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Compliant bistable mechanisms are a class of mechanical
systems that benefit from both compliance, allowing easy
manufacturing on a small scale, and bistability, which pro-
vides two passive and stable positions. These properties
make them first-class candidates not only for micro-switches
but also several other robotic appliances.

This paper investigates the actuation of a simple bistable
mechanism, the bistable buckled beam. It is pointed out
that the position of the actuation has a significant impact on
the behaviour of the system. A new model is proposed and
discussed, with experimental validations to compare central
and offset loading, highlighting the strengths of each.

Introduction

Bistable mechanisms are systems which use deflection to
store and release energy in order to obtain two distinct sta-
ble positions. They can keep these two separate states with-
out actuation. They can also withstand small disturbances
around their stable states, which allows for robust designs.
All these properties make them very good candidates for sys-
tems which require two working states, for example on/off,
open/closed. ..

Bistable systems are commonly used as switches [4] in a
wide range of sizes from the macro to the micro-world [13].
They are also greatly used in microrobotic applications such
as microgrippers or binary robotic devices [3].

Another potential application is quasi-tactile display
with a high density matrix of tiny actuators. A spatial reso-
lution of around 1 mm is required to achieve efficient tactile
rendering.

When miniaturizing these systems, classical assembly-
based mechanisms are very difficult to build. Compliant
mechanisms have proved to be a good solution for minia-
turization of bistable systems [6]. The actuation technology
should be accurately selected. Electromagnetic motors, for
example, are difficult to machine and manufacture, and they
are oversized in comparison with the whole mechanism. Bi-
layers, thermal actuators or electrostatic actuators are an ex-
ample of other common microactuators. Other actuators,
called smart materials, look very promising. These mate-
rials are said to be smart because they are able to react to a
modification of their environment. For instance, shape mem-
ory alloys (SMA) are able to react to temperature changes,
the effect is based on an internal microstructure (Austen-



ite/Martensite) modification. Piezoelectric materials suffer
elastic deformations when an electrical field is applied.

This means that by modifying a physical parameter
locally, deflection and hence mechanical work can occur.
These actuators are of value in the micro-world because as
they are made of a single material, they are monolithic. No
assembling process is required.

One drawback associated with smart materials is that
when we remove the applied power, they tend to come back
to their initial state (with some exceptions due to viscos-
ity). Therefore, they need to be continuously powered. For a
two-function system, this means that continuous powering is
needed. A better design would only be powered during the
transition phase between one stable position and the other.
We propose to combine a bistable mechanism with a smart
actuator giving us a system that can be actuated with much
lower power requirements.

Different smart materials cover a large range of deflec-
tion and displacement. This allows us to choose between a
wide variety of actuation designs. For instance, some actua-
tors will have bending deflection (SMA [14], piezoelectrics,
Electro-Active Polymers [10]). Others, such as wire SMAs,
will have linear deflection. A force actuation can also be
achieved, for instance, with a bender actuator (such as an
SMA bender [2]). These kinds of actuators are widespread
among smart materials. They are less powerful than their
stack equivalents but allow much larger displacements.

In the present paper, we will focus on the actuation of a
bistable mechanism using a localized force.

1 Bistability of precompressed beams

There are two main families of buckled systems. First,
mechanisms which are buckled due to lateral force or stress
remaining during their manufacturing process. Then, there
are systems which are machined with a curved shape [7]. The
latter are very accurate for monolithic cuts and can achieve
asymmetrical bistability.

A precompressed buckled beam, shown in Fig. 1, is
studied in this paper, with different actuation scenarios. The
aim is to understand the influence of the actuator location on
the performances of the system. This beam is actuated to
switch from one stable state to another. A force is applied to
the beam at different locations. The resulting displacement
of the actuation point along the y axis is determined.

As shown in Fig. 2, the beam is initially straight. It is
then shortened by a small percentage of its length at the right
end. As predicted by the Euler model, under axial compres-
sion greater than a critical force, the beam will buckle in its
first buckling mode. A second buckling mode is predicted
but will never occur because of its instability (a consequence
of a higher level of energy).

The previous analysis can be reproduced for the sys-
tem with an actuation. A virtual beam, defined as an Euler-
Bernoulli beam with no compression energy, can be used
to determine the deflection of the beam which will bring
an equilibrium solution. The buckling phenomenon is then
taken into account to obtain the actual deflection of the sys-
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Figure 1. A clamped-clamped bistable mechanism. A force allows
the system to snap from one stable position to the other one.
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Figure 2. Compression of the beam. The first buckling mode ap-
pears. During actuation, the second unstable mode appears.

tem; this means that the deflection can be written as the sum
of a general solution (consisting of the first buckling modes)
and a particular solution as found before. In the case of
the small deflection hypothesis, only the first two buckling
modes are considered. The second buckling mode, which
does not exist if no forces are applied, may appear thanks to
the extra energy brought by the actuation.

