
Appendix B – Analytical derivations

0 Purpose

We here derive analytically the conditions under which a derived phenotype can invade in the population, assuming either
‘perfect mimicry within a single mimicry ring’ or a ‘complete mimicry shift’, as defined in the main text.

Assuming ‘perfect mimicry within a single mimicry ring’, the derived phenotype differs from the ancestral phenotype by
its conspicuousness only. Assuming a ‘complete mimicry shift’, the derived phenotype differ from the ancestral phenotype
by its conspicuousness but also by its colour pattern (as assumed by the existence of an alternative mimicry ring).

We perform here local stability analyses. First, we study the dynamical system without the derived phenotype and
we derive the density of individuals carrying the ancestral phenotype at equilibrium (Section 1). Second, we derive the
conditions under which individuals with a derived phenotype have a positive growth rate, assuming that they are very
rare initially, and that the density of individuals carrying the ancestral phenotype is at its equilibrium value (Section 2
assuming ‘perfect mimicry within a single mimicry ring’, Section 3 assuming a ‘complete mimicry shift’)

1 Study of the dynamical system without the derived phenotype

Without individuals carrying the derived phenotype (nd = 0), the systems of equations are identical assuming ‘perfect
mimicry within a single mimicry ring’ and assuming a ‘complete mimicry shift’:

dna
dτ

= na(1− na)− δcana
1 + λacana +Ma

(B1)

Let n∗a be the density of individuals carrying the ancestral phenotype at equilibrium, i.e. satisfying the condition dna

dτ = 0.
Here, we are placed in conditions under which the population composed only of individuals with the ancestral phenotype
does not get extinct, i.e. n∗a > 0. We have :

n∗a(1− n∗a)− δcan
∗
a

1 + λacan∗a +Ma
= 0 (B2)

then

n∗a = 1− δca
1 + λacan∗a +Ma

(B3)

We will further use these expressions to simplify analytical calculations.

n∗a = 1−
1 + λaca +Ma −

√
(1 + λaca +Ma)2 − 4λac2aδ

2λaca
(B4)

n∗a =
−(1 +Ma − λaca) +

√
(1 +Ma − λaca)2 + 4λaca(1 +Ma − δca)

2λaca
(B5)

We are only interested in the case where n∗a > 0, which holds only when 1 +Ma > δca.

Proof:

n∗a exists, and n∗a > 0 if:

4λaca(1 +Ma − δca) > 0 (B6)

Which is equivalent to:
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1 +Ma > δca (B7)

2 Invasion conditions assuming a ‘complete mimicry shift’

We assume that the density of individuals carrying the derived phenotype is initially very low, i.e. we consider that
nd = O(ε) with epsilon being small. To determine whether having the derived phenotype is advantageous or not, we
determine the sign of the derivative of the density of individuals with the derived phenotype when na = n∗a. We note
f(na, nd) the derivative of the density of individuals with the derived phenotype: f(na, nd) = dnd

dτ .

Hence, when na = n∗a, we have:

f(n∗a, nd) =
dnd
dτ

∣∣∣
na=n

∗
a

(B8)

= nd(1− n∗a − nd)− δcdnd
1 + λa(can∗a + cdnd) +Ma

(B9)

Given that nd = O(ε), we can approximate:

f(n∗a, nd) = nd(1− n∗a)− δcdnd
1 + λacan∗a +Ma

+O(ε2) (B10)

By using equation B3, we get:

f(n∗a, nd) =
δnd

1 + λacan∗a +Ma
(ca − cd) +O(ε2) (B11)

By neglecting the term of the same order as ε2, we find that having the derived phenotype is advantageous when:

cd < ca (B12)

3 Invasion conditions assuming a ‘complete mimicry shift’

Assuming a ‘complete mimicry shift’, when na = n∗a, we have:

f(n∗a, nd) = nd(1− n∗a − nd)− δcdnd
1 + λacdnd +Md

(B13)

= nd(1− n∗a)− δcdnd
1 +Md

+O(ε2) (B14)

By using equation B3, we have :

f(n∗a, nd) = δnd

(
ca

1 + λacan∗a +Ma
− cd

1 +Md

)
+O(ε2) (B15)

By neglecting the term of the same order as ε2, we find that having the derived phenotype is advantageous when:

cd
1 +Md

<
ca

1 + λacan∗a +Ma
(B16)

and therefore:

cd < ca
(1 +Md)

1 + λacan∗a +Ma
(B17)

We call Ĉ this threshold value:

Ĉ = ca
(1 +Md)

1 + λacan∗a +Ma
(B18)

2



3.1 Sensitivity of Ĉ

The threshold value Ĉ below which the derived phenotype can invade can be simplified as:

Ĉ =
2 (1 +Md) ca

1 + λa ca +Ma +
√
X

(B19)

With:
X = (1 +Ma + λa ca)

2 − 4λa δ ca
2 (B20)

We now determine the sensitivity of this threshold value to a change in parameter values, to determine under what con-
ditions a phenotype characterized by a high conspicuousness cd > ca can invade (which occurs when the threshold value
Ĉ is high). See Supp. Tab. S1.

