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Abstract—In real-world optimization scenarios, the problem
instance that we are asked to solve may change during the opti-
mization process, e.g., when new information becomes available
or when the environmental conditions change. In such situations,
one could hope to achieve reasonable performance by continuing
the search from the best solution found for the original problem.
Likewise, one may hope that when solving several problem
instances that are similar to each other, it can be beneficial to
“warm-start” the optimization process of the second instance
by the best solution found for the first. However, it was shown
in [Doerr et al., GECCO 2019] that even when initialized with
structurally good solutions, evolutionary algorithms can have a
tendency to replace these good solutions by structurally worse
ones, resulting in optimization times that have no advantage
over the same algorithms started from scratch. Doerr et al. also
proposed a diversity mechanism to overcome this problem. Their
approach balances greedy search around a best-so-far solution
for the current problem with search in the neighborhood around
the best-found solution for the previous instance.

In this work, we first show that the re-optimization approach
suggested by Doerr et al. reaches a limit when the problem
instances are prone to more frequent changes. More precisely, we
show that they get stuck on the dynamic LeadingOnes problem
in which the target string changes periodically. We then propose
a modification of their algorithm which interpolates between
greedy search around the previous-best and the current-best
solution. We empirically evaluate our smoothed re-optimization
algorithm on LeadingOnes instances with various frequencies of
change and with different perturbation factors and show that it
outperforms both a fully restarted (1+1) Evolutionary Algorithm
and the re-optimization approach by Doerr et al.

I. INTRODUCTION

It is not uncommon in real-world optimization tasks that
one needs to solve several problem instances of very similar
type, e.g., when a routine task such as postal deliveries
needs to be planned and the problem instance changes only
marginally from one day to the next. Similarly, it may happen
that the problem instance that we solve changes during the
optimization process, e.g., because new information becomes
available or some factors that determine the quality of the
solution candidates change. In both situations one may hope to
be able to benefit from the good solutions that were identified
for the previous problem instance or from the instance before
the change, respectively. Ideally, we would hope to warm-start
the algorithms with the best previously found solutions, and
to speed up the search compared to searching from scratch.

While this hope may be true in most real-world optimization
scenarios [1], it was shown in [2] that evolutionary algorithms
may not always be able to benefit from such warm-starting
procedure, even when the solution(s) that are transferred
from one instance to the next are structurally very good.
An extreme case for such inefficient use of information that
was highlighted in [2] is the LEADINGONES problem: it was
proven that even when initialized at Hamming distance one
from the optimum, the number of fitness evaluations that
the (1+1) Evolutionary Algorithm (EA) needs to sample the
optimum for the first time can be quadratic in the problem
dimension. Even worse, it was shown that this happens with
constant probability when the fitness value of the solution used
for warm-starting is at most n/2. Motivated by this inefficient
behavior of the (1 + 1) EA on dynamic LEADINGONES,
Doerr et al. introduced a re-optimization algorithm (REA) that
balances the search between sampling around the current-best
solution (as done in the (1 + 1) EA) and around the previous-
best solution. The key idea of the REA is that not only the
previous-best solution is kept in the memory, but also one
point per each Hamming distance around the previous-best
solution. This way, the algorithm does not suffer any more
that much if the greedy search takes it on an unfavorable path
away from the optimum – the search around the previous-best
solutions helps to overcome such a distraction, by re-centering
the search in the interesting part of the search domain.