Figure 3. Topological decomposition of the deflection, using a gen-
eral solution (mode 1, mode 2) and a particular solution.

Previous works for central actuation as [12] or [8] use
an energy method, based on the fundamental Euler-Bernoulli
beam equations. The internal energy of the system is analyti-
cally defined then derived to produce the equilibrium config-
urations. This could lead to very complex equations if a high
degree of precision is desired (hence a large number of buck-
ling modes). To solve it, an analysis of the modes involved
makes it possible to reduce the behaviour to two mechani-



cal branches, mode 1 deflection only and mode 2 buckling
giving the N-shape as defined below. This gives excellent re-
sults for central actuation and we present no new results in
this regard since our method produces the same results.

However, it is not possible to use the previous analy-
sis for a non-central actuation since the branches are not the
same. This paper presents a novel approach, still based on
energy, but using a different way of solving the beam equa-
tions of bistable systems.

The present analysis, as shown before and represented
in Fig. 2 and Fig. 3, makes it possible to split the resolution
into two steps. The first is the particular solution resolution,
which solves the system before buckling, making it possible
to obtain a large number of modes since the deflection is pro-
portional to the actuation excitation and no cross coefficients
appear. Next, the buckling phenomena are taken into account
through the use of a complex compression equation which
has cross parameters. This second resolution is limited to
the first two modes as they are topologic so it is possible to
solve it speedily with a modern computer and a numerical
solver.

These two steps make it possible to benefit from both a
high degree of precision (with a large number of modes in
the particular shape) and efficient resolution with the only
two topologic modes taken into account in the second step.
Moreover, it gives the desired equilibrium f-d curve directly
after the resolution without needing to add and superimpose
several mechanical branches in the case of central or shifted
actuation.

2 Analytical Model of a Buckled Beam

The system is considered using an out-of-plane beam
model. The Euler-Bernoulli beam model was selected. The
beam is made of stainless steel, so the deflection will be small
enough to ensure that no plastification occurs. The end-
shortening was chosen small (2%), so the small-deflection
hypothesis is still valid.

2.1 Equation of the buckled beam

The solution for the total deflection is written based on
a topological approach as illustrated in Fig. 3. The deflec-
tion is the sum of a general solution (for buckling behaviour,
including the first and second modes of buckling) and a par-
ticular solution (for equilibrium).

Buckling mode 1 is defined by the equations of Euler-
Bernoulli for an elastic buckled beam. For a clamped-
clamped system, it is given by [11]

v =a (l—cos (2%%)) ey

For the mode 2, the deflection is given by

2
Y2=a ( 1— TX — COS (Nzﬂ',;)
2
+@ sin (Nzﬂ',;))

with N, the first positive solution for N in the following
equation

@

N N

The role of those two functions is very different. Buck-
ling mode 1 is responsible for bistability, with the selected
state (position 1 or position 2) given by the sign of a;. On
the other hand, buckling mode 2 has no effect on the state and
occurs to limit the energy needed to switch from one state
to the other. In some cases, this second buckling deflecting
never occurs.

Deflection mode 1 and mode 2 are drawn in Fig. 4.

Figure 4. First and second modes of buckling for a clamped-
clamped beam. These first two modes coexist during the snapping
process.

The particular solution corresponds to an equilibrium so-
lution. It can be determined analytically. Another method,
used in this study, is to calculate a particular solution for
a virtual beam which has no compression energy using a
Galerkin method.

Finally, as y, is a particular solution due to the actuation
force, the deflection is written as

y=y1+y2+Ya. @

If there are several actuators, several particular solutions
must be summed and the deflection becomes

SN0
y=yi+y+Y vi Q)

J=1

where j is the index of the actuator and M is the total number
of actuators.



The displacement of a point P of axial coordinate x,, is
given by

d=y(xp). (6)

2.2 Energy Relations for a Buckled Beam

The energy of the system is now calculated. An explicit
formulation of the energy is used making it possible to draw
the energy functions. There are three kinds of energy in the
Euler-Bernoulli model.

(i) Bending energy U, is given by

_ [LEI (08(s)\°
U,,_/OZ( = ) ds (7)

where E is Young’s modulus, I the quadratic moment, s
the curvilinear coordinate along the beam and 6, the cross-
section rotation. If Cartesian axes are used, with a straight
beam with small displacements and with E and I constant
along the beam, this expression can be approximated by

Up~— [ y'(x)?dx. ®)

Using Eq. (4), the above energy is then a polynomial function
of second order with respect to amplitudes a; and a,.

