eq.(37) in the static case. The subscript n represents the mode number. The matrix
An depends on the normalized circular frequency Ω =

√
ρ
C∗11
hω. Non-zero solution to Eq.(40)

yields
det (An (Ω)) = 0 , (41)

giving rise to eigenmodes of the bimorph structure for a given n. The right hand side of Eq.(37)
is zero, since only free vibrations are considered. The conditions are those of the cylindrical
bending. In the case of the series configuration, the matrix An is 7×7 order for the closed-circuit
condition whereas it is 10× 10 order for the open-circuit setting. For the parallel arrangement,
there is no Lagrange multiplier, the matrix An is 6×6 order for the closed-circuit condition and
it is 9× 9 order for the open-circuit case.

Frequencies (Hz) - L/h=10
MODES EF Present model Error Simplified model Error

Flex. n = 1 15747 15769 0.1 % 16030 1.8 %
Flex. n = 2 59370 59677 0.5 % 63338 6.3 %
Flex. n = 3 122994 124291 1 % 139721 12 %
Flex. n = 4 199046 202511 1.7 % 241909 17.7 %
Flex. n = 5 282019 289352 2.5 % 366039 22.9 %
Flex. n = 6 368241 381771 3.5 % 508113 27.5 %
Flex. n = 7 455253 478014 4.8 % 664352 31.5 %

Axial n = 1 188372 188599 0.1 % 188599 0.1 %

Table 6: Modal frequencies for the piezoelectric bimorph in close-circuit (L/h=10)
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Frequencies (Hz) - L/h=10
MODES EF Present model Error Simplified model Error

Flex. n = 1 16656 16681 0.1 % 17034 2.2 %
Flex. n = 2 62024 62375 0.5 % 67200 7.7 %
Flex. n = 3 126722 128194 1 % 147886 14.3 %
Flex. n = 4 202683 206520 1.7 % 255305 20.6 %
Flex. n = 5 282019 284741 2.5 % 385109 26.1 %
Flex. n = 6 369814 384032 3.5 % 532926 30.6 %
Flex. n = 7 455974 479291 4.8 % 694727 34.4 %

Axial n = 1 188478 188618 0.1 % 188599 0.06 %

Table 7: Modal frequencies for the piezoelectric bimorph in open-circuit (L/h=10)

The frequencies of the resonant modes are presented in Tables 6 and 7 in comparison to the
results provided by finite element computations first and to the estimates given by the simplified
version of the model next. The results are given for the aspect ratios L/h = 10. However
additional results can be found in [30] for different slenderness ratios (L/h = 5 and 50). The
numerical results show that the piezoelectric bimorph has a series of natural bending and axial
modes. Table 6 gives the first seven bending vibration frequencies and the first axial frequency
for the close-circuit condition. It is clear there is tiny difference between the present model and
the simplified one for the axial mode since the shear correction does not play any role in this
mode. Nevertheless, a rather good agreement is observed for the refined model even for higher
modes. On the other hand the simplified model based on the kinematic assumption of Love-
Kirchhoff plate theory provides very non accurate values for the frequencies of the bending
modes. This demonstrates the beneficial role played by the shear function and the layerwise
approximation for the electric potential in the prediction of the frequencies of bending modes.
The results and comparisons for the slenderness ratio L/h = 10 are collected in Table 7 for the
open-circuit condition. Here, once again, the present model is definitly better than the simplified
model for the first seven bending modes. The effectiveness of the present accurate modelling
pleads in its favour for the use of piezoelectric bimorph in actively or passively controlling
vibrations of elastic structures.

8 Concluding remarks

In the present study the piezoelectric bimorph structure has been investigated in details for its
actuator and sensor functions statically and dynamically (vibration). It is clear that in the light
of the numerical simulations and comparisons, the model has excellent performances. The
approach is mainly based on the principle of linear piezoelectricity in the framework of the
quasi-electrostatic hypothesis. The model thus presented is based on the combination of an
equivalent single-layer approach for the mechanical displacements with a layer-wise type of
modelling for the electric potential considered as an additional degree of freedom. Two types of
arrangement have been investigated, series and parallel bimorphs. For the latter an intermediate
metallic electrode at the layer interface allows one to accommodate an applied electric potential.
Moreover, the present approach includes the correction of the shear effect, which has a key role
in the accuracy of the results. The numerical simulations and comparisons assess of the quality
of the prediction of global and local responses (the through-the-thickness variation of the me-
chanical and electric variables) for static and dynamic processes. Especially, the approach to
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piezoelectric bimorph provides very accurate prediction of the bending and elongational vibra-
tion frequencies even for rather thick plate (L/h = 5), whereas classical elastic thin plate theory
based on Love-Kirchhoff theory gives less accurate results with increasing discrepency (more
than 30 % for L/h = 5). J.G. Smits et al. [13] and J.G. Smits and T.K. Cooney, 1991 [14]
have reported interesting results on the global responses of piezoelectric bimorph (maximum
of deflection, induced electric charges, etc.) based on Bernoulli-Euler beam theory. On using
asymptotic approach L-H. He et al. [11] and C.W. Lim et al. [12] have derived the equations
of motion for piezoelectric (parallel and antiparallel) bimorphs and they have obtained similar
results for the through-the-thickness variation of electromechanical fields.

The results here above obtained for piezoelectric bimorph will be completed by the investiga-
tions of other configurations, for instance, the piezoelectric bimorph with one layer considered
as sensor function and the other layer used as actuator function seems to be an interesting
practical problem . Constituent equations for the bimorph describing the relationship between
the electromechanical resultants (force, moment, voltage) applied to the bimorph and global re-
sponses of the structure (deflection, rotation, electric charge or current) is useful for engineering
devices (e.g., micro-positionner, etc.). These problems will be tackled in further works.