Our Results. The theoretical analyses in [2] focus on
re-optimization time only, i.e., on the average number of
evaluations needed until a solution is found that is at least as
good as the best one before the change happened. In this work,
we consider a different setup, in which the fitness function is
subject to frequent changes. More precisely, we (empirically)
investigate how well the (1 + 1) EA and the REA optimize
the LEADINGONES problem when the optimum is changed
periodically, every τ iterations, by flipping k uniformly chosen
bits in the target string. We observe that the REA is indeed
more efficient than the (1 + 1) EA in the first iterations after
such a fitness function perturbation. However, the advantage of
the REA decreases and eventually vanishes as the number of
iterations increases. At some point, the (1+1) EA outperforms
the REA. Based on these observations, we propose in this
work a modified REA that dynamically changes the probability
to sample either in the neighborhood of the previous-best



solution or around the current best solution. More precisely,
the probability that our smoothREA selects the current-best
solution as center of search slowly increases by an additive
1/(sn2) term in each iteration. Here, the parameter s is a
“smoothness” parameter that determines the speed by which
the smoothREA converges towards the (1 + 1) EA. We show
that the smoothREA is more efficient than both the (1+1) EA
and the REA for broad ranges of s.

Related Work. Dynamic evolutionary computation is a
well-studied problem. The surveys [1] and [3] provide a
large number of relevant pointers to empirical and theoretical
results, respectively, so that we mention here only a few works
that have appeared since then and that are most closely related
to our work.

Lengler et al. perform empirical [4] and theoretical [5]
analysis of the dynamic BinVal problem. Just like LEADING-
ONES, BinVal is a classic, well-studied function in the runtime
analysis domain. It is a linear function with weights of the
form 2n−i, i = 1, ..., n. In the dynamic version analyzed in
the two mentioned works, the assignments of these weights
to the bit positions are chosen uniformly at random in each
iteration. Lengler et al. showed that an increased population
size can be beneficial, in the sense that it increases the
range of possible mutation rates for which the (µ + 1) EA
can efficiently solve the dynamic BinVal problem. It was
also shown that crossover can extend the range of efficient
parameter values further. Two main differences to our work
exist: (1) the optimum remains the same in the dynamic BinVal
function, whereas it is changed by k bits with every change in
our dynamic LEADINGONES problem, and (2) we investigate
different frequencies of change, whereas Lengler et al. change
the fitness function after each generation.

Guidelines to set mutation rates and population size of non-
elitist evolutionary algorithms for the dynamic BinVal problem
are provided in [6]. Extending previous work on a hand-crafted
“moving Hamming-balls” function [7] the work also shows the
benefit of non-trivial population sizes.

A dynamic version of LEADINGONES was studied in [8].
In that work, perturbations may happen in each iteration.
More precisely, in each iteration (independently of all previous
decisions), the optimum z is changed by (a) a 1-bit flip or (b)
standard bit mutation with probability p. It is shown that if
p ≤ c ln(n)/n2 (in case (a)) and p ≤ c ln(n)/n3 (in case
(b)), then the expected time until the (1 + 1) EA evaluates
a then-optimal solution is at most (δ + o(1))n2+δc, where
δ = (e− 1)/2 ≈ 0.86.

Related to the dynamic setting are also noisy optimization
problems, and in particular models with a priori noise, in
which the solution is perturbed with some probability prior to
its evaluation. The main differences to our dynamic setting is
that, in the noisy setting, the changes are independent in each
iteration, whereas they remain fixed for the interval τ in the
dynamic case studied here in this work. We nevertheless note
that it has been shown that the (1 + 1) EA is very sensitive
to such a priori noise when optimizing the LEADINGONES
function; see [9] for a sharp analysis and a summary of related

works on the efficiency of EAs for noisy optimization.

II. PRELIMINARIES

We introduce the problem and the two algorithms that build
the starting point for our work. Throughout this paper, we
denote by [a..b] the set of all integer values r ∈ [a, b]. For
two bit strings x, y ∈ {0, 1}n we denote by H(x, y) = |{i ∈
[1..n] | xi 6= yi}| the Hamming distance of x and y.

