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Une formulation variationnelle mixte pour les plaques élastiques multicouches

Résumé.

Une nouvelle approche suffisamment précise, basée sur une formulation variationnelle mixte, est présentée. L'avantage d'une telle description est de satisfaire directement la continuité des contraintes de cisaillement transverse aux interfaces. Les résultats du modèle de plaque élastique proposé sont validés pour un bicouche ainsi que pour une plaque sandwich en les comparant aux solutions exactes de Pagano. c 2002 Académie des sciences/ Éditions scientifiques et médicales Elsevier SAS formulation mixte / plaques élastiques / multicouches

Version française abrégée

Dans la littérature, de nombreux travaux mettent essentiellement l'accent sur l'approximation des déplacements. De telles approches plus ou moins précises donnent des résultats raisonnables pour les déplacements mais néanmoins ne satisfont pas toujours la continuité des contraintes de cisaillement bien que ces dernières jouent un rôle primordial parfaitement mis en évidence par les solutions exactes tridimensionnelles [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF]. Afin de pouvoir à la fois obtenir un modèle approché valable aussi bien en déplacements qu'en contraintes, une formulation variationnelle mixte [START_REF] Touratier | An efficient standard plate theory[END_REF] introduite par E. Reissner [START_REF] Reissner | On a certain mixed variational theorem and a proposed application[END_REF] est utilisée. Tout comme pour les déplacements, les contraintes de cisaillement sont considérées comme des champs indépendants permettant ainsi de satisfaire de façon naturelle leur continuité aux interfaces.

Les déplacements sont approchés suivant l'épaisseur de la plaque par un modèle suffisamment [START_REF] Pagano | Exact solutions for composite laminates in cylindrical bending[END_REF] et à un modèle bidimensionnel étudié notamment par H. Murakami [START_REF] Murakami | Laminated composite plate theory with improved in-plane responses[END_REF] puis par E. Carrera [START_REF] Carrera | C 0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity[END_REF][START_REF] Carrera | Tranverse normal stress effects in multilayered plates[END_REF]. Une très bonne concordance est mise en évidence entre notre approche et les solutions exactes de Pagano aussi bien pour les déplacements que pour les contraintes.

Introduction

The increasing use of composite material in advanced engineering sciences requires an accurate and efficient description of mechanical response of laminated composites. We propose, in the present work, a plate modelling based on a mixed variational principle introduced by E. Reissner [START_REF] Reissner | On a certain mixed variational theorem and a proposed application[END_REF]. Especially, most formulations based on high-order theory for the elastic displacements hardly fulfills the interlaminar shear stress continuity at the interfaces. One of the attractive features of the present approach is that the number of equations to be solved is not increased as the number of layers becomes large.

Mixed variational formulation

Let us consider a plate made of N elastic layers as depicted in Figure 1, the plate has a total thickness h. The thickness of each layer is h k and z k denotes the local thickness coordinate with respect to the mid-plane of the kth layer (k ∈ {1, ... , N }). In addition to the in-plane displace- ments considered as primary kinematic quantities, the transverse shear stress approximation is accounted for. Before using the mixed variational formulation proposed by E. Reissner [START_REF] Reissner | On a certain mixed variational theorem and a proposed application[END_REF], the equations governing the elastic field and constitutive relations must be written in terms of in-plane displacements and shear stresses.
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For static processes and in abscence of body force the elastic fields are governed by the following equations :

(a) Equilibrium equation σ

(k) ij,j = 0 (in Ω) , (1) 
where σ

(k) ij is the Cauchy stress tensor associated with the kth layer and Ω is the volume of the elastic body.

(b) The constitutive equations read as (using Voigt notation)

    σ L 11 σ L 22 σ L 12     (k) =     C * 11 C * 12 0 C * 12 C * 22 0 0 0 C * 66     (k)     ε G 11 ε G 22 2 ε G 12     (k) , (2) 
2 ε L 13 2 ε L 23 (k) = 1/C * 44 0 0 1/C * 55 (k) σ M 13 σ M 23 (k) . (3) 
where ε

G(k) ij = 1 2 (u (k) i,j + u (k) j,i
) is the strain tensor of geometrical feature and u (k) i

is the displacement vector. The superscripts L, M refer as to the constitutive equations and stress approximation modelling as examined in section 3, respectively. It is assumed that the normal stress σ 33 is negligible (thin plate hypothesis). We introduce the effective elastic moduli as in classical theory of elastic thin plate

