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Abstract

We propose the modelling of piezoelectric elements perfectly bonded on an elastic struc-
ture. The study aims at predicting the static and dynamic (vibration) electromechanical
responses of the structure. The model is mostly based on the kinematic assumption of the
Love-Kirchhoff thin plate theory including shear function with a quadratic variation of the
electric potential along the thickness direction of the piezoelectric parts. A variational for-
mulation of piezoelectricity leads to the equations of motion for an elastic plate equipped
with piezoelectric elements. An important feature of the present investigation is that the
stiffness and inertial contributions of the piezoelectric patch is not neglected. Moreover,
the numerical simulations demonstrate the influence of the actuator position on the global
and local responses of the elastic plate for two situations (i) bilayer and (ii) sandwich con-
figurations. A number of benchmark tests are considered in order to characterize the plate
deformation when applying an electric potential to the piezoelectric patch faces. Plate vi-
bration problem is also presented and the frequencies for the axial and flexural modes are
obtained. The spectra of vibration for the plate with a time-dependent electric potential are
computed.

Key words: Piezoelectric patch, actuators, plate vibration, closed-form solution.

1 Introduction

Piezoelectric materials, and especially piezoelectric composites such as multilay-
ered plates including active piezoelectric layers are excellent candidates for de-
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signing adaptive devices for shape and vibration control of elastic structures. Such
devices and piezoelectric composites are of great technological interest in structural
engineering with applications to noise reduction or shape control of large flexible
structures (shape control of space antennas or telescopes) [1].

Most modellings of piezoelectric actuators or composites consider laminated struc-
tures made of continuous piezoelectric layers. The models are mainly based on
thin plate theory including some refinements and possible layerwise approach [2,3].
Nevertheless, very few models of piezoelectric elements or patches bonded on elas-
tic structures have been examined and quoted in literature [4,5,6]. The simplest
approaches to elastic structures (beam, plate, etc.) equipped with piezoelectric el-
ements consider effective forces and moments induced by piezoelectric elements
on the host structure [7]. In such approaches the driving forces and moments are
generated by the electric potential applied to the piezoelectric element, however,
the sensor function of the piezoelectric element is usually not accounted for. A
first order shear deformation theory has been considered to describe the electrome-
chanical state of the element bonded on an elastic structure (beam or plate). The
extensional-flexural motion of the beam is then governed by a set of coupled equa-
tions for the elongational displacement, deflection and electric potential or electric
charge. However, analytical results are based on either Euler-Bernoulli beam theory
or Timoshenko beam modelling [7]. In most analysis it is assumed that the stiffness
and inertial contribution of the piezoelectric actuators are neglected in comparison
to those of the host elastic structure [4]. Such an assumption leads to inaccurate
estimate of the electromechanical responses of the structure. Especially, the pre-
diction of the frequencies of axial and flexural modes of the composite structure
requires a more accurate approach.

The present work concerns the modelling of a composite structure made of a piezo-
electric element perfectly attached to an elastic thin plate. Moreover, the model
considers two kinds of kinematical hypotheses either for the elastic plate or for
the piezoelectric actuator. For the elastic plate a refined description of the elas-
tic displacement is considered, it is based on the Love-Kirchhoff elastic thin plate
theory including a shear function [8,9]. For the piezoelectric element the kinemat-
ical hypothesis of the Love-Kirchhoff plate theory is merely adopted. The electric
potential is supposed to have a quadratic variation through the piezoelectric layer
thickness [8,9]. In the proposed formulation there are no simplifying hypotheses
on the stiffness and inertial contribution of the piezoelectric elements. In fact, the
piezoelectric part introduces material and geometrical discontinuities which lead to
some mathematical difficulties. In spide of these drawbacks, a closed-form solution
to the equation of motion can be obtained by using Fourier analysis for an elastic
plate simply supported under cylindrical bending and the solution for static and
dynamic processes are computed.
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2 Variational formulation and governing equations

Let us define the following affine spaces

Vu = {(u,S) : u = u0 on ∂Ωu and Sij = u(i,j) on Ω} , (1a)
Vφ = {(φ,E) : φ = φ0 on ∂Ωφ and Ei = −φ,i on Ω} , (1b)

where Vu is the space of kinematically admissible displacements and strain tensors
and Vφ is the space of admissible electric potential and electric field. In Eqs (1) u
and S are respectively the displacement and the linear part of the strain tensor. The
scalar variable φ is the electric potential. In the framework of the quasi-electrostatic
approximation, the electric field E derives from an electric potentialEi = −φ,i. We
consider the functional extended to piezoelectric materials written as follows [10]

F [(u,S) , (φ,E)] =
∫
Ω

(
−H (S,E) + b · u

)
dv+

∫
∂ΩT

T·u da+
∫
∂Ωq

q0φ da , (2)

defined over the space V = Vu × Vφ. In the functional F , H (S,E) is the electric
enthalpy density functional given by [10]

H (S,E) =
1

2
σijSij − 1

2
DiEi , (3)

where σ is the stress tensor and D is the electric displacement or induction vector.
In Eq. (2), b is an external force per unit volume applied on Ω (including eventually
inertial forces bi = fi − ρüi). In the second part of Eq. (2), T is the surface density
of traction forces imposed on ∂ΩT and, in the third part, q0 is the surface density of
electric charges applied on ∂Ωq .
Under suitable regularity conditions, the balance equations for piezoelectric body
are found by imposing vanishing first variations of the functional Eq. (2) with re-
spect to u and φ. They read as