A. Dynamic LeadingOnes with Frequent Changes

The original (static) LEADINGONES problem is the problem
of maximizing the function LO : {0, 1}n → R, x 7→ max{i ∈
[0..n] | ∀j ≤ i : xj = 1}, which simply assigns to each bit
string the number of initial ones. Given a search point x with
LO(x) = i, it must hold that x1 = . . . = xi = 1 and xi+1 = 0.
The only way to improve the fitness of x is hence by creating
a solution that is identical to x in the first i positions, but has
the (i+ 1)-st entry flipped (i.e., replaced by 1− xi+1).

LEADINGONES was introduced in [10] to disprove a pre-
vious conjecture that for each unimodal function the number
of function evaluations needed by the (1 + 1) EA (see Sec-
tion II-B) to find an optimal solution grows sub-quadratically
in the problem dimension. This was formally proven in [11].
What makes LEADINGONES an interesting problem for the-
oretical works is that it is a non-separable function, i.e., the
influence that a bit has on the overall quality of the solutions
may depend on the setting of other bits.

It is well understood, and formalized in the so-called
unbiasedness notion introduced in [12], that many algorithms,
and in particular most mutation-only evolutionary algorithms,
are indifferent with respect to optimizing this function or
any of the LOz,σ defined as follows. For a given target
string z ∈ {0, 1}n and a given permutation σ of [1..n], the
LEADINGONES function LOz,σ assigns to each string x the
function value LOz,σ(x) := max{i ∈ [0..n] | ∀j ≤ i : xσ(j) =
zσ(j)}, the longest prefix (in the order prescribed by σ) of x
that agrees with z. It is not difficult to see that LOz,σ has a
unique optimum, which is the target string z. In this work,
we are interested in the behavior of evolutionary algorithms
when this target string changes. We do not consider changes
in σ. To ease the presentation of our work, we can therefore
safely assume that σ is equal to the identity. That is, all
LEADINGONES functions appearing in our work are of the
form LOz : {0, 1}n → [0..n], x 7→ max{i ∈ [0..n] | ∀j ≤ i :
xj = zj}.

In our dynamic variant of LEADINGONES with k-bit in-
version and frequency of change τ , the target string z is
replaced by a new target string znew after every τ steps. The
Hamming distance of z and znew is equal to k, i.e., we assume
that exactly k bits are changed at the end of each period.
We further assume that these k bits are chosen uniformly at
random (u.a.r.).

Note that even a 1-bit inversion can reduce the fitness
of the current-best solution very drastically: in the extreme
case, it decreases from n to 0 if the first bit of the target
string is flipped. This example also shows that LEADINGONES



Algorithm 1: The (1 + 1) EA with shift mutation and
mutation rate 0 < p < 1 maximizing a function f :
{0, 1}n → R.

1 Initialization: Sample x ∈ {0, 1}n u.a.r. and evaluate
f(x);

2 Optimization: for t = 0, 1, 2, . . . do
3 Sample ` from Bin0→1(n, p), sample y ← flip`(x)

and evaluate f(y);
4 if f(y) ≥ f(x) then x← y;

suffers from a bad fitness-distance correlation, in that a small
fitness value does not necessarily imply a large distance to the
optimum. It is this property that may lead a greedy algorithm
lose track of a good solution after a target string change. More
precisely, a greedy algorithm is likely to accept solutions of
better fitness but larger distance from the optimum. That this
situation occurs with a non-negligible probability is at the heart
of the negative re-optimization result proven in [2].

B. The (1+1) EA with Shift Mutation

The (1+1) EA algorithm (Alg. 1) is initialized by sampling
a search point x ∈ {0, 1}n u.a.r. It then proceeds in rounds.
In each iteration, one offspring y is created from x by so-
called standard bit mutation. Standard bit mutation creates a
copy from x and then changes each bit with probability p,
independently of the status of all other bits. The offspring y
replaces x if it is at least as good, i.e., if f(y) ≥ f(x) holds.
The algorithm proceeds this way until a termination criterion
is met. In our work, we run all algorithms for a certain number
of iterations.