Effect of Md on the threshold value Ĉ:

∂Ĉ

∂Md
=

2 ca

1 + λa ca +Ma +
√
X

> 0 (B21)

Therefore, increased Md increases the invasibility area. Interestingly, the derived phenotype with a higher conspicuousness
than the ancestral phenotype can invade the population if:

Md > Ma + λacan
∗
a. (B22)

Effect of Ma on the threshold value Ĉ:

∂
√
X

∂Ma
=

1 +Ma + λa ca√
X

> 0 (B23)

∂Ĉ

∂Ma
=

−2(1 +Md)ca(
1 + λa ca +Ma +

√
X
)2
(

1 +
∂
√
X

∂Ma

)
< 0 (B24)

Therefore, increased Ma decreases the invasibility area.

Effect of λa on the threshold value Ĉ:

∂
√
X

∂λa
=
ca [1 +Ma + (λa − 2 δ) ca]√

X
(B25)

∂Ĉ

∂λa
=

−2 (1 +Md) ca
2(

1 + λa ca +Ma +
√
X
)2√

X

(√
X + 1 +Ma + λa ca − 2 δ ca

)
(B26)

∂Ĉ

∂λa
=

−2 (1 +Md) ca
2(

1 + λa ca +Ma +
√
X
)2√

X

(√
X − (1 +Ma − λa ca) + 2 (1 +Ma − δ ca)

)
(B27)

∂Ĉ

∂λa
=

−2 (1 +Md) ca
2(

1 + λa ca +Ma +
√
X
)2√

X
(2λacan

∗
a + 2 (1 +Ma − δ ca)) (B28)

Yet, 1 + Ma − δ ca > 0 (imposed by the condition of existence of the equilibrium), and
√
X − (1 +Ma − λa ca) > 0.

Therefore:
∂Ĉ

∂λa
< 0 (B29)
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Therefore, increased λa decreases the invasibility area.

Effect of δ on the threshold value Ĉ:
∂
√
X

∂δ
=
−2λa ca

2

√
X

< 0 (B30)

∂Ĉ

∂δ
=

−2 (1 +Md) ca(
1 + λa ca +Ma +

√
X
)2 ∂√X∂δ > 0 (B31)

Therefore, increased δ increases the invasibility area.

Effect of ca on the threshold value Ĉ:

∂
√
X

∂ca
=
λa (1 +Ma + λa ca − 4 δ ca)√

X
(B32)

∂n∗a
∂ca

=
(1 +Ma)(1 + λaca +Ma −

√
X)

2λac2a
> 0 (B33)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Md)

√
X + (1 +Ma)(1 +Ma + λa ca)

]
> 0 (B34)

Therefore, increased ca increases the invasibility area.

Calculation:

Ĉ =
2 (1 +Md) ca

1 + λa ca +Ma +
√
X

(B35)

With:
X = (1 +Ma − λa ca)

2
+ 4λa ca (1 +Ma − δ ca) (B36)

∂Ĉ

∂ca
=

1(
1 + λa ca +Ma +

√
X
)2
[

2 (1 +Md)
(

1 + λa ca +Ma +
√
X
)
− 2 (1 +Md) ca

(
λa +

∂
√
X

∂ca

)]
(B37)

∂Ĉ

∂ca
=

1(
1 + λa ca +Ma +

√
X
)2

[
2 (1 +Md)

(
1 + λa ca +Ma +

√
X
)
− 2 (1 +Md) ca

(
λa +

λa (1 +Ma + λa ca − 4 δ ca)√
X

)]
(B38)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2 [1 + λa ca +Ma +

√
X − ca

(
λa +

λa (1 +Ma + λa ca − 4 δ ca)√
X

)]
(B39)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2 [1 +Ma +

√
X − λa ca (1 +Ma + λa ca − 4 δ ca)√

X

]
(B40)
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∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Ma)

√
X +X − λa ca (1 +Ma + λa ca − 4 δ ca)

]
(B41)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Ma)

√
X + (1 +Ma)2 + λa ca (1 +Ma)

]
(B42)

∂Ĉ

∂ca
=

2 (1 +Md)(
1 + λa ca +Ma +

√
X
)2√

X

[
(1 +Ma)

√
X + (1 +Ma)(1 +Ma + λa ca)

]
(B43)
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