σij,j + bi = 0 , Di,i = 0 . (4)

The boundary conditions on ∂Ω are also obtained from the variation of the func-
tional Eq. (2). They are σijnj = Ti on ∂ΩT and Dini = q0 on ∂Ωq for the natural
boundary conditions and u = u0 on ∂Ωu and φ = φ0 on ∂Ωφ for the essen-
tial boundary conditions (∂Ω = ∂ΩT ∪ ∂Ωu = ∂Ωq ∪ ∂Ωφ with ∂ΩT ∩ ∂Ωu =
∂Ωq ∩ ∂Ωφ = ∅). The constitutive equations are given in the S − E form through
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the electric enthalpy functional Eq. (3) and they are given by

σij =
∂H

∂Sij
= CE

ijpqSpq − ekijEk , (5a)

Di = − ∂H

∂Ei
= eipqSpq + εSijEj , (5b)

where, CE is the tensor of elasticity coefficients for null electric field, e is the
piezoelectric coupling third-order tensor and εS is the second-order tensor of elec-
tric permittivity coefficients for null strain. The variational formulation given in
Eqs (2) and (3) and the set of Eqs (4) and (5) are the essential starting point of the
modelling proposed in the forthcoming sections.

3 Field approximation

Let us consider an elastic plate equipped with a piezoelectric element as depicted
in Fig. 1. Two configurations are studied (i) a configuration made of one piezoelec-
tric element bonded on the elastic plate referred as a bilayer configuration and (ii)
a configuration made of an elastic plate sandwiched between two identical piezo-
electric elements referred as a sandwich structure. The x − y plane is coincident
with the elastic plate mid-plane. We denote by Ae the mid-plane occupied by the
elastic plate and by Ap the mid-plane of the piezoelectric element. It is assumed
that the piezoelectric elements or actuators are perfectly glued to the carrying de-
formable structure. The axis z is the thickness coordinate for both piezoelectric
actuators and elastic plate. The plate thickness is denoted by he and that of the
piezoelectric element is hp. They are supposed constant. The elastic plate as well
as the piezoelectric elements are materially homogeneous and either orthotropic or
transversally isotropic with respect to the z-axis (in particular, the piezoelectric ac-
tuators are polarized along the thickness direction). In addition, the top and bottom
faces of each piezoelectric element are covered by a conductive metallic electrode
with negligible mechanical properties, the lateral surfaces are bare.

In order to derive an efficient and accurate two-dimensional model of the present
composite plate accounting for the direct and inverse electromechanical coupling,
we assume some hypotheses for the distribution of the electromechanical fields as
function of the thickness coordinate.
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3.1 Mechanical field distribution for the elastic plate.

The elastic displacement field for the plate is supposed to be of the form

u(e) =
[
U (e)
α − zw(e)

,α + f (z) γα
]
eα + w(e)e3 , (6)

The summation over the index α ∈ {1, 2} is applied. In Eq. (6), Uα represents
the mid-plane displacement component, w is the deflection along the thickness di-
rection and γα hold for the shearing function. All the functions are defined at the
mid-plane coordinate (x, y, 0). The function f(z) of the thickness coordinate is
given by f(z) = he

π
sin

(
π
he
z
)

[8,11].

3.2 Electromechanical field distribution for the piezoelectric actuators.

The standard Love-Kirchhoff kinematics for the elastic displacement is considered.
It is written as

u(p) =
[
U (p)
α − zw(p)

,α

]
eα + w(p)e3 . (7)

The shear correction function, as defined for the elastic layer, is not used for the
piezoelectric part because the piezoelectric patches are supposed to be very thin.

A layerwise quadratic distribution of the electric potential is considered and given
by

φ = 2
zp
hp
V + P (zp)ψ with zp = z − z0 , (8)

where V (x, y, t) is the applied electric potential such as φ (zp = +hp/2) = +V
and φ (zp = −hp/2) = −V , zp is the local thickness coordinate with respect to the
actuator mid-plane and z0 = 1

2
(hp + he) the coordinate of the mid-plane of the

piezoelectric element. The second term in Eq. (8) is referred as the induced electric
potential by elastic deformation in the piezoelectric element [8,9]. The function

P (zp) is defined by P (zp) = z2
p −

(
hp

2

)2
.

Remarks : The above description concerns the bilayer configuration (one piezo-
electric element), however, in the case of the sandwich configuration for the lower
piezoelectric element we must change V into −V in Eq. (8) and z0 into −z0. We
must distinguish the electric potential for the lower actuator denoted by φ(−) and
the electric potential distribution for the upper piezoelectic actuator given by φ(+)

in Eq. (8).
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3.3 Continuity conditions at the layer interfaces.

The continuity of the elastic displacement at the interface between the elastic plate
and the piezoelectric elements must be fullfilled at z = +he/2 (and at z = −he/2
in the case of the sandwich configuration). These continuity conditions read as

w(p) = w(e) = w , (9a)

U (p)
α = U (e)

α +
he
π
γα . (9b)

In the case of the sandwich configuration a third condition identical to Eq. (9b) is
also considered by changing he into −he.