The standard setting for the mutation rate p is 1/n. With
this choice, one bit is changed on average, which can be easily
verified by considering that the number of bits that change
are binomially distributed. However, for p = 1/n it happens
with probability (1 − 1/n)n ≈ 1/e ≈ 36.8% that none of
the bits is flipped. We follow a suggestion made in [13] and
apply the so-called shift operator: when none of the bits is
changed, we flip a randomly selected bit. Put differently, our
mutation operator first selects a mutation strength ` ∈ [1..n]
by sampling from Bin0→1(n, p), which assigns probability
Bin(n, p)(k) =

(
n
k

)
pk(1−p)n−k to each k ∈ [2..n], and prob-

ability Bin(n, p)(0)+Bin(n, p)(1) = (1−p)n+np(1−p)n−1
to k = 1. The offspring y is then created from x by choosing
` pairwise different positions i1, . . . , i` ∈ [1..n] and by setting
yj = 1 − xj for j ∈ {i1, . . . , i`} and by setting yj = xj
otherwise. This procedure is implemented by the flip` operator
mentioned in line 3 of Alg. 1.

C. The Original REA Algorithm

It was shown in [2] that the (1 + 1) EA can lose track
of the good solutions when a k-bit inversion happens on
LEADINGONES, in the sense that the average time required
to regain a solution of previous fitness can be almost as long
as when started from scratch, and this even when only a single

Algorithm 2: The original REA for the re-optimization
(here: maximization) of a function f : {0, 1}n → R,
which emerged from the function fold by a dynamic
change.

1 Input: Solution xold;
2 Initialization: x0, x∗ ← xold;
3 for i = 1, 2, . . . , γ + 1 do xi ← undefined,

f i ← −∞;
4 Optimization: for t = 0, 1, 2, . . . do
5 Select parent x by choosing x∗ with probability

1/2 and uniformly at random from
{xi | i ∈ [0..γ + 1]} \ {x∗} otherwise;

6 Sample ` from Bin0→1(n, p), sample y ← flip`(x)
and evaluate f(y);

7 if f(y) ≥ f(x∗) then x∗ ← y;
8 i← min{H(y, xold), γ + 1};
9 if f(y) ≥ f i then xi ← y, f i ← f(y);

bit changed. Doerr et al. therefore suggested a Re-optimization
EA (REA), which works as follows (see also Alg. 2).

The REA takes as an input the individual xold with the best
fitness fold(xold) achieved during the previous period before
the fitness function fold was changed to f . Then a special set
of individuals is initialized in lines 2-3 and updated in lines 7-
9. It consists of individuals which are at certain Hamming
distances from xold. More precisely, one individual xi per each
Hamming distance from 0 to γ is stored, and there is also one
additional individual xγ+1 which can be at any distance greater
than γ. The parameter γ needs to be chosen by the user, and is
usually an upper bound for the estimated difference between
the old and the new optimum. In our work, we will assume
that the number k of bit inversions is known, and set γ = k.
This is the optimal choice of γ.

In each iteration, the REA selects one parent x from the
current population, and creates one offspring y using the same
shift mutation operator flip` as the (1 + 1) EA. Two greedy
selection steps follow: the current-best solution x∗ is replaced
by y if f(y) is at least as large as f(x∗). In addition, y
replaces the best-so-far solution xi, i = min{H(x, y), γ+ 1},
if f(y) ≥ f i. The parent selection is done as follows
(line 5): with probability 1/2 the current-best solution x∗ is
chosen. Otherwise, the algorithm selects u.a.r. among all other
members of the population {xi | i ∈ [0..γ + 1]} \ {x∗}.

Thus, in each iteration, the REA behaves like the (1+1) EA
with probability 1/2 and it decides to search around a point
with possibly small fitness value otherwise. It was shown in [2]
that the REA needs at most min{2e(γ+1)kn, 2en2} iterations
to find again a solution of fitness at least as large as the best
fitness found before the k-bit inversion, provided that γ ≥
k−1 holds. Note that this result was for the REA version that
uses standard bit mutation and not the shifted mutation, but
it is not difficult to see that the shift mutation changes only
the constants in the bound (this can be derived similarly as
in [13]). We omit the details, as we are mainly interested in



the global picture.

