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Originality-Significance Statement 21 

Microbial symbionts are increasingly recognized as ubiquitous phenomena that are important 22 

components of host biology. Yet, our knowledge of how symbionts vary across geographic scales, 23 

habitats and host species remains limited, especially for symbioses in remote environments that 24 

are challenging to sample comprehensively. We assembled a global dataset of chemosynthetic 25 

symbionts associated with provannid gastropods from Indo-Pacific deep-sea hydrothermal vents 26 

and evaluated their diversity and biogeographic structure through 16S rRNA amplicon sequencing. 27 

With unprecedented sample size and geographic coverage included in our analyses, we found that 28 

symbiont composition within a host species is shaped by broad-scale geography, while other 29 

factors such as host size seem to be of limited importance. Furthermore, the richness of symbionts 30 

associated with a host species was not always related to sample size or biogeographic range, which 31 

indicates that there are likely additional factors shaping symbiont composition and diversity. 32 

Altogether, this work contributes to our understanding of the patterns and processes underlying 33 

symbiont biogeography in the marine environment.  34 

 35 

Summary 36 

Symbioses between invertebrate animals and chemosynthetic bacteria build the foundation of 37 

deep-sea hydrothermal ecosystems worldwide. Despite the importance of these symbioses for 38 

ecosystem functioning, the diversity of symbionts within and between host organisms and 39 

geographic regions is still poorly understood. In this study we used 16S rRNA amplicon 40 

sequencing to determine the diversity of gill endosymbionts in provannid snails of the genera 41 

Alviniconcha and Ifremeria, which are key species at deep-sea hydrothermal vents in the Indo-42 

Pacific Ocean. Our analysis of 761 snail samples across the distributional range of these species 43 

confirms previous findings that symbiont lineages are strongly partitioned by host species and 44 

broad-scale geography. Less structuring was observed within geographic regions, probably due to 45 

insufficient strain-resolution of the 16S rRNA gene. Symbiont richness in individual hosts 46 

appeared to be unrelated to host size, suggesting that provannid snails might acquire their 47 

symbionts only during a permissive time window in early developmental stages in contrast to other 48 

vent mollusks that obtain their symbionts throughout their lifetime. Despite the extent of our 49 

dataset, symbiont accumulation curves did not reach saturation, highlighting the need for increased 50 
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sampling efforts to uncover the full diversity of symbionts within these and other hydrothermal 51 

vent species. 52 

 53 

Introduction 54 

Microbial symbioses are increasingly recognized as universal phenomena that impact virtually all 55 

levels of biological organization, from cellular to organismal to ecosystem scale (Bronstein, 2015). 56 

Growing evidence from various symbiotic partnerships suggests that microbial symbioses can 57 

expand the physiological and ecological capabilities of hosts and symbionts, which are predicted 58 

to be critical for ecosystem productivity, stability and biogeochemical cycling (Apprill, 2017; 59 

Beinart, 2019; Wilkins et al., 2019). Deep-sea hydrothermal vents are probably some of the most 60 

enigmatic ecosystems that are sustained by microbial symbioses. In these systems, invertebrate 61 

animals live in association with chemoautotrophic bacteria that use chemical energy from venting 62 

fluids for the production of organic carbon, thereby providing food for their hosts (Dubilier et al., 63 

2008; Sogin et al., 2021). Despite decades of research on this topic and the significance of 64 

chemosynthetic symbioses for ecosystem processes at hydrothermal vents, the diversity and 65 

distribution of symbionts within and across hosts and habitats remains underexplored, especially 66 

at large biogeographic scales. 67 

 Provannid snails of the sister genera Alviniconcha and Ifremeria are dominant animals in 68 

benthic communities at deep-sea hydrothermal vents in the Indian and Western Pacific Ocean (Van 69 