3.4 Composite plate state field.

When hypotheses on the 3D distribution of the mechanical displacements and elec-
tric potential are given as a function of the following in-plane fields

W = [U, w,γ, ψ, V ] , (10)

the strain tensor for the elastic plate can be written as

S(e) =
(
S

(0)
αβ + zS

(1)
αβ + f(z)S

(2)
αβ

)
eα ⊗ eβ +

(
1

2
f ′(z)γα

)
eα ⊗ e3 , (11)

and for the piezoelectric element we have

S(p) =

(
S

(0)
αβ + zS

(1)
αβ +

he
π
S

(2)
αβ

)
eα ⊗ eβ , (12)

by using the continuity condition, Eq. (9b), the electric field within the piezoelectric
element takes the form

E = [P (zp)Eα] eα + [E3 − zpψ] e3 . (13)

We have introduced the following generalized strain tensors

S
(0)
αβ = U

(e)
(α,β) , S

(1)
αβ = −w,αβ , S

(2)
αβ = γ(α,β) , (14)

and the electric fields

Eα = −ψ,α , E3 = −2
V

hp
. (15)
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Hence, the 3D distribution of mechanical strains and electric fields is determined
by the set of generalized electromechanical fields

S = {S(0)
αβ , S

(1)
αβ , S

(2)
αβ , Eα, E3} . (16)

We denote by W the functional space of compatible electromechanical kinematic
fields of the reduced plate model. The fields defined by the sets (10) and (16) are
said compatible if they are related through the compatibility relations (14) for the
mechanical deformations and (15) for the electric fields which verify the essential
boundary conditions for the elastic displacement and electric potential.

4 Equations for the piezoelectric composite

4.1 Variational formulation of the plate model

The equations of the present piezoelectric plate model are deduced by taking the
first variation of the variational functional stated in Section 2 and by using the
approximations for the elastic displacement and electric field.
On integrating over the thickness of the elastic plate and piezoelectric actuators,
the dependence of the fields upon the thickness coordinate z is then rubbed out.
After straighforward algebraic manipulations assuming independent variations of
the generalized kinematical fields defined by Eq. (10). The variational formulation
for the reduced plate model can be recast into the sum of variation contributions

−δU + δW1 + δW2 = 0 . (17)

The different virtual works are defined on the mid-plan surface Ae of the elastic
plate and mid-plan surface of the piezoelectric elements and also on the plate con-
tour.

a - The first part holds for the variation of the plate model free energy written as

δU =
∫
Ae

{NαβδS
(0)
αβ +MαβδS

(1)
αβ + R̂αβδS

(2)
αβ +Qαδγα

−DαδEα + D3δψ + qδV } da . (18)

The generalized stresses Nαβ , Mαβ , R̂αβ, the generalized electric inductions Dα,
D3 and the generalized density of electric charge q are defined (in the case of the
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sandwich configuration) as

Nαβ = N
(e)
αβ + Y (X)

(
N

(+)
αβ +N

(−)
αβ

)
, (19a)

Mαβ = M
(e)
αβ + Y (X)

(
M

(+)
αβ −M

(−)
αβ

)
, (19b)

R̂αβ = R
(e)
αβ +

he
π
Y (X)

(
N

(+)
αβ −N

(−)
αβ

)
, (19c)

Dα = D̂(+)
α + D̂(−)

α , (19d)

D3 = D̂
(+)
3 − D̂

(−)
3 , (19e)

q = q(+) − q(−) . (19f)

It is worthwhile noting that for the bilayer configuration only the contributions of
the upper piezoelectric actuator are involved in the above resultant definitions. In
Eq. (19) the function Y (X) is the index function defined as : Y (X)=1 if X=(x, y) ∈
Ap and Y (X)=0 otherwise. The resultants are computed using the 3D stress and
electric displacement (see Eq. (5)) as follows

1) for the elastic plate

(
N

(e)
αβ ,M

(e)
αβ , R

(e)
αβ

)
=
∫ +he/2

−he/2
(1, z, f(z)) σ

(e)
αβdz , (20a)

Qα =
∫ +he/2

−he/2

1

2
f ′(z)σ(e)

α3 dz , (20b)

2) for the piezoelectric actuators

(
N

(+)
αβ ,M

(+)
αβ

)
=
∫ he/2+hp

he/2
(1, z) σ

(+)
αβ dz , (21a)

D̂(+)
α =

∫ he/2+hp

he/2
P (zp)D

(+)
α dz , (21b)

(
q(+), D̂

(+)
3

)
=
∫ he/2+hp

he/2
(1, 2zp)D

(+)
3 dz . (21c)

The resultants for the lower piezoelectric actuator are deduced from those of the
upper one by changing the superscript (+) into (−) and the segment of integration
is [−he/2 − hp,−he/2].

b - The second part in the variational formulation (17) represents the virtual work
of the body forces and electromechanical loads prescribed to the elastic plate and
piezoelectric actuators. This virtual work can take a linear form on the set δW of
the space defined by Eq. (10)

δW1 =
∫
Ae

(
bαδU

(e)
α + bT δw + m̂αδγα

)
da+

∫
Ap

q̄δV da , (22)

where b is the surface density of forces in the mid-plane, bT is the surface density
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of normal forces and m̂ is a density of moment per unit of area including eventu-
ally the inertial terms and q̄ is the surface density of electric charges applied to the
piezoelectric elements faces.

c - The last term in Eq. (17) denotes the virtual work of the forces and moments
applied to the plate contour given by

δW2 =
∫
C

(
FαδU

(e)
α + T̂ δw −Mf (δw,n) + Cαδγα

)
d�−∑

k

Zkδwk , (23)

where F and T̂ are force densities per unit of length,Mf and C are torques densities
per unit of length defined along the contour C of the plate with n the unit outward
normal to C. At last, Zk are transverse forces applied at the angular points of the
contour boundary.

