
Appendix 1 – Mortality due to predation

0 Purpose

Here, we describe how the mortality caused by predation was implemented in the model, using a step-by-step explanation.

1 Original equation (Joron & Iwasa, 2005)

When facing aposematic prey, predators need to sample a certain number of a prey with a given phenotype per unit time
to learn and avoid this particular phenotype. As a result, the predation rate becomes a strongly nonlinear, hyperbolically
decreasing function of relative prey density in the population. Under such nonlinear density-dependence, selection against
very rare phenotypes should be enhanced at very low frequencies, and should weaken as frequency increases.

Following Joron & Iwasa (Journal of Theoretical Biology 2005, 237:87-103; doi: 10.1016/j.jtbi.2005.04.005), we account
for such nonlinear density-dependence and we consider that the baseline mortality factors d is multiplied by 1/(1 + sN)
which produces a hyperbolic decrease in mortality with the density N of the focal phenotype when s > 0. Parameter
s therefore encompasses any characteristic that determines the efficiency of associative learning (level of toxins, and
memorability of the signal).

The predation rate on individuals with the focal phenotype, is:

P =
dN

1 + sN
(A1)

The numerator of this equation represents the baseline mortality rate due to predation, and the denominator represents
the reduction in predation due to associative learning by predators (which is more efficient as the density of individuals
with the focal phenotype increases).

2 Perfect mimicry between ancestral and derived phenotypes

From equation 1, we can express the mortality of individuals (with ancestral or derived phenotypes) that are perfect
mimics as follows:

Pa =
dNa

1 + s (Na +Nd)
(A2)

Pd =
dNd

1 + s (Na +Nd)
(A3)

If the predators cannot perceive a difference between the two phenotypes, then all individuals suffer the same predation
risk per capita ( Pa

Na
= Pd

Nd
) and benefit from a lower predation risk due to mimicry (term Na +Nd in the denominator).

3 Imperfect mimicry between ancestral and derived phenotypes

We can now express the mortality of individuals (with ancestral or derived phenotypes) that are imperfect mimics, with
resemblance captured by a quantity S, as follow:

Pa =
dNa

1 + s (Na + S Nd)
(A4)

Pd =
dNd

1 + s (S Na +Nd)
(A5)
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If S = 0, then ancestral and derived phenotypes are perceived as completely different by predators. If S = 1, then ancestral
and derived phenotypes are perfect mimics.

We assume that the similarity level depends on the difference in conspicuousness, ca−cd, and is expressed as a Gaussian
generalization function, as defined in the main text:

S = exp

(
−γ
√

(ca − cd)
2

+ l2
)

(A6)

The parameter γ describes the generalization behaviour of predators, i.e. how much they perceive phenotypic differences.
The parameter l represents the distance between the ancestral and the derived colour patterns; i.e. the phenotypic distance
that is not related to differences in conspicuousness. See Ruxton et al. (2008) (Evolution, 62(11), 2913-2921) for more
details on this function.

4 Mimicry rings

To assume that other comimetic species reduce the predation risk by enhancing predator learning, we include additional
terms in the denominator. Remember that the denominator represents the reduction in predation due to associative
learning by predators.

Pa =
d

1 + s (Na + S Nd) +Ma + SMd
(A7)

Pa =
d

1 + s (S Na +Nd) + SMa +Md
(A8)

High parameters values of Ma and Md lead to decreased predation risks. Those parameters therefore describes the
efficiency of the mimicry ring (i.e., the comimetic defended species) in reducing predation risk by enhancing associative
learning by predators. The accuracy of mimicry with those other defended species depends on the resemblance between
the phenotype carried by individuals and the mean phenotypes displayed in the comimetic species. We thus assume that
the contribution of Ma and Md in reducing predation risks is modulated by a factor that determines this resemblance.
For simplicity, we assume that a derived phenotype that is an imperfect mimic of the ancestral phenotype is an equally
imperfect mimic of the co-mimetic individuals that resemble the ancestral phenotype. We make the same assumption
to describe the resemblance between ancestral phenotype and individuals from the mimicry rings matching the derived
phenotype.