(ii) Compression energy is calculated using the Hooke law,
let us define the deformation as

8:S_—lo )

lo

where [y is the length of the unladen beam and § is the length
of the buckled beam given by

1 1
s":/ds:/ /14y (x)%dx.
0 0

As a small displacement hypothesis is used, an asymptotic
development of the square root can be performed, leading to

(10)

1 )
s_zl+*/ ¥y (x)?dx. (11)
2 Jo

The cross sectional area S (with S = bh) is then used to
obtain the compression energy U, as

1
U.= -SE¢€°.

> (12)

The result is a polynomial function of the fourth order with
respect to amplitudes a; and as.
The normal force Fy, as shown in Fig. 1 is defined as
Fy =SEe. (13)
(iili) The energy resulting from the external force UF is the
opposite of the work of that force, it is written as

UF = —Fy(xp) (14)

where F is the force and xr is the position of the applied
force.

Finally, the total energy Uy, of the system is the sum of all
the previous energies.

Uiot = Up +U: + UF. (15)

2.3 Determination of a Particular Solution
In order to obtain the particular solution y,, a projection on
the buckling modes, as defined in [11], is used. On setting

X= )lﬁ’ the buckling modes are given by

yi = a;(1—cos(N; X)) (16)

for odd i, with N;=im,i€{2,4...}, and

yi:ai(1—cos(MX)—;(N,-X—sin(NiX))> (17)

1

for even i, with N; the ith solution to Eq. (3).

The particular solution can be approximated by the first
M buckling modes. We take M =20 in order to obtain a good
enough accuracy.

(@)
Yo Y & k- (18)
k7

=1

A virtual beam without compression energy is used, so

Ul —o. (19)

Equations (18) and (19) can be now substituted into
Eq. (15). At this stage, Uy, is defined as a polynomial of

(a,(:l))ke{ 1,2..m} With all coefficients of degree less than or
equal to 2. The extrema of the energy are determined by

writing
{aU$>:O}
da; ie{1.2..M}

(20)



Solving Eq. (20) makes it possible to determine coeffi-
cients a; which will be put into Eq. (18) to obtain a particular
solution y,. It is worth noting that there is only one solu-
tion to this system (the degrees of the polynomials are lim-
ited to degree 2, the derivate has only one solution for each
variable), whereas the real mechanism has several possible
configurations.

2.4 Determination of the Equilibrium Solution on the
Real System
The next step is to obtain the equilibrium solutions on the
real system.

The particular solution derived from the previous equa-
tions is now used in Eq. (15). U;,, is a polynomial function
of coefficients a; and a,, each of these is present up to degree
4. Fig. 5 shows the shape of U;,; depending on coefficients
ap and as.

Figure 5. Energy of the system depending on coefficients a1 and
aj, drawn for an external force of 10 N (central actuation).

By writing the equilibrium criteria of the real system,
all the equilibrium shapes for a given external actuation are
obtained (here for a given external force) as follows

aUtot _
{ aa1 =0

This is a system of two third order polynomial equa-
tions with several solutions. A numerical solver (the Maple©
solver) is used to compute it.

aUlUY — 0} ]

D 21

For an external actuation force that is less than the snap-
ping force, there are 5 equilibrium configurations, 2 of them
are stable, 2 undefined (in sense of stability, i.e. stable for
one variable and unstable for the other one) and one is un-
stable. Equation (4) is used to draw, as in Fig. 6, these 5
shapes. The five configurations were drawn for a centrally
actuated beam as an example in Fig. 6. The unstable config-
uration, only using mode 1 is shown as shape S/i. The two
stable configurations are shapes S/p and SIm, respectively
for a positive and negative coefficient a;. The two undefined

solutions are shapes S2p and S2m, respectively for a posi-
tive and negative coefficient a;. It is worthwhile noting that
even if there are no higher modes than the first two modes in
the latter equation, the upper modes still exist thanks to the
particular solution. Finally, the force-displacement and the
coefficients versus displacement curves can be drawn using
Eq. (6), Eq. (13) and the result of Eq. (21).

Figure 6. The five configurations of equilibrium for an actuation
force of 10N, for a centrally actuated beam.

3 Performance Criteria

Several performance criteria (illustrated in Fig. 7) are de-
fined for mechanism optimization. Some of these criteria
are linked to stability positions (behaviour in a non-actuated
state), others are linked to the behaviour of the system during
a controlled switch from one position to the other.