Remarks - The inertial contributions due to the acceleration forces are computed
from the kinetic energy. The surface density of forces are splitted into the mechan-
ical forces and inertial forces as b = f + f (I), bT = p+ p(I), m̂ = m + m(I), T̂ =
T + T (I). The inertial contributions are then given by f (I)

α = −Γ(U)
α , p(I) = −Γ(w),

m(I)
α = −Γ(γ)

α and T (I) = Γ̂(w).

The exact forms of the acceleration or inertial forces corresponding to the equations
of motion according to two configurations are

(i) - Bilayer configuration

Γ(U)
α = I0 (X) Üα − I1 (X) ẅ,α + J1 (X) γ̈α , (24a)

Γ(w) = I1 (X) Üα,α + I0 (X) ẅ − I2 (X) ẅ,αα + J2 (X) γ̈α,α , (24b)

Γ(γ)
α = J1 (X) Üα − J2 (X) ẅ,α + J3 (X) γ̈α , (24c)

Γ̂(w) =
[
−I1 (X) Üα + I2 (X) ẅ,α − J2 (X) γ̈α

]
nα , (24d)

where the different inertial moments are given by

I� (X) = I
(e)
� + Y (X) I

(p)
� with � ∈ {0, 1, 2} ,

J1 (X) = J
(e)
1 + Y (X) he

π
I

(p)
0 ,

J2 (X) = J
(e)
2 + Y (X) he

π
I

(p)
1 ,

J3 (X) = J
(e)
3 + Y (X)

(
he

π

)2
I

(p)
0 ,
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and where we have defined the inertial moments of different order as

(
I

(e)
0 , I

(e)
1 , I

(e)
2 , J

(e)
1 , J

(e)
2 , J

(e)
3

)
=
∫ +he/2

−he/2
ρe
(
1, z, z2, f (z) , zf (z) , f (z)2

)
dz ,

(
I

(p)
0 , I

(p)
1 , I

(p)
2

)
=
∫ he/2+hp

he/2
ρp
(
1, z, z2

)
dz . (25)

(ii) - Sandwich configuration

In the case of the sandwich configuration the equations (25) are also considered
by changing I (p)

� by 2I
(p)
� (� ∈ {0, 1, 2}) and with I1 (X) = J1 (X) = 0.

4.2 Balance equations

The balance equations and the natural boundary conditions are derived by using
classical arguments of variational calculus in the functional space W of compatible
kinematical fields. The balance equations are then given by

Nαβ,β + bα = 0 , (26a)
Mαβ,αβ + bT = 0 , (26b)

R̂αβ,β −Qα + m̂α = 0 . (26c)

In addition, we have for the piezoelectric actuators

Dα,α −D3 = 0 , (27a)
q − q̄ = 0 . (27b)

The natural boundary conditons are derived for all the admissible variations of the
field defined in the space (10)

[Nαβnβ − Fα] δUα = 0 , (28a)

[(ταMαβnβ),s − nαMαβ,β − Γ̂(w) + T ] δw + [nαMαβnβ −Mf ] δw,n = 0 , (28b)

[R̂αβnβ − Cα] δγα = 0 , (28c)
[Dαnα] δψ = 0 . (28d)

The vector τ is the unit tangent vector to the contour C and s is the curvilinear
coordinate along the plate contour. The condition at the angular points ak of the
contour is given by [[ταMαβnβ − Zk]]ak

δwk = 0. Since the lateral boundary of
the piezoelectric actuators is bare (no electrode) there is no electric charge density
applied to the actuator contour.

Remarks
1) - It is worthwhile noticing that the first two equations (26) are similar to those
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of the Love-Kirchhoff first-order theory of elastic thin plates. The third equation
governs the shearing effect. The additional equations (27) are deduced from the
conservation law of the electric charge or the Gauss equation.
2) - In the case of an electric potential applied to the piezoelectric element faces,
the electric charge balance equation (27b) does not exist and it is replaced by the
essential boundary condition on the electric potential (V given).

5 Constitutive equations

The constitutive equations for the present piezoelectric composite plate model are
deduced from the 3D constitutive equations for piezoelectric and elastic materials
stated in Section 2. The global plate constitutive equations are computed from the
resultants defined by Eqs (20) and (21) and can be put in matrix form according to
the two configurations.