5 Increased detectability due to high conspicuousness

We assume that high conspicuousness results in a high risk of being detected by predators, thereby increasing the baseline
mortality factor. Therefore, individuals with ancestral and derived phenotypes may have different baseline mortality
factors, da and dd. In particular we assume increased conspicuousness increases the baseline mortality factor:

da = p ca (A9)

dd = p cd (A10)

Pa =
daNa

1 + s (Na + S Nd) +Ma + SMd
(A11)

Pd =
ddNd

1 + s (S Na +Nd) + SMa +Md
(A12)

6 Increased associative learning due to high conspicuousness

We assume that high conspicuousness may result in more efficient associative learning by predators. Therefore, individuals
with ancestral and derived phenotypes are associated with different density-dependence factors, sa and sd. In particular,
we assume that increased conspicuousness increases the density-dependence factor depending on how memorable the colour
pattern is (modulated by parameter βa and βd):

sa = uβa ca (A13)

sd = uβd cd (A14)
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Pa =
daNa

1 + (saNa + S sdNd) +Ma + SMd
(A15)

Pd =
ddNd

1 + (S saNa + sdNd) + SMa +Md
(A16)

7 Implications of alternative edible prey

The presence of alternative edible prey can affect the population dynamics by making predators more or less hungry. We
assume that a parameter h adjusts the prey baseline mortality rate, so that even highly cryptic prey (with ca or cd equal
to 0) can be attacked. The parameter h can reflect the abundance of alternative edible prey. Indeed, hungry predators
have more incentive to search for cryptic prey compared to well-fed predators, thus h = 0 occurs when there is a lot of
alternative prey and high h > 0 occurs when there are few alternative edible prey. Parameter h therefore modulate the
baseline mortality rate:

da = p (ca + h) (A17)

dd = p (cd + h) (A18)

8 Final system of equation

Overall, we get the system of equations presented in the manuscript:

da = p (ca + h) (A19)

dd = p (cd + h) (A20)

sa = uβa ca (A21)

sd = uβd cd (A22)

Pa =
daNa

1 + (saNa + S sdNd) +Ma + SMd
(A23)

Pd =
ddNd

1 + (S saNa + sdNd) + SMa +Md
(A24)

S = exp

(
−γ
√

(ca − cd)
2

+ l2
)

(A25)
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Appendix 2 – Analytical derivations

0 Purpose

We here derive analytically the conditions under which a derived phenotype can invade in the population, assuming either
‘perfect mimicry within a single mimicry ring’ or a ‘complete mimicry shift’, as defined in the main text.

Assuming ‘perfect mimicry within a single mimicry ring’, the derived phenotype differs from the ancestral phenotype by
its conspicuousness only. Assuming a ‘complete mimicry shift’, the derived phenotype differ from the ancestral phenotype
by its conspicuousness but also by its colour pattern (as assumed by the existence of an alternative mimicry ring).

We perform here local stability analyses. First, we study the dynamical system without the derived phenotype and
we derive the density of individuals carrying the ancestral phenotype at equilibrium (Section 1). Second, we derive the
conditions under which individuals with a derived phenotype have a positive growth rate, assuming that they are very
rare initially, and that the density of individuals carrying the ancestral phenotype is at its equilibrium value (Section 2
assuming ‘perfect mimicry within a single mimicry ring’, Section 3 assuming a ‘complete mimicry shift’)

1 Study of the dynamical system without the derived phenotype

Without individuals carrying the derived phenotype (nd = 0), the systems of equations are identical assuming ‘perfect
mimicry within a single mimicry ring’ and assuming a ‘complete mimicry shift’:

dna
dτ

= na(1− na)− δcana
1 + λacana +Ma

(B1)

