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Trajectory-based Algorithm Selection with
Warm-starting

Anja Jankovic, Diederick Vermetten, Ana Kostovska, Jacob de Nobel, Tome Eftimov and Carola Doerr

Abstract—Landscape-aware algorithm selection approaches
have so far mostly been relying on landscape feature extraction as
a preprocessing step, independent of the execution of optimization
algorithms in the portfolio. This introduces a significant overhead
in computational cost for many practical applications, as features
are extracted and computed via sampling and evaluating the
problem instance at hand, similarly to what the optimization
algorithm would perform anyway within its search trajectory.
As suggested in [Jankovic et al., EvoAPP 2021], trajectory-based
algorithm selection circumvents the problem of costly feature
extraction by computing landscape features from points that a
solver sampled and evaluated during the optimization process.
Features computed in this manner are used to train algorithm
performance regression models, upon which a per-run algorithm
selector is then built.

In this work, we apply the trajectory-based approach onto a
portfolio of five algorithms. We study the quality and accuracy
of performance regression and algorithm selection models in the
scenario of predicting different algorithm performances after
a fixed budget of function evaluations. We rely on landscape
features of the problem instance computed using one portion
of the aforementioned budget of the same function evaluations.
Moreover, we consider the possibility of switching between the
solvers once, which requires them to be warm-started, i.e. when
we switch, the second solver continues the optimization process
already being initialized appropriately by making use of the
information collected by the first solver. In this new context,
we show promising performance of the trajectory-based per-run
algorithm selection with warm-starting.

Index Terms—dynamic algorithm selection, exploratory land-
scape analysis, evolutionary computation, black-box optimization

I. INTRODUCTION

Optimization is a central notion across a broad range of
scientific disciplines and real-world applications. Finding an
optimal solution for a given problem is often not a straight-
forward process, as problems are typically computationally
hard or otherwise intractable. In many concrete use cases,
knowledge about the inherent nature of the problem is very
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limited, which renders formal problem modeling impossible.
Under these circumstances, users are required to treat such
problems as a black box. Black-box optimization (BBO)
provides techniques that are able to generate good solutions
for these problems in a reasonable time. These techniques,
known as BBO algorithms, operate via an iterative process
of sampling and evaluating solution candidates and using the
knowledge obtained in the previous iterations to guide the
search towards more promising alternatives, until eventually
converging to the best estimate of an optimal solution.

Due to the plethora of existing optimization problems,
different BBO algorithms have been developed to this day.
Various underlying operating mechanisms of these algorithms
yield their complementary behavior on different problems.
This large algorithmic variety poses a meta-optimization prob-
lem in achieving peak performance [1]: how does one select
the most efficient algorithm for a given problem instance?

In recent years, significant research focus has been put on
algorithm selection approaches that make use of the knowledge
about the problem instance landscape to base the decision
about which algorithm to use in that particular situation [2]–
[4]. Landscape-aware algorithm selection generally relies on
an important preprocessing step of extracting information
from the problem instance landscape (independently of the
optimization process). A huge challenge in this regard is the
overhead computational cost induced by this preprocessing
step, as further resources are spent on sampling and evaluating
search points to first characterize the landscape, but are not
at all considered while executing the algorithm on a problem
instance. In many practical applications, users cannot afford to
spend those additional function evaluations prior to optimizing,
as they can be very expensive (e.g., crash tests or clinical
studies). The approach suggested in [5] offers a convenient
alternative perspective in which the information about the
problem instance landscape is extracted via samples and their
function evaluations performed anyway by the algorithm. This
framework shows preliminary potential in circumventing the
preprocessing step altogether, and might present a step forward
in the direction of designing an efficient fully dynamic algo-
rithm selection model. However, an important open question
from [5] remains: how do we make use of the trajectory-based
information of a default algorithm to predict performances of
other algorithms? We tackle it with this work.