Dover et al., 2001; Desbruyères et al., 2006). While the Western Pacific genus Ifremeria is 70 

represented by a single species, I. nautilei, that affiliates with methane- and/or sulfide-oxidizing 71 

gammaproteobacterial symbionts (Windoffer and Giere, 1997; Borowski et al., 2002; Suzuki et 72 

al., 2006a), the genus Alviniconcha comprises five Western Pacific species (A. adamantis, A. 73 

boucheti, A. hessleri, A. kojimai, A. strummeri) and one Indian Ocean species (A. marisindica) that 74 

live in symbiosis with thiotrophic Gammaproteobacteria or Campylobacteria (Suzuki et al., 2006b; 75 

Johnson et al., 2015; Breusing et al., 2020). In both Alviniconcha and Ifremeria, the symbionts are 76 

assumed to be horizontally acquired and are harbored intracellularly within the host’s gill tissue 77 

(Suzuki et al., 2006a, b). Despite an environmental pathway for symbiont transmission, host and 78 

symbiont genera or species appear to exhibit a relatively strong selectivity in their partnerships 79 

towards each other (Beinart et al., 2012; Breusing et al., 2020), though host individuals are flexible 80 

in recruiting local strains of their specific symbiont phylotype(s) (Breusing et al., 2021). 81 
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 Most current analyses on the variation and structure of microbial symbionts within 82 

Alviniconcha and Ifremeria stem from studies in the Lau Back Arc Basin, while little is known 83 

about these patterns in populations from other spreading systems within the distributional range of 84 

these genera. Here, we compiled an extensive dataset of 761 snail samples from 10 geographic 85 

regions of the Indo-Pacific Ocean (Fig. 1), some of which were previously unexplored, to assess 86 

the global diversity of chemosynthetic gill endosymbionts within Alviniconcha and Ifremeria 87 

through identification of 16S rRNA amplicon sequence variants (ASVs). Using ordination 88 

analyses and correlative statistics, we determined the influence of host species, host size, depth 89 

and geography on symbiont composition and distribution. 90 

 91 

Results and Discussion 92 

Symbiont 16S rRNA diversity is partitioned by host species and geography 93 

Our conservative analysis pipeline, which extends a previous study by Breusing et al. (2020) to 94 

now include seven species and 10 geographic areas, recovered 60 symbiont ASVs that were 95 

assigned to two campylobacterial (Sulfurovum, Sulfurimonas) and four gammaproteobacterial (Ca. 96 

Thiobios, Methylomonas, Thiolapillus, unclassified Thiomicrospiraceae) genera of provannid 97 

snail endosymbionts (Fig. 2, 3). Average pairwise identities within genera ranged from 95% to 98 

99% (Sulfurovum: 95.4%; Sulfurimonas: 95.0%; Ca. Thiobios: 97.1%; Methylomonas: n.a.; 99 

Thiolapillus: 98.1%; unclassified Thiomicrospiraceae: 99.0%). In agreement with Breusing et al. 100 

(2020), ASVs were generally segregated by host species and broader geographic region (i.e., back-101 

arc basin, volcanic arc or mid-ocean ridge), except for lineages within the unclassified 102 

Thiomicrospiraceae group which were shared between A. kojimai and A. strummeri (Fig. 2, 4A; 103 

Appendix 1: Fig. S1). Based on PERMANOVAs and linear decomposition models the impact of 104 

host species and geography superseded the influence of DNA preservation, extraction and 105 

sequencing method (81.17% versus 1.99% explained variation) and was significant even when 106 

corrected for confounding technical effects. In addition, there was no evident clustering of samples 107 

by methodology in multidimensional scaling, indicating that the observed patterns are true 108 

biological signals (Table 1; Appendix 1: Fig. S2). 109 

Like A. kojimai and A. strummeri, most other host species were associated with particular 110 

lineages of thiotrophic Gammaproteobacteria. Alviniconcha adamantis was affiliated with 111 

symbionts of the genus Ca. Thiobios, whereas A. hessleri and I. nautilei hosted distinct 112 
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Thiolapillus symbiont ASVs. Many I. nautilei individuals further harbored a minority 113 

methanotrophic symbiont from the genus Methylomonas, especially at vent sites within the Eastern 114 