We note P the normal force which would need to be ap-
plied to the structure in order to compress it from its initial
length [j to the system length / without considering buckling.
Hence, using the law of elasticity, P is determined by

-1
Iy

P=SE

(22)

P should be compared with Pc(z) the critical buckling
mode 2 load [11], given by

NZEI
0= 2 (23)
We define np as
P
NP = —5- (24)
P

Very low values of precompression give a mnp that is
lower than 1. In other words, the compressive force of the
fully straight beam is smaller than buckling mode 2 critical
force, so the system never uses mode 2 buckling. The f-d
curve is only made of a branch (b1) using mode 1 buckling
only, which is sinusoid shaped as in Fig. 7. It includes the 2
stable points and links them. As it only uses buckling mode



1, amplitude a, of Eq. (21) is always zero and it can be de-
termined with the particular solution and amplitude a; set to
zero in Eq. (21). In this case, the system switches in a fully
straight configuration as in the case of shape S/i in Fig. 6
using only compression of the beam.

“|Force (mN)
8i «_ Stable domain 2 .
4.

displacement{mi

' 0 02 ' 04 1

__ Stable domain 1| . )
Stioke 87 T

et R

Figure 7. Performance indices: Switching point (S), apparent stiff-
ness (A.S), average apparent stiffness (a.A.S) both on point P1,
stroke and stable domains.

The case where Mnp is higher than 1 with PL@ of the or-
der of P has already been studied by M. Vangbo [12] for
central actuation. In this case, a shape similar to Fig. 8 is
obtained. There is still a mode 1 branch (b/) with a sinu-
soidal shape but it is cut by a (b2) negative stiffness branch.
This branch uses mode 2 buckling and allows the system to
shorten the branch (b1) lowering the force and the energy
needed to switch from one stable position to the other. It is
this way that mode 2 buckling helps the system to switch.

Concerning the branch (b3) due to the mode 3 buckling,
the same behaviour as for the previous branch (b2) is ob-
tained. It is an inverse stiffness branch with a higher abso-
lute stiffness and it does not use mode 2 buckling (the two
curves are fully independent). As it uses a higher mode, a
higher level of energy is required and branch (b2) is always
preferred over branch (b3) for single beam systems. How-
ever, in the case of double beam systems, amplitude a, of
Eq. (21) is set to zero and branch (b3) is used. It is worth
noting that there is a negative stiffness branch for every up-
per mode, which is not used for the same reasons. We do not
integrate it into the model because all of the useful informa-
tion is already included in the particular solution and it needs
significant computing power to be solved.

If np is greatly larger than 1, as in our simulations and

experiments (we have P=30000 N and Pc(z) =161 N, hence
np = 186), the shape of branch (b1) is changed to become
closer to the particular solution curve, which is a positive
stiffness line as seen in Fig. 9. It still links continuously
the two stable positions. The branch (b2) still exists, even
if it does not appear in the graph since it is completely flat-
tened. Hence the branch (b1) is directly cut by the branch
(b2) (as seen in Fig. 11) and the two portions of the branch
(b1) seem vertical. Moreover, the vertical portion of branch
(b1) around the zero displacement point still exists and ap-
pears in all the following f-d curves, as they are simply cut to
the useful force range.

(b1)

(b3)
P+

(b2)

\j

Figure 8. f-d curve for a central actuation depending on parameter
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Figure 9. Full range f-d curve for a central actuation with a high
Tp parameter (Np = 42, used from the following simulations). The
positive stiffness line appears representing the particular solution be-
haviour. The actual f-d curves are obtained by cutting this curve to
the useful force values, here F = —40 Nto F' =40 N as in Fig. 11.

For a shifted actuation, the branch is using both mode 1
and mode 2 buckling in a non-obvious way. It is not possi-
ble to use as for a central actuation an analysis with a branch
for each mode behaviour. It is one of the point of this paper
to propose a model which directly incorporates mode 1 and
mode 2 buckling, without needing a branch split as do pre-
vious works. Still, np is representative of the importance of
mode 2 buckling during the switch.

It should be noted that increasing P also increases the
non-linearities of the mechanism and at a certain point,
a model which takes into account the geometrical non-
linearities, such as elliptic displacements [5], is needed.

We also consider the switching point, the point where
the applied force reaches its maximum. We take into con-
sideration both the maximum applied force F,,,, (therefore
the maximum force needed to switch from one position to
another) and its position (which delimits the domain that can
be used in non-actuated state, i.e. the depth of the stable do-
main).

We use the apparent stiffness and the average apparent
stiffness which represents the stiffness on the stable point and
the average stiffness from the stable point to the switching
point, respectively. These are key parameters to qualify the
rigidity of the system.



The actuation stroke should also be studied along with
the depth of the two stable domains.