In this paper, we extend the trajectory-based landscape-
aware approach to a portfolio of five widely used black-box
optimization algorithms, and we consider that we can switch
between the algorithms once during the optimization process.
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Put differently, we start optimizing by the base algorithm
(A1) while collecting the landscape data from the algorithm
trajectory, then switch to another algorithm (A2) that is warm-
started, i.e. appropriately initialized by making use out of
the gathered information from A1. We first show that we
are able to get decent predictions of the A2 performance
using A1’s trajectory-based landscape characterization, upon
which we then build an algorithm selection model. At higher
levels of performance complementarity between the algorithms
(which coincide with larger total budgets for running the
algorithms), the algorithm selector outperforms any of the
standalone algorithms in terms of loss against the true best
algorithm for each particular problem instance. We finally
highlight some advantages as well as drawbacks with respect
to different parts of the adopted pipeline and present some
important challenges for future work.

Outline of the Paper: Throughout Sec. II, we position the
work in the context of numerical black-box optimization, intro-
duce the benchmark collection (II-A), the algorithm portfolio
selected for our work (II-B), and the notion of warm-starting
(II-C), recap the state-of-the-art in per-instance algorithm se-
lection (II-D) and establish the ground for the trajectory-based
approach in analyzing problem instance landscapes (II-E). We
give an overview of the full experimental setup in Sec. III,
focusing on each component of the trajectory-based algorithm
selection framework applied to a diverse algorithm portfolio.
We present and discuss the main findings of our study in
Sec. IV and provide critical assessment of this approach in
Sec. V. Finally, in Sec. VI, we wrap up with open questions
that merit further attention.

Reproducibility and Additional Figures: To ensure that
the work shown in this paper is reproducible [6], all data
and code used is made available on figshare [7]. This
includes figure generation code for figures which have not
been included here because of the limited space available. For
ease of viewing, these additional figures can also be viewed
in this same repository. In particular, the losses of our model
for different budgets can be found there.

II. BACKGROUND AND SELECTED BENCHMARK
ENVIRONMENT

Black-box optimization algorithms are a wide-ranging fam-
ily of adaptive sampling-based strategies. Many of these
algorithms can adjust their behavior during the optimization
process by taking into account the information gathered during
the run. This is especially useful as typically different phases
of the optimization process require different search behavior
(conveniently illustrated in the trade-off between exploration
and exploitation). Moreover, different algorithms employ dif-
ferent search routines which can be more or less beneficial
depending on a given scenario. A large open question that
stems from this observation is to detect which algorithm is
the most suitable for a given stage of the optimization process.
First steps into this direction have shown potential in switching
the algorithm once during the run itself [8]. However, this
potential remains largely untapped if we restrain ourselves

to a family of similar algorithms [9]. Having a wider set of
different solvers might help bypass this obstacle.

A. The BBOB Problem Collection

In the context of numerical black-box optimization, as-
sessing the performance of different algorithms on different
problem instances is largely facilitated by the existence of
well-established benchmark problem collections. In this study,
we rely on one such collection, the BBOB noiseless testbed
from the COCO environment [10]. The BBOB collection
comprises 24 functions. For each of these functions, multiple
problem instances are available. We conveniently generate, ac-
cess and analyze the benchmark data via the IOHprofiler
platform [11].

B. Algorithm Portfolio

Following suggestions from [12] and related works, we opt
for five algorithms that are frequently used to tackle numerical
black-box problems:
• BFGS (Broyden-Fletcher-Goldfarb-Shanno [13]–[16]): a

Quasi-Newton method that approximates the Jacobian or
the Hessian instead of actually computing them.

• CMA-ES (Covariance Matrix Adaption - Evolution Strat-
egy [17]): a stochastic derivative-free numerical opti-
mization algorithm that iteratively samples the popula-
tion from a multivariate normal distribution and updates
the shape of the said distribution with the information
gathered while running.

• DE (Differential Evolution [18]): a population-based al-
gorithm that samples candidates purely based on numer-
ical differences between existing population members.

• MLSL (Multi-Level Single Linkage [19], [20]): an al-
gorithm that combines global search phases (based on
clustering) with more focused, local search procedures.

• PSO (Particle Swarm Optimization [21]): simulates par-
ticles moving around the search space based on their
individual velocity, determining both speed and direction,
motivated by the swarm behavior of some animal species.