III. MODIFIED AND SMOOTH REA FOR FREQUENT
CHANGES OF THE FITNESS FUNCTION

While the main focus in [2] is on the re-optimization time,
i.e., on the time needed to find again a search point that is
at least as good as the best one that was evaluated before the
dynamic perturbation of the fitness function, we are interested
in this work in situations in which the k-bit inversion happens
with a certain frequency τ . We therefore need to extend the
REA by switching off the re-optimization part when a search
point of fitness at least fold(xold) is found. When this is the
case, i.e., when the REA has found a solution that is at least
as good as the best one found for the function before the k-
bit inversion, the algorithm cannot benefit any more from the
population {xi | i ∈ [1..γ+ 1]}. In this situation, we therefore
let the REA continue as a (1 + 1) EA (line 18 of Alg. 3). For
reasons of space, we do not provide the full pseudo-code of the
REA adjusted to our setting, but it is the same as Alg. 3 with
line 16 replaced by line 5 from Alg. 2. Despite the extension
from the original REA proposed in [2], we continue to refer
to this algorithm as the REA (there is no risk of confusion
since we only consider this extended version in this work).

During preliminary experiments, it was repeatedly noticed
that the REA has a clear advantage over the (1 + 1) EA
in optimization speed immediately after the fitness function
perturbation, but that it begins to fall behind the (1 + 1) EA
after some time. This behavior is also visible in the plots
presented in Section IV, e.g., Figure 1. It inspired us to
gradually change the probability by which the REA resembles
the (1+1) EA. We use a simple linear probability adjustment:
in iteration t after the last change, the probability to select
the best-so-far solution x∗ is set to min{1, t/(sn2)}, where
s > 0 is a hyper-parameter of our modified REA. We call s the
smoothness parameter. It determines the speed by which the
modified REA converges from uniform selection among the
points that are not the current-best1 towards greedy selection
of the latter. The smaller the value of s, the faster the modified
REA converges to the (1 + 1) EA. Note that we have chosen
the normalization by n2 since the optimization time of the
(1+1) EA on LEADINGONES is Ω(n2) [11]. We refer to this
modified REA as the smoothREA.

IV. RESULTS

A. Experimental Setup

We compare the (1+1) EA, the REA, and the smoothREA
on the following dynamic LEADINGONES instances and with
the following settings:
• dimension of the problem: n ∈ {100, 200},
• frequency of fitness function perturbations τ ∈ {500} ∪
{1000i | i ∈ [1..10]},

1One may wonder if it would not be better to select uniformly among all
points in the population, but we did not find evidence in our preliminary
experiments that such a strategy would be advantageous over the one adopted
in Alg. 3.

Algorithm 3: The smoothREA for maximizing a dy-
namic function that changes every τ iterations. The
(extended) REA is identical to this algorithm after
replacing line 16 with line 5 of Alg. 2.

1 Input: Smoothness parameter s > 0
2 Initialization: re-optimization flag r ← false;
3 Sample x∗ ∈ {0, 1}n u.a.r. and evaluate f(x∗)
4 xold ← x∗

5 fbest ← f(x∗)
6 Optimization: for t = 0, 1, 2, . . . do
7 if t mod τ = 0 ∧ t 6= 0 then
8 xold ← x∗;
9 fbest ← f(xold);

10 FitnessFunctionPerturbation(f)
11 k-bit inversion of target string;
12 r ← true;
13 x0 ← xold;
14 for i = 1, 2, . . . , γ + 1 do xi ← undefined,

f i ← −∞;

15 if r then
16 Select parent x by choosing x∗ with probability

min{1, t/(sn2)} and uniformly at random
from {xi | i ∈ [0..γ + 1]} \ {x∗} otherwise;