Let n∗a be the density of individuals carrying the ancestral phenotype at equilibrium, i.e. satisfying the condition dna

dτ = 0.
Here, we are placed in conditions under which the population composed only of individuals with the ancestral phenotype
does not get extinct, i.e. n∗a > 0. We have :

n∗a(1− n∗a)− δcan
∗
a

1 + λacan∗a +Ma
= 0 (B2)

then

n∗a = 1− δca
1 + λacan∗a +Ma

(B3)

We will further use these expressions to simplify analytical calculations.

n∗a = 1−
1 + λaca +Ma −

√
(1 + λaca +Ma)2 − 4λac2aδ

2λaca
(B4)

n∗a =
−(1 +Ma − λaca) +

√
(1 +Ma − λaca)2 + 4λaca(1 +Ma − δca)

2λaca
(B5)

We are only interested in the case where n∗a > 0, which holds only when 1 +Ma > δca.

Proof:

n∗a exists, and n∗a > 0 if:

4λaca(1 +Ma − δca) > 0 (B6)

Which is equivalent to:
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1 +Ma > δca (B7)

2 Invasion conditions assuming a ‘complete mimicry shift’

We assume that the density of individuals carrying the derived phenotype is initially very low, i.e. we consider that
nd = O(ε) with epsilon being small. To determine whether having the derived phenotype is advantageous or not, we
determine the sign of the derivative of the density of individuals with the derived phenotype when na = n∗a. We note
f(na, nd) the derivative of the density of individuals with the derived phenotype: f(na, nd) = dnd

dτ .

Hence, when na = n∗a, we have:

f(n∗a, nd) =
dnd
dτ

∣∣∣
na=n

∗
a

(B8)

= nd(1− n∗a − nd)− δcdnd
1 + λa(can∗a + cdnd) +Ma

(B9)

Given that nd = O(ε), we can approximate:

f(n∗a, nd) = nd(1− n∗a)− δcdnd
1 + λacan∗a +Ma

+O(ε2) (B10)

By using equation B3, we get:

f(n∗a, nd) =
δnd

1 + λacan∗a +Ma
(ca − cd) +O(ε2) (B11)

By neglecting the term of the same order as ε2, we find that having the derived phenotype is advantageous when:

cd < ca (B12)

3 Invasion conditions assuming a ‘complete mimicry shift’

Assuming a ‘complete mimicry shift’, when na = n∗a, we have:

f(n∗a, nd) = nd(1− n∗a − nd)− δcdnd
1 + λacdnd +Md

(B13)

= nd(1− n∗a)− δcdnd
1 +Md

+O(ε2) (B14)

By using equation B3, we have :

f(n∗a, nd) = δnd

(
ca

1 + λacan∗a +Ma
− cd

1 +Md

)
+O(ε2) (B15)

By neglecting the term of the same order as ε2, we find that having the derived phenotype is advantageous when:

cd
1 +Md

<
ca

1 + λacan∗a +Ma
(B16)

and therefore:

cd < ca
(1 +Md)

1 + λacan∗a +Ma
(B17)

We call Ĉ this threshold value:

Ĉ = ca
(1 +Md)

1 + λacan∗a +Ma
(B18)
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3.1 Sensitivity of Ĉ

The threshold value Ĉ below which the derived phenotype can invade can be simplified as:

Ĉ =
2 (1 +Md) ca

1 + λa ca +Ma +
√
X

(B19)

With:
X = (1 +Ma + λa ca)

2 − 4λa δ ca
2 (B20)

We now determine the sensitivity of this threshold value to a change in parameter values, to determine under what con-
ditions a phenotype characterized by a high conspicuousness cd > ca can invade (which occurs when the threshold value
Ĉ is high). See Supp. Tab. S1.