C. Warm-starting

To enable switching from CMA-ES to each of the five
algorithms mentioned previously, we make use of some basic
warm-starting strategies. The most intuitive version of warm-
starting is to inherit the best-so-far solution and use this as the
starting point for the second algorithm. This point can then be
used as a center to initialize the new population around, as
is done by CMA-ES, DE and PSO. For switching to BFGS,
we can use the covariance matrix directly, by using this as the
inverse of the Hessian [22]. We should note that by warm-
starting the CMA-ES using the same procedure as the other
population-based approaches, we lose a significant amount
of information, which might lead to worse performance than
expected if we had not switched. However, it does mean
that the approach is easier to extend, since we can modify
the starting algorithm while having minimal impact on the
procedure as a whole.



D. Per-Instance Algorithm Selection

As mentioned in Sec. I, given an optimization problem,
its specific instance that needs to be solved, and a set of
algorithms that can be used to solve it, the so-called per-
instance algorithm selection (PIAS) problem arises: how to
determine which of those algorithms can be expected to
perform best on that particular instance? In other words, one
is not interested in having an algorithm recommendation for
a whole problem class (such as TSP or SAT in the discrete
domain), but for a specific instance of some problem. A large
body of work exists in this line of research [4], [23]–[27],
and they mostly rely on extracting the information about the
problem instances beforehand, contrary to this study.

To assess the algorithm selector’s quality, two standard
baselines are used. The performance of a (hypothetical) perfect
per-instance algorithm selector, also known as the virtual best
solver (VBS) or the oracle selector, provides a lower bound
on the performance of any realistically achievable algorithm
selector. The VBS always selects the true best algorithm per
each problem instance. On the other hand, a natural upper
bound on the algorithm selector performance is provided by
the single best solver (SBS), which is the algorithm with
the best overall performance among all other algorithms in
the considered portfolio. The ratio between VBS and SBS
performances, also referred to as the VBS-SBS gap, gives an
indication of the performance gains that can be obtained by
per-instance algorithm selection in the best case. Consequently,
the fraction of this gap closed by a certain algorithm selector
provides a measure of its quality [28].

E. Trajectory-Based Exploratory Landscape Analysis

In order to represent the considered optimization problem
instances in a suitable and useful way for the algorithm
selection pipeline, we shall want to quantify their different
characteristics via appropriate measures. This is typically done
by means of exploratory landscape analysis (ELA) [29]. Prob-
lem instances are characterized by automatically computed
ELA features using information extracted via sampling and
evaluating the problem. A vector of numerical ELA feature
values is assigned to each instance and can be then used to
train a predictive model that maps it to different algorithms’
performances on the said instance. The feature extraction
step is commonly considered to be independent from the
optimization process, and diverse sampling strategies can be
employed, see [30] for a discussion. Conveniently, feature
computation is done via the R package flacco [46], and
the ELA features we consider here are suggested in [5].

However, as the nature of the knowledge needed to extract
features and to optimize a problem instance is the same,
the motivation arises to save computational resources from
the preprocessing step by incorporating the feature extraction
within the optimization process. The core idea is to utilize
samples already evaluated by the algorithm to compute the
landscape features (as seen locally on the algorithm’s search
trajectory) [5]. We adopt this perspective in this paper, ex-
tending it to a more diverse portfolio. We collect the points

sampled by the base algorithm and use so-computed features
to predict the performance of another (warm-started) algorithm
which continues the optimization process.

III. EXPERIMENTAL SETUP

As discussed in Sec. II-B, in this work we make use
of a small portfolio of algorithms. The specific portfolio is
chosen based on the observed differences in their potential
performance as either the first (A1) or second (A2) part of
a dynamically switching algorithm [12]. In particular, we
consider the following algorithm implementations:
• CMA-ES: we use the modular CMA-ES (modCMA) [31],

[32], which implements a wide range of variants into one
modular framework with default settings and saturation
as the boundary correction method.