Appendix A. Effective material constants

All the algebraic manipulations have been done under the normal shear stress hypothesis for
elastic thin plates (σ33 negligible in comparison to the other stress components). This leads to
define effective modulus of elasticity (using Voigt notation)

C∗ab = CE
ab −

CE
a3C

E
3b

CE
33

, (A.1)

effective piezoelectric coefficients

e∗ja = eja −
ej3C

E
a3

CE
33

, (A.2)

effective dielectric constants

ε∗ij = εSij +
ei3ej3
CE

33

, (A.3)

respectively, with a, b ∈ {1, · · · , 6}, i, j ∈ {1, 2, 3}.

Appendix B. Matrix An for series and parallel bimorphs.

The matrix and the right hand side of the set of linear algebraic equations given in Eq.(37) takes
on the following form.

(a) For the series configuration
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An =



a11 0 0 0 0 a16 a17

a22 a23 a24 a25 0 0

a33 a34 a35 0 0

(sym.) a44 0 a46 a47

a55 a56 a57

a66 0

0


. (B.1)

Where the matrix components are defined by

a11 = −Λ2
nC
∗′
11 , a33 = −1

2

[(
Λn

π

)2

C∗′11 + C∗′55

]
,

a16 = −2

(
Λn

π

)
e∗′31 , a34 = −a35 =

2

π2

(
Λn

π

)(π
4
− 1
)

(e∗′31 + e∗′15) ,

a17 = −2Λne
∗′
31 , a44 = a55 =

1

24

[
1

10

(
Λn

2

)2

ε∗′11 + ε∗′33

]
,

a22 = − 1

12
Λ4
nC
∗′
11 , a46 = a56 =

2

π2

(π
4
− 1
)[(Λn

π

)2

ε∗′11 + ε∗′33

]
,

a23 = 2

(
Λn

π

)3

C∗′11 , a47 = a57 = −1

2
ε∗′33 ,

a24 = −a25 =
1

12

(
Λn

2

)2

e∗′31 , a66 =
1

2

[(
Λn

π

)2

ε∗′11 + ε∗′33

]
,

and the vector Bn is defined by

Bn = [ 0 , b2 , b3 , b4 , b5 , b6 , 0 ]T , (B.2)

with the components given by

b2 = Ŝn + 1
2
Λ2
ne
∗′
31V̂n ,

b3 = − 4
π

(
Λn
π

)
e∗′31V̂n ,

b4 = b5 = −1
6

(
Λn
4

)2
ε∗′11V̂n ,

b6 =
(

4
π

)
ε∗′33V̂n .

(b) For the parallel configuration

An =



a11 0 0 0 0 0

a22 a23 a24 a25 a26

a33 a34 a35 a36

(sym.) a44 0 a46

a55 a56

a66


. (B.3)
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Where the components of the matrix An are defined by

a11 = −Λ2
nC
∗′
11 ,

a22 = − 1

12
Λ4
nC
∗′
11 ,

a23 = 2

(
Λn

π

)3

C∗′11 ,

a24 = a25 = − 1

12

(
Λn

2

)2

e∗′31 ,

a26 = −2

(
Λn

π

)2 (π
4
− 1
)
e∗′31 ,

a33 = −1

2

[(
Λn

π

)2

C∗′11 + C∗′55

]
,

a34 = a35 = − 2

π2

(
Λn

π

)(π
4
− 1
)

(e∗′31 + e∗′15) ,

a36 =
4

π2

(
Λn

π

)(
π2

8
− 1

)
(e∗′31 + e∗′15) ,

a44 = a55 =
1

24

[
1

10

(
Λn

2

)2

ε∗′11 + ε∗′33

]
,

a46 = a56 =
2

π2

[(
Λn

π

)2(
1

3

(π
4

)3
+
π

4
− 1

)
ε∗′11 +

(π
4
− 1
)
ε∗′33

]
,

a66 =

(
2

π

)2
[(

π2

8
− 1

)
ε∗′33 + 2

(
Λn

π

)2(
5

48
π2 − 1

)
ε∗′11

]
:

,

and the vector Bn is definedn as follows

Bn = [ 0 , b2 , b3 , b4 , b5 , b6 ]T , (B.4)

with the components given by

b2 = Ŝn + 1
2
Λ2
ne
∗′
31V̂n ,

b3 = Λn

(
2
π

)2 [(π
2
− 1
)
e∗′15 − e∗′31

]
V̂n ,

b4 = b5 = 1
6

(
Λn
4

)2
ε∗′11V̂n ,

b6 = 4
π

(
Λn
π

)2
(

1
6

(
π
2

)2 − π
2

+ 1
)
ε∗′11V̂n .

In the above definition we have set Λn = hλn = nπ h
L

placing the inverse of the slenderness ratio
L
h

in evidence. It is worthwhile noting that some components of the matrices (B.1) and (B.3)
are the same or opposite. In addition, we have considered the dimensionless electromechanical
variables and material constants defined as follows(
Ûn , Ŵn , Γ̂n , Φ̂

(`)
2,n , Φ̂3,n , Θ̂n , Ŝn , V̂n

)
=

(
Un
h
,
Wn

h
, Γn ,

hΦ
(`)
2,n

E0
,

Φ3,n

E0
,
θn
h
,
Sn
C00

,
Vn
hE0

)
,

(
C∗′αβ , e

∗′
iα , ε

∗′
ij

)
=

(
C∗αβ
C00

,
E0e

∗
iα

C00
,
E2

0ε
∗
ij

C00

)
,

where the constant C00 is an elastic modulus of reference, for numerical investigations we take C11 and
E0 has been defined in Section 6.
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