Lau Spreading Center (ELSC). Only Alviniconcha boucheti and A. marisindica were dominated 115 

by different region-specific campylobacterial ASVs of the genera Sulfurimonas or Sulfurovum. 116 

Within geographic area, the gammaproteobacterial symbionts of A. kojimai and A. hessleri 117 

showed evidence for structuring by vent field (Appendix 1: Fig. S3), while no intra-regional 118 

differentiation was observed or could be tested in symbionts of any other host species that we 119 

sampled from multiple localities (data not shown). However, this finding is likely an artifact of the 120 

limited resolution of the 16S rRNA marker gene. For example, recent metagenomic analyses 121 

indicate that symbiont populations of all host taxa from the Lau Basin are partitioned between vent 122 

sites (Breusing et al., 2021). In contrast to the traditional view of microbial biogeography that 123 

poses that “everything is everywhere” (Baas-Becking, 1934), geographic subdivision of microbial 124 

symbionts appears to be common in a variety of marine symbioses, often exceeding that of the 125 

corresponding host populations (Ho et al., 2017; Gould and Dunlap, 2019; Davies et al., 2020; 126 

Breusing et al., 2021; Ücker et al., 2021). Depending on the symbiotic system, these patterns might 127 

arise from local adaptation, contrasting dispersal limitations between hosts and symbionts, host 128 

ecological behavior and/or differences in environmental transmission mode. Given the strong 129 

oceanographic barriers among back-arc basins in the Western Pacific Ocean (Mitarai et al., 2016), 130 

the observed partitioning of host-specific symbiont ASVs according to broader geographic area 131 

might be largely due to decreased symbiont dispersal opportunities (though environmental 132 

differences cannot be ruled out). By contrast, symbiont structure within regions, where dispersal 133 

limitations appear to be mostly absent (Mitarai et al., 2016), is probably driven by additional 134 

ecological factors, such as differences in depth or vent geochemistry (Breusing et al., 2021). 135 

Indeed, in A. kojimai the observed partitioning of symbiont types by vent field was correlated with 136 

contrasting depth regimes (Appendix 2), which often aligns with gradients in fluid chemistry 137 

(Beinart et al., 2012). On the other hand, the strong latitudinal subdivision found for the 138 

Thiolapillus symbiont of A. hessleri might be explained by dispersal limitations as biophysical 139 

models indicate that the southern and northern parts of the Mariana Basin are largely isolated 140 

(Mitarai et al., 2016; Breusing et al., 2021). 141 

Our data suggest that other factors, such as host size, have a comparatively small influence 142 

on the diversity and composition of symbiont ASVs within host individuals. Despite significant 143 
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associations of symbiont richness with host size, correlation coefficients were low, suggesting 144 

limited biological relevance of this factor on intra-host symbiont diversity (Appendix 1: Fig. S4). 145 

These results were consistent independent of whether analyses were carried out across or within 146 

individual host species. For intra-species analyses only correlations for A. kojimai and A. boucheti 147 

were significant, though weak (p ≦ 0.05; R2 ≦ 0.09). In most cases individuals contained only one 148 

symbiont ASV in accordance with Sanger sequence analyses (Beinart et al., 2012, 2015), though 149 

in some individuals up to six ASVs were observed. Although our study lacks data from settling 150 

larvae and juveniles, these findings could indicate that symbiont acquisition in provannid snails 151 

follows a different process than in bathymodiolin mussels and is more similar to that in 152 

vestimentiferan tubeworms. Hydrothermal vent mussels remain competent for symbiont 153 

acquisition throughout their lifetime (Wentrup et al., 2014; Ansorge et al., 2019), which should 154 

favor increased symbiont diversity in older individuals as well as newly infected juveniles where 155 

symbiont sorting has not yet been completed. By contrast, vestimentiferan tubeworms obtain their 156 

symbionts exclusively in a narrow window after settlement during post-larva metamorphosis 157 

(Nussbaumer et al., 2006). Symbiont diversity can thus be expected to be highest at that 158 

developmental stage, with little effect of host size on symbiont richness during later stages. 159 