(i) - Bilayer configuration


D
Q


 =


KDE 0

0 KQγ




E

γ


 , (29)




N

M

R̂

q

D3




=




KNU KNw KNγ
(
KNV

)T
0

KNw KMw KMγ
(
KMV

)T (
KMψ

)T
KNγ KMγ KRγ

(
KRV

)T
0

KNV KMV KRV KqV 0

0 KMψ 0 0 KDψ







S(0)

S(1)

S(2)

V

ψ



. (30)

(ii) - Sandwich configuration



N

D
Q


 =



KNU

(
KNE

)T
0

KNE KDE 0

0 0 KQγ






S(0)

E

γ


 , (31)
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


M

R̂

q

D3




=




KMw KMγ
(
KMV

)T (
KMψ

)T
KMγ KRγ

(
KRV

)T
0

KMV KRV KqV 0

KMψ 0 0 KDψ







S(1)

S(2)

V

ψ



. (32)

where all the components of the block matrices (not given here for a sake of sim-
plicity) depend on the elastic plate and piezoelectric actuators thicknesses and ma-
terial constants of the constituents (elasticity, piezoelectricity and dielectric permit-
tivity). We have set the following resultant vectors (using the Voigt notation)

N =



N1

N2

N6


 , M =



M1

M2

M6


 , R̂ =



R̂1

R̂2

R̂6


 , Q =


Q1

Q2


 , D =


D1

D2


 . (33)

In addition, we define generalized strain vectors and electric field vector as follows

S(�) =



S

(�)
1

S
(�)
2

S
(�)
6


 with � ∈ {0, 1, 2}, γ =


 γ1

γ2


 , E =


E1

E2


 . (34)

Remarks
1) - It is observed that there is no coupling between membrane deformation and
plate deflection for the sandwich configuration.
2) - Some components of the block matrices can be zero due to the particular ma-
terial symmetry or the zero material constants.

6 Solution to the plate under cylindrical bending

Here, we place our attention to the problem of a piezoelectric element bonded on
an elastic plate simply supported under cylindrical bending as depicted in Fig. 2.
In the cylindrical bending situation, the electromechanical state variables do not
depend on the y variable. Accordingly, the displacement u2 does not play any role
in the problem, so that U2 = 0 and γ2 = 0.
The plate suffers a surface density of normal force applied to the top face and an
electric potential is applied to the top and bottom faces of the piezoelectric patches.
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It is supposed that there is no shear traction and surface density of moment on the
plate faces, i.e. fα = 0 and m̂α = 0.

In this particular situation, the equations of motion take the simplified forms

N,x = Γ(U) , (35a)

M,xx + p = Γ(w) , (35b)

R̂,x −Q = Γ(γ) , (35c)
D,x −D3 = 0 . (35d)

The equation (27b) does not exist since the electric potential V is given on the
piezoelectric actuator faces.
The electromechanical loads are expanded in a Fourier series over the segment
[0, L] and are written as

(p(x, t), V (x, t)) =
N∑
n=1

(Sn, Vn) sin (λnx) e
iωt , (36)

with λn = nπ
L

and Sn and Vn are the Fourier coefficients of the applied surface den-
sity of force and electric potential, respectively. Moreover, we set V (x) = Y (x)V0

with Y (x) the index function defined by Y (x) = H (x− L1)−H (x− L2), where
H (x) is the Heaviside unit function (H (x) = 1 if x ≥ 0 and H (x) = 0 otherwise)
and V0 is the uniform electric potential, where L1 and L2 are the abscissa of the
patch ends (see Fig. 2).

We look for solutions to the equations of motion as Fourier series given by

(U(x, t), w(x, t), γ(x, t), ψ(x, t)) =
N∑
n=0

(Un cos(λnx),Wn sin(λnx),Γn cos(λnx),Ψnsin(λnx)) e
iωt .

(37)

We notice that Eq. (37) satisfies the boundary conditions for the cylindrical bending
configuration. Now, we substitute the load equations (36) and solution equations
(37) into the set of linearly coupled differential equations. The next step consists of
projecting the equations on the Fourier base {cos(λmx), sin(λmx)} and integrating
over the segment [0, L]. So, the dependency upon the x variable is cancelled out
and this leads to a set of linear algebraic equations for the Fourier coefficients of
the displacement and electric potential {Un,Wn,Γn,Ψn;n ∈ [1, ..., N ]}, where N
is the number of terms retained in the series to ensure the convergence.

(i) - Bilayer configuration

13






A11 A12 A13 O

A21 A22 A23 A24

A31 A32 A33 O

O A42 O A44







U

W

Γ

Ψ




=




B1

B2

B3

0




(38)

(ii) - Sandwich configuration

A11U = 0 and




A22 A23 A24

A32 A33 O

A42 O A44





W

Γ

Ψ


 =



B2

B3

0


 (39)

The vectors B and B of N dimension contain the Fourier coefficients of the elec-
tromechanical loads. The block matrices A and A are N × N matrices and O is
N ×N zero matrix. The vectors U, W, Γ and Ψ contain the first N Fourier coef-
ficients. All these aforementionned quantities are specified in Appendix A.

7 Numerical results and comparisons

The numerical computations using the present approach are carried out for a piezo-
electric patch made of PZT-4 ceramics perfectly bonded on a composite plate made
of graphite fibers aligned along x direction in epoxy matrix (see Tables 1 and 2
for the material properties with CE

αβ expressed in GPa, eiα in C/m2 and εSij in
nF/m). The geometrical parameters of the problem are L = 0.15m, L/he = 50,
L/(L2 −L1) = 5 and he/hp = 3. Only the actuator function is examinated with an
applied electric potential of the order V0 = 100 Volts (Sn = 0 or p = 0).