17 else
18 x← x∗;

19 Sample ` from Bin0→1(n, p), sample y ← flip`(x)
and evaluate f(y);

20 if f(y) ≥ f(x∗) then x∗ ← y;
21 if r then
22 i← min{H(y, xold), γ + 1};
23 if f(y) ≥ f i then xi ← y, f i ← f(y);
24 if f(x∗) ≥ fbest then
25 r ← false;

• strength of the perturbation, i.e., number of bits flipped
in every fitness function perturbation: k ∈ {3, 5, 10},

• size of the Hamming set: as motivated in Section II-C we
use the optimal choice γ = k,

• smoothness parameter
s ∈ {0.05, 0.1, 0.4, 0.8, 1.2, 1.6, 2.0},

• total budget of function evaluations: 50 000 (the visible
part on the plots may be less),

• results are averaged based on 100 runs for the perfor-
mance plots (Figures 1 and 4) and the histograms in
Figure 2. To increase the smoothness of the curves, they
are based on 1000 runs for the cumulative plots shown
in Figure 3.

Although we do not explicitly report additional statistical
measures, such as deviation, they can be assessed using the
histograms in Figure 2.

The source code used to perform this experimental study
may be found at https://github.com/Ninokfox/REA.

https://github.com/Ninokfox/REA
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Fig. 1: Average function values of the (1+1) EA, REA, and smoothREA for different instances of the dynamic LEADINGONES
problem with k-bit inversion and problem size n = 100. Results are grouped by k in the rows (top: k = 3, middle: k = 5,
bottom: k = 10) and for different frequencies of change in the columns. The smoothness parameter s is set to 0.8 for k ∈ {3, 5}
and we show results for s = 0.05 for k = 10.
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Fig. 2: Histograms of best fitness values found in each period between two fitness function perturbations, for dynamic
LEADINGONES with frequency of change τ = 1000 (left) and τ = 2000 (right), perturbation strength k = 5, problem
dimension n = 100, and 100 independent runs of the algorithms.
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Fig. 3: Cumulative plots of the values plotted in Figure 2, for 1000 runs. Each point in the plot shows the fraction of values
that is at least as large as the value indicated by the x-axis. All results are for the dynamic LEADINGONES problem with
perturbation strength k = 5, dimension n = 100, and for frequencies of change ranging from τ = 1000 to τ = 6000.

B. Overview of Results, n = 100

Figure 1 shows the average quality of the best-so-far points
obtained by the three algorithms in dependence of the number
of solutions that have been evaluated, for different frequencies
of change (τ ∈ {1000, 3000, 6000}) and for different pertur-
bation strengths (k ∈ {3, 5, 10}). For the smoothREA we plot
here only the results for two selected values, s = 0.8 for
k ∈ {3, 5} and s = 0.05 for k = 10. These values were
selected because they had decent performance. Results for
other smoothness values will be discussed below.

Overall, REA performs better than the (1 + 1) EA for most
of the considered cases, but not for the setting with k = 10
and τ ≥ 3000. This is in line with the theoretical result
mentioned at the end of Section II-C: the larger k, the less
likely the REA is to select a good starting point, hence its
reduced performance. Our proposed smoothREA outperforms
the other two algorithms in all cases, but the advantage is
almost negligible for k = 10.

We also observe that for all three algorithms the average best
fitness value stagnates when the frequency of change is too
large (τ = 1000 for k = 3, τ ≤ 3000 for k = 5 and k = 10).
The value at which the algorithms stagnate is typically lowest
for the (1 + 1) EA and largest for the smoothREA.