• DE: we use the scipy [33] implementation.
• PSO: we implement a basic version with clipped velocity

to avoid exploding trajectories.
• MLSL: we implement the version described in [34], using
scipy’s version of BFGS for the local search procedure.

• BFGS: we adapt scipy’s implementation.
We then use the first five instances of each of the 24 BBOB

functions mentioned in Sec. II-A for our experiments.
Our dynamic algorithm follows a two-stage process; first

it starts with the modular CMA-ES for 30 · D evaluations,
rounded up to the nearest multiple of the used population
size. This equates to 154 evaluations for the 5-dimensional
version of the functions. After this point, the run is interrupted
and the second algorithm is warm-started as described in
Sec. II-C. This experiment is repeated 10 times on each of
the first five instances of all 24 BBOB functions and for each
of the five algorithms, resulting in a total of 6 000 runs. To
execute this data collection, we used IOHprofiler [35],
which enabled us to keep track of the full search history,
as well as performance data and the state variables, some of
which are needed to warm-start the algorithms that we switch
to. As our performance measure, we take the function value
reached after a fixed number of function evaluations (i.e., the
fixed-budget target precision).

The study presented in [5] also experimented with the use
of state variables as features for the performance predictions.
Since no significant advantage was observed in [5] for these
variables, we do not make use of them here in this work
(apart from extracting the information that is needed to warm-
start the algorithms after the switch). In order to allow for
a comparison with such an approach, we have nevertheless
recorded the state variables listed in [5]; they can be found in
the data record made available at [7].

A. Performance Data

For each switching algorithm, we collect a total of 1 200
runs. Since these runs all start with the same 154 evalu-
ations from the CMA-ES, we are mostly interested in the
complementarity of their performance after this point. To
visualize this, we show the evolution of the mean function
value over time in Fig. 1. Here, we can see that for most



of the unimodal functions, the switch to BFGS significantly
outperforms all others, as would be expected, since the BFGS
has the most involved warm-starting procedure. For the more
complex functions, however, this initial benefit from switching
to BFGS disappears after a while, with the other algorithm
catching up and steadily overtaking it. This highlights a
key aspect of the prediction problem, namely the allocation
of budget to the second algorithm. The optimal switching
algorithm for a total budget of 350 can differ widely from
one where the overall budget is 1 050 evaluations. Luckily,
we can simulate the procedure for short budgets by cutting of
the run at the required point and measuring the performance
at that point, allowing us to investigate the impact of this
overall budget is more detail. In particular, we consider the
following set of A2 budgets for the second part of the search:
{100, 200, 300, 500, 700, 900} function evaluations, while the
A1 trajectory budget allocated for the feature extraction is fixed
at 150 function evaluations.

B. Selection of Regression Models

We note here that, as we operate within a fixed-budget
setting, target precision values rapidly get smaller as we
converge to the optimum. Therefore, not only do we perform
a classical regression on the actual data, but we also take
into account the possibility of more accurately predicting these
very small target precision values via training the regression
model on the log-values of the same data. We then learn a sep-
arate regression model per each combination of the algorithm,
considered budget and type of the target value (actual and log).
This leaves us with a total number of 60 different regression
models (5 algorithms × 6 budgets × 2 targets). To learn the
regression models, as classically suggested in the literature,
we use the Random Forest (RF) algorithm as implemented
in the Python package scikit-learn [37] and perform
hyperparameter tuning using the grid search methodology. We
tune five different RF hyperparameters: (1) n estimators –
the number of trees in the random forest; (2) max features
– the number of features used for making the best split
; (3) max depth – the maximum depth of the trees; (4)
min samples split – the minimum number of samples required
for splitting an internal node in the tree; and (5) criterion –
the function that measures the quality of a given split. The full
list of tuned hyperparameters and their corresponding search
spaces is given in Tab. I.

To evaluate the predictive performance of the regression
models, we employ the leave-one-group-out strategy. Here,
the groups are defined on the ID of the problem instance
(1–5), which means we work with five different groups. We
thus perform five iterations over the data, and we hold one
instance out each time (all 10 runs included), train the model
on the remaining data, and test on the test (hold-out) data.
We use the R2 score as an evaluation measure of predictive
power of the models. Finally, to obtain the test error, we
compute the average R2 score over the five hold-out groups.
The average R2 scores for the regression models with actual
target precision are given in Tab. II, while R2 scores for the

TABLE I: RF hyperparameter names and their corresponding
values considered in the grid search.