A first set of numerical computations for the bilayer and sandwich configurations
(two identical piezoelectric elements symmetrically bonded to the elastic plate)
leads to the global deflection as function of x ∈ [0, L] for a piezoelectric patch lo-
cated at the plate center (Fig. 3a and Fig. 4a) and located at x=L/4 (Fig. 5b and Fig.
6b). The solid-line curve corresponds to the present model, the dashed line curve
to the simplified model (no shear correction and no quadratic term in the electric
potential). In spite of the slenderness ratio L/he=50, the discrepancy for the maxi-
mum deflection between the present model and the simplified model is respectively
about 3.5% for the bilayer configuration and about 5.7% for the sandwich config-
uration if the piezoelectric patches are located at x=L/2. It is observed that the
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longitudinal displacement as function of x (Fig. 5a and Fig. 6a) is linear within the
piezoelectric parts and it corresponds to the patch extension; in the elastic part, it is
obviously constant. The longitudinal displacement at x=L, depicted in Fig. 3b and
Fig. 4b, shows a linear variation over the elastic plate thickness. The electrome-
chanical field distributions computed at the center of the patch exhibit jumps at
z=±he/2 in Fig. 3c and Fig. 4c for the longitudinal stress and in Fig. 3d and Fig.
4d for the normal electric induction. The latter curve is layerwise constant in the
piezoelectric actuators.

Some characteristic values in physical units w∗(x = L
2
, z = 0) for the deflection,

u∗(x = L, z = he

2
) for the axial displacement, σ∗

11(x = L
2
, z = he

2
) for the axial

stress and D∗
3(x = L

2
, z = he

2
) for the normal component of the electric displace-

ment are given in Tables 3 and 4. In particular, we observe a maximum of the
deflection, when applying an electric potential of 100 Volts, of the order of 26.3µm
for x=L/2 and only 8.2µm for x=L/4 in the case of the sandwich configuration.
In the case of the bilayer configuration the maximum of deflection is reduced to
14.2µm for x=L/2 and 5.8µm for x=L/4.

8 Plate vibrations and frequency spectra

The second set of numerical results concerns the frequencies of vibration modes
of the elastic plate (i) equipped with a piezoelectric actuator and (ii) sandwiched
between two piezoelectric elements. The modal frequencies for the closed circuit
condition are listed in Tables 5 and 6 for the first eight flexural modes and the first
two axial modes.

The numerical results for the sandwich configuration show that there is no differ-
ence between the present model and the simplified model for the axial frequencies
because the shear correction does not play any role in these modes. Nevertheless,
for the flexural frequencies (see Table 6), the discrepancy is quite significant (more
than 20% for n=8).

In the case of the bilayer configuration with x=L/2, the difference between the sim-
plified model and the present model is over than 2% for the second axial frequency
and more than 20% for the eighth flexural frequency.

Comparing both results of Tables 5 and 6, we can observe that the flexural frequen-
cies for the sandwich configuration are smaller than those for the bilayer situation.
This is due to the modification of the flexural stiffness of the composite plate.

Furthermore, comments on the influence of the piezoelectric actuator position can
be reported. Indeed, it is observed in Table 5 that the piezoelectric actuator located
at x = L/4 affects mostly the modes number 2, 4 and 8 leading to lower natural
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frequencies. The same comment holds for the sandwich configuration (Table 6).
Insofar as the axial modes are concerned, it is not so obvious. Piezoelectric element
position has a greater influence on the modal frequencies. In fact, for the bilayer
configuration the position at x=L/4 tends to increase the modal frequencies (see
Table 5). For the sandwich configuration the same remark holds except for the first
mode because the flexural and axial modes are not coupled.

If we suppose that the electric potential applied to the piezoelectric elements is
harmonic in time V = V0e

iωt. The set of linear equations to be solved is still Eqs.
(38) and (39) but with Sn = 0 and Vn �= 0 and with non-zero circular frequency
(ω=2πν). The numerical results for the spectrum of the flexural mode is shown in
Figs. 7 and 8 where we notice that the simplified model overestimates the higher
resonant frequencies in comparison to the refined model. It is worthwhile noting
that the modal frequencies listed in Tables 5 and 6 correspond to those of the peaks
of Figs. 7 and 8.

9 Conclusion

In the present work, we have investigated the modelling of static and dynamic re-
sponses of an elastic structure (plate) equipped with piezoelectric elements. We
have proposed an accurate and efficient approximation for the elastic displacement
including shear correction function and a quadratic distribution of the electric po-
tential through the piezoelectric layer. The present approach accurately predicts the
global (elongation, deflection, frequencies) and local (field distribution) responses
of the composite structures. A number of numerical tests has been proposed for
two cases (i) a bilayer configuration with one piezoelectric element and (ii) piezo-
electric actuators symmetrically placed on both sides of the elastic plate. The study
accounts for the influence of the stiffness and inertial contribution of the piezo-
electric elements on the local and global responses of the structure. They play non
negligible role. One of the important difficulties is that the piezoelectric patches
introduced material and geometrical discontinuities. In the present work, the equa-
tions of motion have been solved by projecting them on the Fourier base. Such a
study of piezoelectric composites including active piezoelectric elements seems to
be useful for structural control of elastic structures (vibration and shape) [12]. Ex-
tension to more refined models including nonlinear effects could be investigated in
further works.
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Appendix A - Fourier coefficients.

The present appendix gives the detailed components of the matrix form defined in
Section 6 for the bilayer (Eq. (38)) and sandwich (Eq. (39)) configurations in the
case of the cylindrical bending problem.