Effect of Md on the threshold value Ĉ:

∂Ĉ

∂Md
=

2 ca

1 + λa ca +Ma +
√
X

> 0 (B21)

Therefore, increased Md increases the invasibility area. Interestingly, the derived phenotype with a higher conspicuousness
than the ancestral phenotype can invade the population if:

Md > Ma + λacan
∗
a. (B22)

Effect of Ma on the threshold value Ĉ:

∂
√
X

∂Ma
=

1 +Ma + λa ca√
X

> 0 (B23)

∂Ĉ

∂Ma
=

−2(1 +Md)ca(
1 + λa ca +Ma +

√
X
)2
(

1 +
∂
√
X

∂Ma

)
< 0 (B24)

Therefore, increased Ma decreases the invasibility area.

Effect of λa on the threshold value Ĉ:

∂
√
X

∂λa
=
ca [1 +Ma + (λa − 2 δ) ca]√

X
(B25)

∂Ĉ

∂λa
=

−2 (1 +Md) ca
2(

1 + λa ca +Ma +
√
X
)2√

X

(√
X + 1 +Ma + λa ca − 2 δ ca

)
(B26)

∂Ĉ

∂λa
=

−2 (1 +Md) ca
2(

1 + λa ca +Ma +
√
X
)2√

X

(√
X − (1 +Ma − λa ca) + 2 (1 +Ma − δ ca)

)
(B27)

∂Ĉ

∂λa
=

−2 (1 +Md) ca
2(

1 + λa ca +Ma +
√
X
)2√

X
(2λacan

∗
a + 2 (1 +Ma − δ ca)) (B28)

Yet, 1 + Ma − δ ca > 0 (imposed by the condition of existence of the equilibrium), and
√
X − (1 +Ma − λa ca) > 0.

Therefore:
∂Ĉ

∂λa
< 0 (B29)
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Therefore, increased λa decreases the invasibility area.

Effect of δ on the threshold value Ĉ:
∂
√
X

∂δ
=
−2λa ca

2

√
X

< 0 (B30)

∂Ĉ

∂δ
=

−2 (1 +Md) ca(
1 + λa ca +Ma +

√
X
)2 ∂√X∂δ > 0 (B31)

Therefore, increased δ increases the invasibility area.

Effect of ca on the threshold value Ĉ:

∂
√
X

∂ca
=
λa (1 +Ma + λa ca − 4 δ ca)√

X
(B32)

∂n∗a
∂ca

=
(1 +Ma)(1 + λaca +Ma −

√
X)

2λac2a
> 0 (B33)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Md)

√
X + (1 +Ma)(1 +Ma + λa ca)

]
> 0 (B34)

Therefore, increased ca increases the invasibility area.

Calculation:

Ĉ =
2 (1 +Md) ca

1 + λa ca +Ma +
√
X

(B35)

With:
X = (1 +Ma − λa ca)

2
+ 4λa ca (1 +Ma − δ ca) (B36)

∂Ĉ

∂ca
=

1(
1 + λa ca +Ma +

√
X
)2
[

2 (1 +Md)
(

1 + λa ca +Ma +
√
X
)
− 2 (1 +Md) ca

(
λa +

∂
√
X

∂ca

)]
(B37)

∂Ĉ

∂ca
=

1(
1 + λa ca +Ma +

√
X
)2

[
2 (1 +Md)

(
1 + λa ca +Ma +

√
X
)
− 2 (1 +Md) ca

(
λa +

λa (1 +Ma + λa ca − 4 δ ca)√
X

)]
(B38)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2 [1 + λa ca +Ma +

√
X − ca

(
λa +

λa (1 +Ma + λa ca − 4 δ ca)√
X

)]
(B39)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2 [1 +Ma +

√
X − λa ca (1 +Ma + λa ca − 4 δ ca)√

X

]
(B40)
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∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Ma)

√
X +X − λa ca (1 +Ma + λa ca − 4 δ ca)

]
(B41)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Ma)

√
X + (1 +Ma)2 + λa ca (1 +Ma)

]
(B42)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Ma)

√
X + (1 +Ma)(1 +Ma + λa ca)

]
(B43)
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SUPPORTING INFORMATION FIGURES 

 

 

Supporting information, Figure 1. Numerical simulations showing that the derived 

phenotype gets fixed once it has invaded the population.  