Hyperparameter Search space
n estimators [100, 500, 1000]
max features [AUTO, SQRT, LOG2]
max depth [4, 8, 15, NONE]

min samples split [2, 5, 10]

criterion [SQUARED ERROR, ABSOLUTE ERROR,
POISSON]

TABLE II: R2 scores for the regression models trained on the
actual target precision for all considered A2 budgets.

Algorithm 100 200 300 500 700 900
BFGS 0.0637 0.3059 0.4764 0.4854 0.4869 0.4860

CMAES 0.5030 0.1473 0.0993 0.2514 0.2353 0.1152
DE 0.1700 0.2699 0.1571 0.1322 0.0333 -0.0321

MLSL 0.2410 0.2066 0.3142 -0.1059 -0.0641 -0.0279
PSO 0.5361 0.5694 0.5884 0.3919 0.1398 -0.8812

regression models with the log-target precision can be found
in Tab. III.

We observe from Tab. II and Tab. III that the regression
models for log-target precision generally outperform the mod-
els with the actual target precision. For this reason, in the
remainder of the paper we focus exclusively on the log-trained
models as a basis for our algorithm selector.

C. Evaluation of the Algorithm Selector

Once the predictions from all regression models are avail-
able, the next step is to select the best algorithm for each
performed run on every problem instance. To this end, we
choose the algorithm whose regression model provides the best
predicted performance value for that run (i.e., we refer to this
algorithm as the selected algorithm). For each run, we also
identify the best algorithm based on the raw performance data
(i.e., we refer to this algorithm as the best algorithm or the
virtual best solver).

To evaluate the performance of the algorithm selector, for
each run individually, we compute the difference between
the target precision of the selected algorithm FA and that of
the best one FA∗ (for that particular run). More precisely,
we consider the difference after taking the logarithm of the
achieved target precision: L(A,A∗) = log(FA) − log(FA∗).
This gives us one performance measure per run, and we mainly
investigate the distribution of these “losses” over all 1 200
runs, which we compare to that of the five algorithms.

TABLE III: R2 scores for the regression models trained on
the log-target precision for all considered A2 budgets.

Algorithm 100 200 300 500 700 900
BFGS 0.7016 0.6691 0.7073 0.7425 0.7492 0.7570

CMAES 0.6708 0.7006 0.7695 0.8423 0.8053 0.7894
DE 0.6721 0.6549 0.6324 0.6109 0.6194 0.6669

MLSL 0.7296 0.7277 0.8722 0.8687 0.8678 0.8688
PSO 0.7205 0.7017 0.7980 0.9128 0.9137 0.8745



Fig. 1: Mean best-so-far function value (target precision) reached by each of the five switching algorithms on all 24 BBOB
functions. Each line corresponds to 50 runs: 10 on each of the first five instances of the function. Note that the first 154
evaluations are identical for each algorithm, and are thus excluded from the figure. Figure generated using IOHanalyzer [36].

IV. RESULTS AND DISCUSSION

We first present the results of our trajectory-based algorithm
selection approach for the full algorithm portfolio. Since BFGS
clearly dominates several of the settings, we also consider what
happens if we exclude it from the portfolio.

Full Portfolio. Fig. 3 shows the loss (computed as described
in Sec. III-C) of the five algorithms and our trajectory-based
algorithm selector, for two A2 budgets, 100 and 900. As
already visible in Fig. 1, the performance differences between
the algorithms is not very pronounced for the small budget,
with a vast majority of losses smaller than one order of
magnitude. BFGS nevertheless clearly outperforms the other

four algorithms. Our algorithm selector selects BFGS on 972
out of all 1 200 runs (see Fig. 2b). It performs slightly worse
than BFGS, i.e., we do not gain in this setting from the
landscape-aware selection.