4 Simulation Results

First, a bistable structure with a centred force is investi-
gated. This actuation does not involve mode 2. The force
is then shifted to determine the effect of a translation of the
actuator.

A beam of length 100 mm, width 20 mm and thickness

0.4 mm is used in a 304 stainless steel of Young modulus
E=187.5 GPa and the beam is subject to a 2% precompres-
sion for the computation and experimental tests.

4.1 Bistable Beam with a Central Actuation Force
For this system, a precompression such as P is higher than

Pc(z) is selected.

Fig. 10 represents the chronology of the switching. A
central force (2) is applied up to a certain force when the
beam buckles in mode 2 (3). Note that there are two symmet-
rical possible shapes with equal probability [9] depending on
the sign of a;. Then we switch and go to (4) where the beam
comes back to a mode 1 only buckled shape.

Figure 10. Snapping sequences for a typical clamped-clamped
beam. Mode 2 buckling is used to help the switch from one posi-
tion to the other.

The f-d curve is shown on Fig. 11. A classical N-shape
is obtained, i.e. there is a constant negative stiffness around
the zero displacement point. There are several branches on
this graph.

The branch (b]) represents the straight configuration. It
is sinusoidal shaped and is cut in the diagram as it goes very
high. In Fig. 10, this branch is used on configurations 1, 2,
4 and 5. This branch only uses buckling mode 1, i.e. the
coefficient a, along this branch is zero.

Branches (b2p) and (b2m) use buckling mode 2. These
branches only appear when normal compression is high
enough to obtain buckling mode 2, so they only exist for a
restricted domain. In this domain, the entire energy of the
system is lower in the case of buckling mode 1 and mode
2 than in the case of mode 1 buckling only so one of these

et m_“ Force(N) .
e (b2p) : (b1)
(b1)} e :
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Figure 11. f-d curve for a central actuation clamped-clamped
beam.

branches is preferred. In the fin-d curve (Fig. 12), it can be
observed that the two (b2) branches exist when the normal
force is equal to the critical force of the second buckling
mode [1]. These branches have the same probability and one
of those is chosen by the system.
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Figure 12. fn-d curve for a central actuation clamped-clamped
beam.
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Figure 13. Coefficients a; (cross) and a3 (circles) versus displace-
ment curves for a central actuation clamped-clamped beam.

In Fig. 13, the evolution of the coefficients a; and a;
is represented. Displacement is proportional to coefficient
ay. The coefficient a; curve is an ellipsoid with two separate
upper (b2p) and lower (b2m) branches. At the two extreme
positions, the a; coefficient is zero.

In Fig. 6, the five possible configurations found for a
10 N actuation are drawn. The three mode 1 shapes are



SIm, SIi and SIp, the negative state, the unstable straight
configuration and the positive state shapes of branch (b1),
respectively. Buckling mode 2 shapes S2m and S2p belong
to branches (b2m) and (b2p), respectively.

In such systems, the apparent stiffness is excellent
(120 kN/m) and the maximum force quite high (37 N). The
stroke is the maximum which can be obtained with this
mechanism. On the other hand, the width of the stable do-
main is only half of the stroke.

4.2 Bistable Beam with a Shifted Actuation Force
A shifted force actuation is now used (as in Fig. 14). This
breaks the symmetry i.e. whereas only odd modes are excited
in the case of a central force, all modes came actuated there.
Fig. 14 presents a schematic chronology of the snapping
process. The snapping is delayed compared to a central ac-
tuation. The system parameters are the same as for a cen-
tral actuation (see Fig. 1), except that the actuator has been
shifted laterally.

Figure 14. Switching sequences with a shifted force actuator, the
snapping is delayed.

The previous theoretical model was used with xp
changed to 40% in Eq. (14). The particular solution was re-
calculated and now a combined mode 1 and mode 2 actuation
appears (plus upper modes). The resulting f-d, fin-d and co-
efficients versus displacement curves are drawn in Fig. 15,
Fig. 17 and Fig. 18, respectively. The full f-d curve (before
cutting) is given in Fig. 16.

The f-d curve indicates a rounded curve with two sepa-
rate branches, (b2p) and (b2m), and a hysteresis. The straight
configuration still exists and links the two branches (this is
out of the range of the curve and is not displayed in the nor-
mal f-d curve, however, it appears in Fig. 16).

The plateau of the critical mode 2 now does not appear
on the fn-d curve. This is due to the combined mode 1 and
mode 2 actuation.

The curves of both coefficients a; and a; exhibit a more
complex shape than in the case of a central actuation. Coef-
ficient ay starts to increase immediately after the stable po-
sition. More importantly, there is no continuity between the

Force (N)

Figure 15. f-d curve for a clamped-clamped beam with a shifted
(40%) actuation.