We consider the same parameter values as in Figure 2. This time, we show the frequency of 

mutant colour patterns after a runtime equal to 1020 using a numerical resolution method (Runge 

Kutta 4). Note the absence of intermediate shades of grey in all panels. When the derived 

phenotype invades (as shown in Figure 2 in black), the derived phenotype ultimately replaces 

the ancestral phenotype, and reaches a frequency equal to 1 (dark purple here). By contrast, 

when the derived phenotype does not invade (as shown in Figure 2 in grey), the derived 



phenotype ultimately reaches a frequency equal to 0 (light purple here). This additional analysis 

supports our subsection "Numerical analyses" of the article. 

  



 

 

Supporting information, Figure 2. Effect of the model parameters on the threshold value 

below which conspicuousness is favoured (illustrating the results shown in Tab. 2). The 

derived phenotype can invade when its conspicuousness  𝑐𝑑  is lower than the conspicuousness 

threshold �̂�= 𝑐𝑎
1+𝑀𝑑

1+𝜆𝑎𝑐𝑎𝑛𝑎
∗+𝑀𝑎

  (see Eq. [10]). Here, we represent in each subfigure how 

variations in a given parameter affect this threshold value. If the increase of a parameter value 

(e.g., increased 𝑐𝑎) increases �̂�, this means that the range of conspicuousness values enabling 

the invasion of the derived phenotype increases. In the case of variations in δ, the inset shows 



the change in �̂� which is not visible by using the common y-scale ranging from 0 to 1. See 

default values in Table 1 (remembler that 𝛿 =
𝑝

𝑟
 is the rescaled baseline mortality rate; and 𝜆𝑎 =

𝑢𝐾𝛽𝑎 is the rescaled deterrence factor). Note that 𝜆d = 𝑢𝐾𝛽d has no effect on �̂� (not shown 

here).  

This additional analysis supports our results described in subsection "2 – A mimicry shift can 

promote an increase in conspicuousness (assuming a ‘complete mimicry shift’; S = 0)" of the 

article. 

  



 

 

Supporting information, Figure 3. Evolution of conspicuousness depending on differences 

other than in conspicuousness.  We consider different values of parameter l, which controls 

the phenotypic distance unrelated to conspicuousness. The condition 𝑙 → ∞ is obtained by 

setting  𝑆 = 0, just like for  𝛾 → ∞ in Figure 2. When ancestral and derived phenotypes are 

different (𝑙 → ∞), it is difficult for more conspicuous mutants to invade the population because 

the ancestral phenotype benefits from a greater number-dependent protection. By contrast, if 



the ancestral and derived phenotypes are totally similar (l = 0) or imperfect mimics 

(intermediate l), more conspicuous mutants are favoured because they benefit from an increased 

number-dependent protection by resembling both the wild-type and mutant mimetic 

community. See Figure 2 for more details. Here, 𝛾 = 1, 𝛽𝑎 = 1, and ℎ = 0. See other default 

values in Table 1. 

This additional analysis supports our results described in subsection "3 – Imperfect mimicry 

inhibits the invasion of derived phenotypes, and is more favourable to an increase in 

conspicuousness" of the article. 

 

  



 

Supporting information, Figure 4. Conditions under which higher conspicuousness is 

favoured. In each of the five subfigures, we vary the values of parameters 𝛾 and 𝑀𝑑 in the four 

panels. Additionally, the x-axis represents the variation of different parameters in each 

subfigure: 𝑟 (a), 𝛽𝑎 (b), 𝛽𝑑 (c), 𝑢 (d) and 𝑙 (e). On the y-axis, we show the conspicuousness 



values, 𝑐𝑎, where higher conspicuousness is favoured. In subfigure a, we represent for a 

combination of parameters what these minimum and maximum values of 𝑐𝑎 correspond to in 

the graphs presented in the main manuscript. See default values in Table 1. 