(i) - Bilayer configuration

For the bilayer configuration the components of the matrix A are
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amn11 = (I
′(e)
0 δmn + I

′(p)
0 cmn00 )Ω2 − (Q

′(p)
11 s

mn
11 + Λ2

n Q
′(e)
11 δmn)

amn12 = −I ′(p)1 cmn01 Ω2 + Z0 Q
′(p)
11 s

mn
12

amn13 = He

π
(I

′(p)
0 cmn00 Ω2 −Q

′(p)
11 s

mn
11 )

amn21 = −I ′(p)1 smn01 Ω2 + Z0Q
′(p)
11 s

mn
21

amn22 =
[
(I

′(e)
0 + Λ2

n I
′(e)
2 )δmn + I

′(p)
0 smn00 + I

′(p)
2 smn02

]
Ω2

−
[
(D

′(p)
11 + Z2

0Q
′(p)
11 )smn22 + Λ4

nD
′(e)
11 δmn

]
amn23 = −(He

π
I
′(p)
1 smn01 + Λn J

′(e)
2 δmn)Ω

2 + He

π
Z0Q

′(p)
11 s

mn
21 + Λ3

nd
′(e)
11 δmn

amn24 = E ′
31s

mn
20

amn31 = He

π
(I

′(p)
0 cmn00 Ω2 −Q

′(p)
11 s

mn
11 )

amn32 = −(He

π
I
′(p)
1 cmn01 + Λn J

′(e)
2 δmn)Ω

2 + He

π
Z0Q

′(p)
11 s

mn
12 + Λ3

n d
′(e)
11 δmn

amn33 = (J
′(e)
3 δmn + H2

e

π2 I
′(p)
0 cmn00 )Ω2 − [(Â′

55 + Λ2
n D̂

′(e)
11 )δmn + H2

e

π2 Q
′(p)
11 s

mn
11 ]

amn42 = E ′
31s

mn
02

amn44 = G′
11c

mn
11 +H ′

33s
mn
00

and the components of the vector B are

bm1 = −2Λme
′
31V̂m

bm2 = −Ŝm + 2Λ2
mZ0e

′
31V̂m

bm3 = −2He

π
Λme

′
31V̂m

In the above definitions we have set Λn = λnh0 and (Ha, Z0) = 1
h0

(ha, z0) with
(a = e) for the elastic plate and (a = p) for the piezoelectric element . We have also
introduced the dimensionless electromechanical and inertial variables and material
constants :

(Ûn, Ŵn, Γ̂n) =
C00

h2
0

(Un,Wn, h0Γn); Ψ̂n =
C00Ψn

E0
; V̂n =

C00Vn
h2

0E0
; Ŝn =

Sn
h0
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(I
′(a)
0 , I

′(a)
1 , I

′(a)
2 , J

′(a)
2 , J

′(a)
3 ) =

1

ρ0h3
0

(h2
0I

(a)
0 , h0I

(a)
1 , I

(a)
2 , J

(a)
2 , J

(a)
3 ); Ω2 =

ρ0h
2
0

C00
ω2

(D
′(a)
11 , d

′(a)
11 , D̂

′(a)
11 , Q

′(a)
11 , Â

′
55) =

1

h3
0C00

(D
(a)
11 , d

(a)
11 , D̂

(a)
11 , h

2
0Q

(a)
11 , h

2
0Â55);

e′31 =
E0e31
C00

; E ′
31 =

E0E31

h3
0C00

; G′
11 =

E2
0G11

h5
0C00

; H ′
33 =

E2
0H33

h3
0C00

;

with the physical quantities

Q
(a)
11 = haC

(a)
11 ; D

(a)
11 =

h3
a

12
C

(a)
11 ; d

(a)
11 =

2h3
a

π3
C

(a)
11 ; D̂

(a)
11 =

h3
a

2π2
C

(a)
11 ; Â55 =

he
2
C

(e)
55

E31 = −h
3
p

6
e31; G11 =

h5
p

30
εS11; H33 =

h3
p

3
εS33

where the constants C00, h0 and ρ0 are respectively the constant elastic modulus,
the thickness and mass density of references (elastic layer for numerical investiga-
tions) and for numerical convenience E0 = 1010 V/m.

Moreover we have set

smnij =< Y (X)Λi
m sin(mπX) ,Λj

n sin(nπX) >

cmnij =< Y (X)Λi
m cos(mπX) ,Λj

n cos(nπX) > {i, j} = {0, 1, 2}

with the operator < , > is defined as < f, g >= 2
∫ 1

0
fg dX with X =

x

L

(ii) - Sandwich configuration

For the sandwich configuration the components of the matrix A are
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amn11 = (I
′(e)
0 δmn + 2I

′(p)
0 cmn00 )Ω2 − (2Q

′(p)
11 s

mn
11 + Λ2

nQ
′(e)
11 δmn)

amn22 =
[
(I

′(e)
0 + Λ2

n I
′(e)
2 )δmn + 2(I

′(p)
0 smn00 + I

′(p)
2 smn02 )