A Force (N)

displ acement (mrr:w)
I 1 h'
0 4 8

Figure 17. fn-d curve for a shifted actuation clamped-clamped
beam.

two branches (except with the unstable straight branch). This
means that the delayed snapping corresponds to a branch
jump. It cannot be accurately predicted with a static model.
Moreover, this branch jump will be very sensitive to small
machining tolerances and is hardly predictable.

Concerning the performance of this system, the maximum
force (25 N) has decreased compared to the central actuation
one, the apparent stiffness has fallen to 24500 N/m and the
stroke is smaller (16.3 mm compared with 18 mm).

4.3 Use of more than 2 modes of buckling
In order to verify the hypothesis that only the first two
mechanically compatible modes are involved (modes 1 and
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Figure 18. Coefficients a; (cross) and a; (circles) versus displace-
ment curves for a shifted actuation clamped-clamped beam.

2 for a single beam, modes 1 and 3 for a double beam), a
system with the three first modes (i.e. mode 1, mode 2 and

mode 3) is investigated.
Mode 3 buckling is defined as

y3=a3 (1 —cos (4%?))

The deflection y is now written as

(25)

y=y1+y2+y3+ya (26)

where yi, y; and y3 are defined by Egs. (1), (2) and (25).
The equilibrium equations are now changed into

aU[OI
" da3

aUtot

anO[ —
day

27
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As an example, a central actuation f-d curve is drawn in
Fig. 19. It appears that the curve has the same shape than
the previous one with a; and a; (branches (b1), (b2m) and
(b2p)), plus two superposed branches that use only buckling
mode 1 and mode 3 (branches (b3m) and (b3p) with a; =0
for these branches). So that f-d curve is a superposition of
the previous curve using buckling mode 1 and mode 2 and
another one using only buckling mode 1 and mode 3 (actu-
ally the double beam f-d curve). This is a consequence of the
orthogonality of the modes. This result was already previ-
ously demonstrated by J. Qiu et al. [8] and M. Vangbo [12]
with other methods and is still valid for a shifted force. This
is explained with the present model and the use of a partic-
ular solution, only the first two modes are important for the
buckling modelling as the mechanism cannot simultaneously
use three modes. Consequently, only the first two modes are
needed in the general solution to model a bistable switch.

" day

4.4 Using a Pre-Shaped Beam
Pre-shaped beams, as used by J. Qiu [8], make it possible
to obtain monolithic bistable mechanisms which are manu-
factured directly by cutting into a single material part such
as silicon wafers. The model has been explained in the pub-
lication referred above and this section is intended to show
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Figure 19. f-d curve for a central actuation beam with 3 free param-

eters ap, ap and as.

how the present model can be extended to take into account
the specificities of this type of bistable system.

Pre-shaped beams are based on the use of a beam which
already has a non-straight shape when relaxed, typically the
sinus mode 1 buckling shape. Hence, the free length is no
longer [y but the length of the relaxed system calculated using
the same formula as for the beam of current length § in the

free length sy is therefore defined as

i I
$o = ds:/ 14+ (x)2dx
0= [ das= [ /1430

with yg the shape of the beam when relaxed, either mode 1
buckling or any shape. § (from Eq. (11)) is unchanged. Then

Eq. (9) becomes

(28)

§— 50

S0

(29)

Furthermore, the bending energy needs to be changed to
take into account the initial shape, so Eq. (8) is now replaced

by

1/

EI [!
= 0

—— 30
Up > Jo (30)

(v (x) = ¥ (x))* dx.

This makes the system not symmetric in behaviour. The
latter equation can also be used to take a predeflection of
stratified structures into account both in the case of a passive
or an active structure [6]. No tests were carried out for it in
this work so the simulation results are not presented. How-
ever, since it uses the same approach as J. Qiu’s work, it is

expected to produce good results.



5 Experimental Validation
Experimental validations were carried out to validate the
model. We used the test bench shown in Fig. 20.
The bistable beam is made of stainless steel 304, with
a Young modulus of E=187.5 GPa, length 100 mm, width
20mm and thickness of 0.4mm as in the case of the simula-
tion.

Figure 20. Test bench for force-displacement measurement. On the
left is the Vishay console, on the right is the mechanical setup.

The 2% precompression (hence a 2 mm displacement
in the left direction) is obtained through the use of a Thor-
labs PT1 travel translation table featuring a 10 um adjust-
ment. The precompression chosen was small enough to stay
in the small-assumption hypothesis and to avoid plastifica-
tion. Since plastification also occurs due to dynamical ef-
fects when switching, it was not possible to calculate a max-
imum precompression without plastification. The beam was
checked after the test to ensure that no plastification oc-
curred.