C * ij = C ij -C i3 C 3j /C 33 .
(c) Boundary and interface continuity conditions are given by σ

M(1) 3i = p - i at z = -h/2 and σ M(N ) 3i = p + i at z = +h/2 , (4) σ 
M(k) 3α = σ M(k+1)
3α and u

(k) i = u (k+1) i at z = z (k) I ; k ∈ {1, ... , N -1} . (5) 
The mixed variational principle presented by E. Reissner [START_REF] Reissner | On a certain mixed variational theorem and a proposed application[END_REF] is then applied to an N-layered composite plate along with the approximation for the elastic displacement u

(k) i
and transverse shear stress σ

M(k) α3 N k=1 t t0 Ω σ L(k) αβ δε G(k) αβ + 2 σ M(k) α3 δε G(k) α3 + 2 (ε G(k) α3 -ε L(k) α3 ) δσ M(k) α3 dV dt = N k=1 t t0 Ω σ L(k) αβ δu (k) α,β + σ M(k) α3 δ(u (k) α,3 + u (k) 3,α ) + A (k) α3 δσ M(k) α3 dV dt = t t0 ∂Ω p + i δu (N ) i (z = +h/2) -p - i δu (1) 
i (z = -h/2) dSdt (6) 
where we have set

A (k) α3 = 2 (ε G(k) α3 -ε L(k) α3 ) = u (k) α,3 + u (k) 3,α -σ M(k) β3 /C * (k) α3β3 .

Displacement and transverse stress approximations

The present theory assumes an in-plane displacement with a zig-zag variation across the plate thickness including a shear correction approximated by a trigonometric function [START_REF] Touratier | An efficient standard plate theory[END_REF][START_REF] Fernandes | An accurate modelling of piezoelectric multi-layer plates[END_REF]. Accordingly, the elastic displacement field can be written as

     u (k) α (x, y, z) = u 0 α (x, y) + z ψ α (x, y) + (-1) k h k z k θ α (x, y) + f (z) γ α (x, y) , u (k) 3 (x, y, z) = w(x, y) , (7) 
with f (z) = h π sin πz h .

In equation ( 7), u 0 α (α = 1 or 2) is the in-plane displacement, w is the deflection, γ α is the shearing function, ψ α is the global rotation and θ α is the local rotation with respect to the kth layer.

The appropriate trial approximation for the transverse shear stress is taken to be σ α3 is the shear stress at the kth interface.

M(k) α3 (x, y, z) = P (k) b (z k ) σ b(k) α3 (x, y) + P (k) m (z k ) σ m(k) α3 (x, y) + P (k) t (z k ) σ b(k+1) α3 (x, y) , (8) with P 
(k) b (z k ) = 1 2 - z k h k , P (k) m (z k ) = 1 -4 z k h k 2 , P (k) t (z k ) = 1 2 + z k h k . Equation (8)

Plate equations

Now, substituting [START_REF] Fernandes | An accurate modelling of piezoelectric multi-layer plates[END_REF] and (8) into the mixed variational formulation (6) and using Gauss' theorem and integration over the plate thickness we are able to establish the equations of the twodimensional model. One obtains

                 N αβ,β + f u α = 0 , R α,α -p = 0 , M αβ,β -R α + f ψ α = 0 , L αβ,β -R θ α + f θ α = 0 , Lαβ,β -R γ α + f γ α = 0 . (9) 
In the above equations the following generalized stress resultants have been introduced

           N αβ , M αβ , L αβ , Lαβ = N k=1 +h k /2 -h k /2 1, z, (-1) k h k z k , f (z) σ L(k) αβ dz k , R α , R θ α , R γ α = N k=1 +h k /2 -h k /2 1, (-1) k h k , f (z) σ M(k) α3 dz k . (10) 
Moreover, the surface densities of force and moment per unit of area are defined by

   f u α , f ψ α , f θ α , f γ α = p + α -p - α , h 2 (p + α + p - α ), 1 2 (p - α + (-1) N p + α ), h π (p + α + p - α ) , -p = p + 3 -p - 3 . (11) 
At last, we have the constitutive equations given by

Q b(k) α = 0 , Q m(k) α = 0 , (12) 
where

         Q b(k) α = +h k-1 /2 -h k-1 /2 P (k-1) t (z k-1 ) A (k-1) α3 (z k-1 ) dz k-1 + +h k /2 -h k /2 P (k) b (z k ) A (k) α3 (z k ) dz k , Q m(k) α = +h k /2 -h k /2 P (k) m (z k ) A (k) α3 (z k ) dz k . (13) 
The associated boundary conditions on the plate contour can be also deduced from the variational formulation, however, for sake of consistency they are not written down. The study of an elastic plate made of N layers consists in finding 9 displacements and rotations and 2(N -1) transverse shear stresses at the interfaces and 2N transverse shear stresses in the N layers.