This additional analysis supports our results described in subsection "4 – Easily-memorable 

phenotypes that facilitate predator learning inhibit the evolution of increased conspicuousness" 

of the article. 

  



 

Supporting information, Figure 5. Conditions under which higher conspicuousness is 

favoured for various predation rates. Same as Supporting information Appendix 3, Fig. 3 but 

here in each subfigure, the x-axis represents variations of 𝑝 (a) and ℎ (b).  See Supporting 

information Appendix 3, Fig. 3 for more details. See default values in Table 1. 

This additional analysis supports our results described in subsection "4 – Easily-memorable 

phenotypes that facilitate predator learning inhibit the evolution of increased conspicuousness" 

of the article. 

  



 

Supporting information, Figure 6. Evolution of conspicuousness depending on the 

baseline predation rate.  We consider different values of parameter 𝑝, which controls the 

baseline predation rate. The baseline predation rate has very little effect on the conditions of 

invasion of the derived phenotype. See Figure 2 for more details. Here, 𝛾 → ∞, 𝛽𝑎 = 1, and 

ℎ = 0. See other default values in Table 1. 

This additional analysis supports our results described in subsection "5 – Predation pressure 

and availability of alternative prey modulate selection on conspicuousness" of the article. 



SUPPORTING INFORMATION TABLE 

Supporting information, Table 1. Sensitivity of the invasion of the derived phenotypes to 

the different parameters, assuming a ‘complete mimicry shift’. The derived phenotype can 

invade when its conspicuousness 𝑐𝑑 is lower than the conspicuousness threshold �̂�= 

𝑐𝑎
1+𝑀𝑑

1+𝜆𝑎𝑐𝑎𝑛𝑎
∗ +𝑀𝑎

  (see Eq. [10] and Appendix B). See also Supp. Fig. 2. 

Parameter 
Sensitivity of the 

invasion condition 
Meaning 

𝑀𝑎, the protection brought 

by the ancestral mimicry 

ring 

𝜕𝐶

𝜕𝑀𝑎
< 0 

Higher protection provided by 

the mimicry ring matching the 

ancestral phenotype 

(𝑀𝑎) decreases the range of 

conspicuousness values 

enabling the invasion of the 

derived phenotype. 

𝑀𝑑, the protection brought 

by the derived mimicry ring 

𝜕𝐶

𝜕𝑀𝑑
> 0 

Higher protection provided by 

the mimicry ring matching the 

derived phenotype 

(𝑀𝑑) increases the range of 

conspicuousness values 

enabling the invasion of the 

derived phenotype. 

𝜆𝑎, the rescaled deterrence 

factor associated with the 

ancestral phenotype  

(𝜆𝑎 = 𝑢𝐾𝛽𝑎) 

𝜕𝐶

𝜕𝜆𝑎
< 0 

Higher deterrence factor 𝜆 

decreases the range of 

conspicuousness values 

enabling the invasion of the 

derived phenotype. 

𝛿, rescaled baseline 

mortality rate 

𝜕𝐶

𝜕𝛿
> 0 

Increased baseline predation 

pressure (𝛿) increases the 

range of conspicuousness 



 

(δ = 𝑝/𝑟) values enabling the invasion of 

the derived phenotype. 

𝑐𝑎, conspicuousness of the 

ancestral phenotype 

𝜕𝐶

𝜕𝑐𝑎
> 0 

Higher conspicuousness of the 

ancestral phenotype (𝑐𝑎) 

increases the range of 

conspicuousness values 

enabling the invasion of the 

derived phenotype. 