Force is applied through a setup with two PT1 transla-
tion tables. One is used to set the position of the force ap-
plication (horizontal displacement). The other controls ver-
tical displacement, hence, the displacement as defined in all
f-d curves. It can be observed that the translation table is
reversed compared to the classical Thorlabs setup, so the
down-face of the vertical table is seeable in Fig. 20. This par-
ticular setup was made since the Thorlabs table uses springs
and a precision micrometer. The up-face of the table is
pressed to the micrometer. This setup makes it possible to
ensure the system force is locked by the micrometer instead
of the springs ensuring good contact and therefore optimal
precision.

The force is measured through an HBM S2-600 force
sensor (an S-shaped force sensor with an internal dou-
ble Wheatstone bridge) interfaced with an analogic Vishay
Wheatstone bridge console, a setup said to give a 4 digit pre-
cision. The force sensor was calibrated before the tests which
confirms a degree of accuracy greater than 0.04 N.

Next, the force is applied to the beam via a special
plastic-made V-shaped shaft. With such a system, only a neg-
ative force can be applied but we avoid friction and damping
effects.

Experiments were performed for the two simulation
cases presented above. Central and shifted (40%) force ac-

tuation are superposed to the simulation curves in Fig. 22
and Fig. 23, respectively. For each experiment, we show the
mean values of ten measurements. The experimental points
show that the model has a high degree of accuracy for the
shape of the f-d curves. The displacement appears to be over-
estimated by roughly 5% in every simulation. The level of
forces is always lower than expected for these experiments
but there is an uncertainty concerning the Young modulus
material although the global shape seems fine. In the case
of central force actuation, the vertical branch of the N is ro-
tated, an effect which seems due to the limit of the model in
this case, since a fully vertical branch cannot be obtained in
the real world.

Figure 21. Test bench for force-displacement measurement.
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Figure 22. f-d curve for a central actuation clamped-clamped
beam, with experimental points in cross.

As explained before, another effect are hysteresis phe-
nomena. There is a small hysteresis due to the two branches
(branch (b2p) and branch (b2m)) for a shifted force actua-
tion. There is also a smaller hysteresis phenomenon on each
branch. This effect was observed on a nylon double beam
system [9]. It was not predictable using the proposed elas-
tic model. It is observed on the central actuation f-d curve
(Fig. 22). The null force is achieved for a displacement of
about 0.85 mm (5% of the stroke, giving a 10% hysteresis).

To emphasize the hysteresis, an experiment using the
same conditions of a shifted force actuation as in Fig. 15 has
been performed. The same stainless steel has been used but
from another set of steel plate from the same provider. The
branch is followed by applying a displacement to be close
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Figure 23. f-d curve for a shifted (40%) actuation clamped-clamped
beam, with experimental points (cross).

to the point where the force becomes positive, then coming
back. The results are shown in Fig. 24. This experimental
protocol ensures sticking to the same branch during actua-
tion and a branch hysteresis effect is observed.

A Force (N)

: s :
displacement (mm)
— -

Figure 24. f-d theoretical curve with a 40% actuation shift (points),
compared to experimental measurements (line).

6 Discussion of Results

The aspect of the f-d curve obtained with a shifted actu-
ation has a high degree of consistency with the experimental
data. However, the N-shape obtained for a central actuation
seems less accurate. Actually, central actuation is a very spe-
cial case of actuation (no actuation on the second buckling
mode). This causes the transition between branches (b1) and
(b2m) or (b2p) to be abrupt whereas a smoother transition
would be physically more acceptable. A model with a very
small shift has been implemented. The resulting f-d curve
of a closely central actuation (force is applied at 49.5% of
the length) is presented in Fig. 25 using the shifted actua-
tion equation previously presented. Experimental data taken
from a central actuation test with the second set of steel is
shown on the same curve.

Using a small shift in the actuation position results in a
very small hysteresis and a smoother transition. The latter is
much better but the apparent stiffness is still overestimated.
This could be a consequence of the linearity of the model.
Although not shown there a lower precompression leads to

A Force (N)

i, displacement (mm)

Figure 25. f-d curve for a clamped-clamped beam with a slightly
shifted (49.5%) actuation, with central actuation experimental points
(cross).

a better agreement of the theoretical with the experimental
data. This means that the linear model is no longer valid for
high level of precompression where non-linearities should be
accounted for. Concerning hysteresis, even if there is cur-
rently hysteresis in the real system, the hysteresis exhibited
by the model seems to be too low to explain the actual phe-
nomenon.