Alternatively, our observations may indicate that 16S rRNA amplicon sequences do not provide 160 

enough strain-level resolution to observe shifts in symbiont composition across development 161 

stages, and that metagenomic analyses of symbiont populations are necessary instead. 162 

 163 

Symbiont richness differs between host species and individuals 164 

Despite low impact of host size, Alviniconcha and Ifremeria exhibited notable variability in 165 

symbiont diversity, both among individuals and species (Fig. 4B). These patterns could result from 166 

differences in the availability and composition of free-living symbiont lineages at the time of 167 

infection, subsequent mutations inside the host and/or host selection on particular strains. Among 168 

host taxa, A. adamantis and A. marisindica showed the lowest symbiont diversity, which is 169 

probably due to the fact that these species were each sampled from only a single vent site and were 170 

represented by relatively few individuals (Fig. 4B). Interestingly, A. hessleri displayed some of 171 

the highest alpha diversities, with up to six ASVs within single host individuals, despite its 172 

restricted geographic distribution and small sample size compared to some of the other 173 

Alviniconcha species included in our analyses. Maybe the wide variation of geochemical 174 
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conditions in the Mariana Back-Arc Basin (Trembath-Reichert et al., 2019) allows for a greater 175 

range of micro-niches, which could promote diversity in the free-living symbiont pool. In this case, 176 

symbionts within this host species might have a higher functional diversity that could favor co-177 

existence of multiple strains, as has recently been reported for bathymodiolin mussels, where hosts 178 

can carry up to 16 symbiont strains due to variation in metabolic gene content (Ansorge et al., 179 

2019). Alternatively, some of the observed variation might reflect intra-host mutations of a single 180 

or a few symbiont phylotypes post-infection. In the absence of genomic data, this explanation 181 

seems likely as all A. hessleri symbiont ASVs were very similar to each other, with an average of 182 

99.4% pairwise sequence identity. 183 

 184 

Symbiont richness is not saturated 185 

Although we analyzed symbiont 16S rRNA composition in over 700 snail individuals, symbiont 186 

discovery did not reach saturation in our dataset (Fig. 5). The number of ASVs within A. hessleri 187 

and I. nautilei, which both host symbionts of the genus Thiolapillus, was closest to reaching a 188 

plateau, while ASV accumulation curves for all other species showed a steady increase (Fig. 5). 189 

This is an interesting finding given that A. hessleri and I. nautilei were sampled across a relatively 190 

restricted area compared to some of the other species (Appendix 1: Table S1). For other taxa that 191 

were represented by few individuals and geographic locations (e.g., A. adamantis, A. marisindica), 192 

but also those with widespread distributions (e.g., A. kojimai, A. boucheti), increased sampling 193 

efforts will probably reveal a currently hidden diversity of symbiont ASVs in the future. 194 

Consequently, while our dataset does not allow comparisons of diversification between symbiont 195 

genera or species at this time, more ASVs especially for some of the gammaproteobacterial taxa 196 

(e.g., unclassified Thiomicrospiraceae, Ca. Thiobios) will likely be recovered given the prevalence 197 

of gammaproteobacterial symbioses in provannid snails and other vent invertebrates (Dubilier et 198 

al., 2008). 199 

 200 

 201 

Conclusions 202 

Here, we characterized the global diversity of chemosynthetic gill endosymbionts associated with 203 

species within the genera Alviniconcha and Ifremeria. As predicted by previous work, we found 204 

that each host species harbored 1–2 species- or genus-level symbiont phylotypes. However, we 205 
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were able to further assess strain-level symbiont composition and diversity within and between 206 

individual snails by employing amplicon analysis of the 16S rRNA gene. In all host species, ASV 207 

accumulation curves indicated that the full diversity of symbionts associated with Alviniconcha 208 

and Ifremeria remains to be characterized. In most cases, symbiont ASV composition and richness 209 

was related to geographic range, with most ASVs detected in species where we sampled a large 210 

number of individuals across >10 geographically distant vent fields (e.g., A. kojimai and A. 211 

boucheti). An exception to this was A. hessleri, which had high symbiont richness and inter-region 212 

symbiont structure despite a smaller sample size and much more modest geographic range, 213 

suggesting that these are not the only factors dictating symbiont composition and diversity. A more 214 

complete appraisal of the taxonomic and functional diversity of symbionts associated with 215 