For budget 900 the situation is different. Here, BFGS is still
the best solver when considering the loss distribution over all
1 200 runs. However, CMA-ES and MLSL are best for 252
and 167 runs, respectively (see Fig. 2a), and our algorithm
selector manages to distinguish between these runs in at least
some cases. To further probe into the decision of the algorithm
selector, we present a confusion matrix in Tab. IV. Our selector
has chosen BFGS 667 times in total, and in 487 of these cases
this choice was optimal. For 48 runs it would have been better



100 200 300 500 700 900
A2 Budget

BFGS

CMAES

DE

PSO

MLSL

A2

882 830 747 681 653 648

185 247 298 348 374 376

93 83 84 62 65 96

54 51 152 245 244 237

82 91 87 101 138 160
200

400

600

800

(a) How often each solver is the best to switch to.

100 200 300 500 700 900
A2 Budget

BFGS

CMAES

DE

PSO

MLSL

A2

978 997 878 765 699 667

128 154 228 310 387 441

69 35 16 19 23 12

7 3 68 67 45 44

18 11 10 39 48 36
200

400

600

800

(b) How often each solver is actually selected.

Fig. 2: Heatmap showing in how many (out of 1 200) runs each algorithm is the best one to switch to (left) and is selected
to switch to by the logarithmic model (right), based on the amount of budget given to this second part of the search. Results
are capped at 10−8 target precision, which can lead to ties. The number of best algorithms per budget can therefore be larger
than 1 200.
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Fig. 3: Loss (measured as difference between the achieved target precision and that of the virtual best solver, in log-performance
space) of the logarithmic algorithm selection model and each of the five individual algorithms, for different budgets of the
second part of the search. The thick black bar represents the mean loss for each method.

TABLE IV: Confusion matrix for our algorithm selector for A2
budget 900. Total number is less than 1, 200 because we did
not assign a confusion when more then one algorithm different
from the selected one had (equal) best performance.

Selected algorithm
True (single) best BFGS CMA-ES DE MLSL PSO Total
BFGS 487 44 1 1 2 535
CMA-ES 48 252 3 4 8 315
DE 11 18 1 3 1 34
MLSL 82 66 2 33 4 187
PSO 33 61 3 0 20 117
Total (1 188) 661 441 10 41 35

to select CMA-ES, etc.
Excluding BFGS. We have seen above that the settings are

largely dominated by BFGS, which is the best among the five
algorithms for 648 (A2 budget 900) up to 882 (A2 budget 100)
out of the 1 200 runs. We therefore analyze how the results
change if we exclude BFGS from our portfolio. Note that we
do not need to retrain our regression models for this setup, as
they were trained for each algorithm individually.

Fig. 4a summarizes how often each of the four algorithms
is best (out of the same 1 200). We see that CMA-ES is now
the dominating algorithm, however, to a much lesser extent as

BFGS dominated the full portfolio. The algorithms selected
by our algorithm selector seem to be equally balanced as the
number of runs in which they are optimal. Note, though, that
MLSL, DE, and PSO are selected much less often than the
number of cases in which they are optimal suggests. That is,
our algorithm selector often chooses CMA-ES. To evaluate
the impact on the overall loss, we created again boxplots
as in Fig. 3, for the same six A2 budgets as studied in the
case with BFGS. Fig. 5 shows the results for A2 budgets
200 (left) and 900 (right). The results are very similar for
all other A2 budgets: the loss of the CMA-ES is best among
all four budgets, but the selector is better both in terms of
mean performance (e.g., 0.14 vs. 0.17 for A2 budget 200 and
0.21 vs. 0.45 for A2 budget 900) and with respect to the 75%
percentile (0.13 vs. 0.16 for A2 budget 200 and 0.21 vs. 0.30
for A2 budget 900, respectively; the median is 0 for both the
CMA-ES and the selector for most cases).