The snapping location, i.e. the point where the applied
force becomes negative, has a major impact on the behaviour
of the system. This point indicates the end of the stable do-
main. After it, the system does not return automatically to its
first position. Furthermore, it delimits the domain where the
actuator is active. For a central actuation beam, due to the N-
shape of the f-d curve, the stable domain is half of the stroke
of the system. In the case of shifted actuation, the hysteresis
increases the stable domains. In this configuration, we can
inject energy in a longer stroke. Since the total energy to put
into the system is relatively constant for a reasonably shifted
force (from 50% to 65% of length, the energy increases by
less than 15%), the maximum force decreases. It has been
demonstrated in the previous example that there has been a
37 N to 21 N decrease in the peak force, a 43% drop. Fur-
thermore, due to the cantilever effect, the stroke of the ac-
tuator decreases even if the active stroke increases. Another
advantage is the rise of the stable domain. The system has
increased robustness against displacement disturbance.

Another way to illustrate this change is to use an energy-
based method. As mentioned before, the effective snapping
energy is quite constant but the actuator is not designed for
this energy. It is actually designed, in most cases, to exceed
the maximum required force and stroke so a design energy
can be defined as the product of the stroke and the maximum
force of the actuator. Then the ratio effective switching en-
ergy over the design energy can be considered. This has been
represented in Fig. 26 for a central actuation and for a shifted
(40%) actuation in Fig. 27. It can be seen that this ratio is
only 25% for the central actuation (due to the triangular-like
N-shape) and increases significantly for a shifted actuation
(roughly 50%-60%). This means that the actuation is best
used with a shifted force so it is possible to choose more
compact actuators.

It is worth noting that the opposite effect is obtained



when the actuation is shifted too far from the center. In-
deed, a high proportion of the energy is transmitted in the
third and higher modes. This energy is not used directly in
the snapping dynamic and is mainly lost. This leads to an
increase of the maximum force in the case of significantly
shifted actuation.

total design energy
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Figure 26. Energy used and actuator total energy for a central ac-
tuation clamped-clamped beam. The ratio is about 25%.
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Figure 27. Energy used and actuator total energy for a shifted
(40%) actuation clamped-clamped beam. The ratio is much in-
creased compared with the central actuation.

Although shifted actuation seems very useful, there are
some problems. This type of actuation reduces the stroke, the
apparent stiffness and average apparent stiffness which are
key parameters for evaluating the performance of a bistable
mechanism. It is also worth noting that the actuation point
will rotate during actuation, which could cause difficulties
for a monolithic design (instead, the central actuation dou-
ble beam mechanism avoids rotation of the central point).
Another problem is that during snapping, a shifted actua-
tion mechanism will jump from one stable branch to another
leading to harsh shocks in the structure. Instead, the cen-
tral actuation mechanism has a much smoother continuous
deflection.

Finally, on one hand, the central force actuation seems
very good in terms of stability, having good apparent stiff-
ness, maximum stroke for the system and a high maximum
force. On the other hand, shifted actuation makes it possible
to use the actuator in a much more efficient way.

Smart use of both phenomena would include actuation us-
ing a shifted force and a static use of the two stable positions
that benefits from both the stroke and the apparent stiffness
of a central actuation. If a design can accept rotation of the
central point, a single bar system can be used instead of the
double beam system. For such a mechanism, a different ac-
tuation location can be used to lower the maximum force and
the stroke of the actuator, two parameters that imply a reduc-
tion of the necessary actuator size. It means that the system
has very different behaviour according to the point of force
application. Splitting the input and output locations should
be considered for such bistable systems.

7 Conclusion

We have proposed a method that makes it possible to cal-
culate the behaviour of most buckled-beam based bistable
mechanisms actuated with normal force. We have demon-
strated that deflection can be split into the first two modes,
which have complex behaviour, and upper modes which are
simply related to equilibrium.

Most bistable mechanisms of the compressed beam class
are actuated in their central point to obtain a maximum
stroke, this is a mode 1 actuation. We have shown that a
combined mode 1 and mode 2 actuation can also be of value
(lower snapping force, longer stable domain...) and should
be considered for a mechanical design. Using separate in-
put and output makes it possible to benefit from different be-
haviour of the same structure.

Experimental validations were carried out and demon-
strated that this model provides rather good results. Using
the previous method, we were able to simulate a very low
shift (0.5%) from the central location on the structure. It ap-
pears that this simulation gives a more accurate model.

We have shown that an optimal choice of the actuator lo-
cation can lead to a significant decrease of the power needed
by the actuator. This makes it possible to use more compact
actuators without modifying the performances of the system.
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