Alviniconcha and Ifremeria will be critical to our understanding of the ecology and evolution of 216 

these genera, which have been assessed as “Endangered” or “Vulnerable” on the IUCN Red List 217 

(https://www.iucnredlist.org) due to imminent risks from deep-seabed mining activities at 218 

hydrothermal vents in the Indian and Pacific oceans. 219 

 220 

Experimental Procedures 221 

Sample collection and amplicon library preparation 222 

Animal samples were obtained with remotely or human operated vehicles from 23 Indo-Pacific 223 

vent localities that encompassed the global distributional range of species within the genera 224 

Alviniconcha and Ifremeria (Appendix 2; Fig. 1). Upon recovery of the samples, endosymbiont-225 

bearing gill tissue was dissected and frozen or stored in RNALater™ (Thermo Fisher Scientific, 226 

Inc., Waltham, MA, USA) at –80°C. DNA was purified with the Zymo Quick DNA 96 Plus and 227 

ZR-96 Clean-up kits (Zymo Research, Inc., Irvine, CA, USA) or the Qiagen DNeasy Blood & 228 

Tissue kit (Qiagen, Inc., Hilden, Germany). 2x250 bp paired-end amplicon libraries for the 16S 229 

rRNA V4-V5 region were constructed with the 515F/926R primer pair (Walters et al. 2015) and 230 

sequenced to an average of 34844 total reads on Illumina MiSeq and NovaSeq platforms at the 231 

Argonne National Laboratory (Lemont, IL, USA) and Novogene Co. (Beijing, China), respectively 232 

(Appendix 2). Host species were identified through shell morphology (Laming et al., 2020) and 233 

subsequent sequencing of the mitochondrial COI gene with universal primers (Folmer et al., 1994; 234 

Geller et al., 2013). 235 

 236 
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Identification of amplicon sequence variants 237 

We used the USEARCH v11 denoising pipeline (Edgar, 2010) to decompose merged, adapter-238 

clipped paired end reads into ASVs, imposing a merge length of 300–400 bp, a maximum error 239 

rate of 0.001 and a minimum base quality of 20. The taxonomic identity of each variant was 240 

determined in QIIME2 (https://qiime2.org) with a Naïve Bayes classifier trained against the V4-V5 241 

region extracted from the SILVA 132 99% reference database as well as through BLAST+ searches 242 

against the NR database (Camacho et al., 2009). Only ASVs that had a match to a previously 243 

verified Alviniconcha or Ifremeria gill endosymbiont sequence were considered for further 244 

analysis. To assess potentially unrecovered variation in the symbiont dataset we applied the 245 

OLIGOTYPING v2.0 method (Eren et al., 2013). ASVs with less than 2.37% abundance in a sample 246 

were excluded to account for sample cross-contamination (Minich et al., 2019). Phylogenetic 247 

relationships among ASVs were determined with the IQTREE (Minh et al., 2020) plugin for QIIME2 248 

based on 10 independent runs with each 5000 ultrafast bootstrap samples. Ultrafast bootstrap trees 249 

were optimized through the nearest neighbor interchange procedure with a perturbation strength 250 

of 0.2 and a stopping criterium of 200 trees. 251 

 252 

16S rRNA diversity analyses 253 

We used the PHYLOSEQ package in R v4.0.3 (McMurdie and Holmes, 2013; R Core Team, 2020) 254 

to assess symbiont 16S rRNA variation within and between hosts and geographic regions, 255 

excluding samples with less than 1000 reads to ensure statistical robustness. For alpha and beta 256 

diversity analyses symbiont abundances were normalized to proportions (McKnight et al., 2018). 257 