Numerical results and comparisons

In order to examine the accuracy of the present plate approach, we consider a laminated plate under cylindrical bending simply supported on the ends x = 0 and L. The simple support conditions for plate are 

N 11 = M 11 = L 11 = L11 = 0, R 1 = R θ 1 = R γ 1 =
Substituting the solution (14) into plate equations (9) and constitutive relations (12), the Fourier coefficients are then given by solving a set of linear algebraic equations for each n where the right hand side depends only on S n . Numerical simulations are presented for a bi-layer plate 0/90 (h 1 =0.3, h 2 =0.7) and a symmetric sandwich plate 0/90/0 (h 1 =h 3 =0.3, h 2 =0.4) for which the material constants for the 0 deg layer are E L /E T =25, G LT /E T =0.5, G TT /E T =0.2, ν LT =0.25 (composite made of unidirectional fibers of graphite in an epoxy matrix) and the slenderness ratio is L/h=5. The numerical results are given for n=1 using the dimensionless units U = ET hS0 u 1 (0, z), T 11 = 1 S0 σ 11 (L/2, z), T 13 = 1 S0 σ 13 (L/4, z).

The through-the-thickness distributions (in-plane displacement and stresses) of the present plate approach (solid line) are compared to the results provided by the exact Pagano's solutions (dotted line) and those given by plate theories proposed by H. Murakami [START_REF] Murakami | Laminated composite plate theory with improved in-plane responses[END_REF] and E. Carrera [START_REF] Carrera | C 0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity[END_REF][START_REF] Carrera | Tranverse normal stress effects in multilayered plates[END_REF] (dashed line). It is observed very clearly in Figures 2 and3 an excellent agreement of the present plate model with the exact solutions, especially for the transverse shear stress. The present model gives accurate predictions for the shear stress σ 13 at the layer interfaces, the estimate error between the plate model and the 3D computation is about 2,7 % while it is 47,2 % for the model with f (z) = 0 corresponding to a zig-zag in-plane displacement variation as proposed by H. Murakami [START_REF] Murakami | Laminated composite plate theory with improved in-plane responses[END_REF] and E. Carrera [START_REF] Carrera | C 0 Reissner-Mindlin multilayered plate elements including zig-zag and interlaminar stress continuity[END_REF][START_REF] Carrera | Tranverse normal stress effects in multilayered plates[END_REF]. 

Conclusion

The objective of the present analysis has been to construct an efficient and accurate model for laminated composite plates using a mixed variational formulation. The inclusion of a zig-zag variation for the in-plane displacement is mainly motivated by a layer-wise modelling of individual layer involving degrees of freedom independent of the number of layers. The displacement variation is improved by adding a shear function with "sinus" profile. This shear function plays an efficient role in the estimate of the interlaminar transverse shear stresses. The accuracy of the plate model has been tested by considering comparisons to the exact Pagano's solutions and to simplified approaches (f (z) = 0). Extensions to the effects of normal shear stress [START_REF] Carrera | Tranverse normal stress effects in multilayered plates[END_REF] and to plates including active piezoelectric layers will be investigated in future works.
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  describes the quadratic variation across the plate thickness. It is worthwhile noting that equation (8) satisfies the shear stress continuity at the layer interfaces where σ b(k)

0 and u 3

 3 = 0 at x = 0 and L. The prescribed boundary conditions on the top and bottom faces are p - 3 = 0, p + 3 = -p,p + α = p - α = 0; α ∈ {1, 2} with p(x) = ∞ n=1S n sin λ n x (λ n = nπ/L and S n = 4S 0 /nπ if n is odd and 0 otherwise). Furthermore, the y variable does not play any role since the plate is infinitely long in the y direction. The unknown functions are searched for as Fourier series as follows u 0 1 (x), ψ1(x), θ1(x), γ1(x), σ
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