]
Ω2

−
[
2(D

′(p)
11 + Z2

0Q
′(p)
11 )smn22 + Λ4

nD
′(e)
11 δmn

]
amn23 = −(2He

π
I
′(p)
1 smn01 + Λn J

′(e)
2 δmn)Ω

2 + 2He

π
Z0Q

′(p)
11 s

mn
21 + Λ3

nd
′(e)
11 δmn

amn24 = 2E ′
31s

mn
20

amn32 = −(2He

π
I
′(p)
1 cmn01 + Λn J

′(e)
2 δmn)Ω

2 + 2He

π
Z0Q

′(p)
11 s

mn
12 + Λ3

n d
′(e)
11 δmn

amn33 = (J
′(e)
3 δmn + 2H2

e

π2 I
′(p)
0 cmn00 )Ω2 − [(Â′

55 + Λ2
n D̂

′(e)
11 )δmn + 2H2

e

π2 Q
′(p)
11 s

mn
11 ]

amn42 = 2E ′
31s

mn
02

amn44 = 2(G′
11c

mn
11 +H ′

33s
mn
00 )

and the components of the vector B are

b
m

2 = −Ŝm + 4Λ2
mZ0e

′
31V̂m

b
m

3 = −4He

π
Λme

′
31V̂m
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Tables

CE
11 CE

12 CE
33 CE

13 CE
44 e31 e33 e15 εS11 εS33

PZT-4 139. 77.8 115. 74.3 25.6 -5.2 15.1 12.7 13.06 11.51

Table 1
Material constants for the PZT4 ceramic (CEij in [GPa], eij in [C/m2] and εSij in [nF/m]).
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CE
11 CE

12 CE
22 CE

23 CE
55 e31 e33 e15 εS11 εS33

Comp. 134.86 5.1563 14.352 7.1329 5.654 0 0 0 0.031 0.0266

Table 2
Material constants for the graphite/epoxy composite (CEij in [GPa] and εSij in [nF/m]).
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x = L/2 x = L/4

Simp. Model Present Model Simp. Model Present Model

w∗ [µm] 13.7399 14.2384 5.94668 5.80753

u∗ [µm] 0.391476 0.40287 0.115113 0.110985

σ∗
11 [MPa] -1.70128 -1.73127 -1.62216 -1.67497

D∗
3 [mC/m2] -2.90893 -2.96064 -2.92192 -2.98491

Table 3
Characteristic electromechanical values for the bilayer configuration (patch position at
x=L/2 and x=L/4).
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x = L/2 x = L/4

Simp. Model Present Model Simp. Model Present Model

w∗ [µm] 24.8281 26.3238 8.47685 8.20863

u∗ [µm] 0.56934 0.599314 0.130699 0.124644

σ∗
11 [MPa] -1.5523 -1.55115 -1.43574 -1.51824

D∗
3 [mC/m2] -2.93339 -3.01699 -2.95253 -3.04228

Table 4
Characteristic electromechanical values for the sandwich configuration (patch position at
x=L/2 and x=L/4).
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x = L/2 x = L/4

Simp. Model Present Model Simp. Model Present Model

Flexural n=1 603.96 598.48 608.79 604.29

n=2 2770.2 2719.5 2474.9 2418.6

n=3 5827.8 5570.8 5848.2 5595.7

n=4 10894. 10163. 10163. 9434.2

n=5 16695. 14987. 16461. 14783.

n=6 24034. 20819. 24059. 20775.

n=7 33056. 27478. 31799. 26251.

n=8 42112. 33449. 41670. 32997.

Axial n=1 39050.9 38754.6 46351.5 46106.4

n=2 61855.9 60588.9 76485.9 77236.

Table 5
Modal frequencies in [Hz] for the bilayer configuration (patch position at x=L/2 and
x=L/4).
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x = L/2 x = L/4

Simp. Model Present Model Simp. Model Present Model

Flexural n=1 539.86 532.52 550.79 544.88

n=2 2751.3 2700.3 2432.2 2361.8

n=3 5735.3 5447.4 5670. 5384.7

n=4 10664. 9932. 9696.8 8948.1

n=5 16883. 15041. 16598. 14812.

n=6 23312. 20094. 24419. 20844.

n=7 33800. 27814. 31825. 25953.

n=8 41003. 32351. 42099. 32937.

Axial n=1 39602.5 39602.5 27458.8 27458.8

n=2 52365.9 52365.9 61855.9 61855.9

Table 6
Modal frequencies in [Hz] for the sandwich configuration (patch position at x=L/2 and
x=L/4).
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Fig. 1. Sketch of a piezoelectric element perfectly attached onto an elastic plate.
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Fig. 3. Numerical results for the bilayer configuration (patch located at x=L/2) for an
applied electric potential [Present model (solid-line) - Simplified model (dashed-line)].
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Fig. 4. Numerical results for the sandwich configuration (patch located at x=L/2) for an
applied electric potential [Present model (solid-line) - Simplified model (dashed-line)].
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Fig. 5. Numerical results for the bilayer configuration (patch located at x=L/4) for an
applied electric potential [Present model (solid-line) - Simplified model (dashed-line)].
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Fig. 6. Numerical results for the sandwich configuration (patch located at x=L/4) for an
applied electric potential [Present model (solid-line) - Simplified model (dashed-line)].
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Fig. 7. Spectrum frequencies for the bilayer configuration (patch position at x=L/2 (a) and
x=L/4 (b)) [Present model (solid-line) - Simplified model (dashed-line)].
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Fig. 8. Spectrum frequencies for the sandwich configuration (patch position at x=L/2 (a)
and x=L/4 (b)) [Present model (solid-line) - Simplified model (dashed-line)].
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