Metric and non-metric multidimensional scaling plots were constructed based on weighted 258 

UniFrac distances. To verify that the distribution of ASV diversity is representative of real 259 

biological patterns and not technical artifacts from differences in methodology, we performed 260 

linear decomposition models (LDMs) and a modified version of PERMANOVA with the LDM 261 

package in R, as these methods have been shown to be relatively robust to variance in group 262 

dispersion (Hu and Satten, 2020). Analyses were run on both the full dataset and a data subset 263 

including only samples of Alviniconcha from the ELSC which were processed with a mixture of 264 

methods. PERMANOVAs and LDMs were conducted with 1000 and 10000 maximum 265 

permutations, respectively, with methodology included as either confounding variable or main 266 
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explanatory factor. Relationships between number of ASVs and host size were determined based 267 

on Spearman rank correlations with the GGPUBR package (Kassambara, 2020). 268 

 269 

Data availability 270 

All bioinformatic scripts and final files for analysis are available on GitHub under 271 

https://github.com/cbreusing/Provannid_16S_SSU_meta-analysis. Raw 16S rRNA amplicon 272 

reads have been deposited in the Sequence Read Archive under BioProjects PRJNA473256, 273 

PRJNA473257, PRJNA610289, PRJNA610290, PRJNA763784 and PRJNA767887, while host 274 

COI sequences are available in GenBank under accession numbers listed in Appendix 2. 275 
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Figure Legends 416 

Fig. 1 Locations for Alviniconcha and Ifremeria species sampled in this study. 417 

 418 

Fig. 2 Fractional abundance plot of symbiont ASVs within individual snails according to 419 

Alviniconcha and Ifremeria species. 420 

 421 

Fig. 3 Mid-point rooted IQTREE consensus phylogeny of ASVs within symbiont genera. Node 422 

labels indicate ultra-fast bootstrap support values. 423 

 424 

Fig. 4 (A) Principal coordinate analysis plot based on weighted UniFrac distances. Data were 425 

normalized to proportions before analysis. Numbers in brackets indicate sample sizes for each host 426 

taxon. (B) Alpha diversity within host species based on Shannon’s and Simpson’s diversity index. 427 

 428 

Fig. 5 Symbiont ASV accumulation curves. 429 

 430 
  431 
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Table 1 Results for linear decomposition models (LDM) and PERMANOVAs based on weighted UniFrac distances. 432 
Three different models were run to assess the effects of DNA preservation, extraction and sequencing method on 433 
patterns of symbiont diversity: 1) Model including the complete dataset and controlling for effects of methodology, 434 
2) Model restricted to A. boucheti, A. kojimai and A. strummeri from the ELSC and controlling for effects of 435 
methodology, 3) Model restricted to A. boucheti, A. kojimai and A. strummeri from the ELSC and including 436 
methodology as main explanatory factor. Sources of variation are shown in sequential order tested in the model. 437 
Significant sources of variation are indicated in bold. df = degrees of freedom, F = F statistic, VE = explained variation, 438 
p = p value. 439 
 440 

 LDM PERMANOVA 
Source of variation df F  VE [%] p F p 
Model 1       
Geographic region 8 2.2861 16.49 0.0001 324.710 0.0010 
Host 3 1.3426 25.82 0.0001 704.879 0.0010 
Model 2       
Vent 2 3.5363 30.39 0.0001 4959.805 0.0010 
Host 2 6.1004 52.42 0.0001 6424.714 0.0010 
Model 3       
Methodology 1 0.1179 1.99 0.0001 264.664 0.0010 
Vent 2 3.5363 29.79 0.0001 9919.611 0.0010 
Host 2 6.1004 51.38 0.0001 12849.428 0.0010 
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Figure 2 447 
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Figure 3 451 
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Figure 4 455 
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Figure 5 459 

 460 
 461 

0 200 400 600

0
10

20
30

40
50

60

# individuals

# 
AS

Vs

All species
A. boucheti
A. kojimai
A. strummeri
A. hessleri
I. nautilei