V. LIMITATIONS OF OUR APPROACH

There are several limitations in our approach. First, we
investigate only 10 runs per each algorithm on each problem
instance and the results are computed on a per-run basis. In
particular, an algorithm that happens to underperform in this



100 200 300 500 700 900
A2 Budget

CMAES

DE

PSO

MLSL

A2

486 606 590 614 629 653

538 468 393 260 240 235

107 74 185 345 328 317

271 178 152 143 172 197
100

200

300

400

500

600

(a) How often each solver, excluding BFGS, is the best to switch to.

100 200 300 500 700 900
A2 Budget

CMAES

DE

PSO

MLSL

A2

577 699 754 763 797 864

435 394 295 179 179 137

19 9 94 194 146 120

169 98 57 64 80 79
200

400

600

800

(b) How often each solver, excluding BFGS, is actually selected.

Fig. 4: Heatmaps showing in how many (out of 1 200) runs each algorithm (excluding BFGS) is the best one to switch to
(left) and is selected to switch to by the logarithmic model (right), based on the amount of budget given to this second part of
the search. Results are capped at 10−8 target precision, the number of best algorithms per budget can therefore be larger than
1 200.
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Fig. 5: Loss (measured as difference between the achieved target precision and that of the virtual best solver, in log performance
space) of the logarithmic algorithm selection model when excluding BFGS, and each of the 4 remaining individual algorithms,
for different budgets of the second part of the search. The thick black bar represents the mean loss for each method.

particular run is assigned a large loss in our evaluation, even
though its “typical” performance for the same setting may
be much better than what the results of that one particular
run suggests. This can of course also happen the other way
around, i.e., an algorithm may appear to be much better than
its “typical” performance. While we think that the overall
large number of runs considered in our work helps to average
out such unwanted outlier effects, a more robust experimental
setup should be considered for future work.

In addition to this, we should note that the used warm-
starting techniques are quite straightforward. While this is
useful for dynamic algorithm selection in general, we could
also extend the warm-starting procedure to better utilize the
available information. This should lead to better overall per-
formance of the switching algorithms. Furthermore, to this
end, each of the considered algorithms require some level of
warm-starting customization, which results in different warm-
starting procedures being applied depending on the algorithm.
Additional effort merits to be put towards defining a universal
warm-starting procedure that can be employed independently
of the algorithm’s internal operating mechanism.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that the trajectory-based selection is able
to outperform all of the individual algorithms in this port-
folio, given that there is sufficient complementarity in their
performance. Since our experimental pipeline makes use of a
relatively small number of samples to determine the algorithm
to switch to, without considering any algorithm-specific state
features, it highlights the potential of the overall approach.

Going forward, we will extend our work to settings in which
a proper transfer of learned regression models needs to be
performed. To this end, we will consider a transfer to the
benchmark collections from the CEC competitions [38]–[41]
and to the (artificial and real-world) problem suits available in
nevergrad [42]. We also plan on extending our approach
towards larger algorithm portfolios. Specifically, it would be
good to focus on a portfolio which contains complementary
algorithms, which show varying behavior on different problem
instances. In addition, more research is required to define suit-
able ways to warm-start the algorithms with the information
gathered by the first algorithm.

As mentioned in Sec. III, we recorded several state variables
of the CMA-ES, but we did not make use of them in this
present study. We believe that the regression models can



strongly benefit from this information; possibly not in the
naı̈ve way applied in [5] (where only the final state variables at
the time of the switch were used as features for the regression
model), but by extracting information from the evolution of the
state variables during the first part of the optimization process,
before the switch. Such an approach based on time-series
analysis have been suggested in the literature [43]. There, it
was shown that features computed on evolution of the state
variables of the CMA-ES can be used to accurately classify
variants of the algorithm, and predict which of the BBOB
problems was being optimized. Combining such an approach
with the algorithm selection methodology presented in this
work would be a promising direction of research. In addition,
approaches with recurrent neural networks [44] (i.e., long
short-term memory) and transformers [45] for predicting from
longitudinal trajectory data should be considered to enrich
the performance regression, which is a key component of our
algorithm selection pipeline.

Finally, an adaptive switching policy (as opposed to switch-
ing after a fixed number of evaluations as investigated in this
present paper) is another important direction towards practical
applicability and adoption of our trajectory-based landscape-
aware algorithm selection approach.
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