In order to trace the influence of the smoothness parameter
s on the efficiency of the smoothREA, we consider the
fitness values of best-found solutions at the last iteration
before a perturbation of the fitness function happens. We

plot these fitness values in histograms in Figure 2. More
precisely, we plot the results for the (1 + 1) EA, the REA,
and for the smoothREA algorithms with smoothness values
s ∈ {0.4, 0.8, 1.2, 1.6, 2.0}, for the case when k = 5 bits are
flipped in the target string. The plot on the left shows the
distribution of values for τ = 1000 and the one on the right
for τ = 2000. Each plot is based on 100 (number of runs)
times 50 000/τ fitness values, i.e, the plot on the left shows
the distribution for 5 000 values, and the one on the right for
2 500 values.

For τ = 1000, the distributions look like normally dis-
tributed ones for each of the seven algorithms. The mean of the
values found by the (1 + 1) EA are smaller than those found
by the REA and the smoothREA algorithms. The difference
between the original REA and the family of smoothREA
algorithms is noticeable as well, but is much smaller than the
difference to the (1 + 1) EA.

For both frequencies of changes plotted in Figure 2 the
distribution of the values look very similar for the different
smoothness parameters s.

For τ = 2000, the difference between the REA and
the family of smoothREA algorithms is more pronounced,
especially when considering the number of runs that hit the
optimum (fitness equal to 100). Since this effect is not very
well visible in this plot, we show a cumulative version of the
plots in Figure 3, for different frequencies of change. More
precisely, we plot in Figure 3 which percentage of the values
(y-axis) are at least as large as the value indicated on the x-
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Fig. 4: Average function values of the (1+1) EA, REA, and smoothREA for different instances of the dynamic LEADINGONES
problem with k-bit inversion and problem size n = 200. Results are grouped by k in the rows (top: k = 3, middle: k = 5,
bottom: k = 10) and for different frequencies of change in the columns. The smoothness parameter s is set to 0.8 for all
settings.

axis.
When the perturbations are less frequent (i.e., when τ

increases), the number of periods in which the algorithms
reach the optimum increases noticeably. The (1 + 1) EA (red
line) is clearly worse than the REA (thick blue line) and all
the smoothREA variants (thin lines), with the exception of the
case τ = 6000 where the REA achieves the optimum more
often than the (1 + 1) EA, but the (1 + 1) EA has a larger
fraction of periods in which it reaches fitness values up to 95.

We also observe that the REA and the smoothREA al-
gorithms are very similar for high frequencies of change,
especially for τ = 1000. But the difference between them
increases with increasing τ .

Overall, the visualization in Figure 3 clearly indicates that

the dispersion of the fitness values reached at the end of each
period is larger for the REA than for the (1 + 1) EA, which
explains the poor average performance plotted in Figure 1.

Comparing the different smoothREA variants, we observe
that for high frequency of change τ = 1000 the algorithms
with s = 0.4 and s = 0.8 are the most efficient, for the
frequency τ = 2000 smoothness values s = 0.8 and 1.2 are
the best choices, for τ = 4000 one should pick s = 1.6 and
2.0 and so on. That is, the smoothness parameter s should
increase with increasing periods between two fitness function
perturbations. Put differently, the less frequent the change
occurs, the less pronounced the benefit of the REA mechanism,
and the faster one should change to the greedy selection (i.e.,
to the (1 + 1) EA).



C. Overview of Results, n = 200

Figure 4 shows the average best-so-far fitness that the three
algorithms achieved on different instances of the dynamic
LEADINGONES problem in dimension n = 200. For a better
comparability, the frequencies of change and perturbation
strengths are identical to those plotted for the case n = 100
in Figure 1.

As expected, the average best fitness ever found is smaller
for the 200-dimensional problem compared to the 100-
dimensional one. For all nine settings, none of the three
algorithms is able to reliably locate the optimal solution.
Naturally, if the frequency and strength of perturbation stay
the same, the percentage of changed bits relative to the length
of the individual is halved in the n = 200 setting compared
to n = 100. This makes the optimization for k = 10 and
n = 200 similar to the optimization for k = 5 and n = 100.
The same smoothness parameter turned out to be efficient in
both cases. We also observe that the REA outperforms the
(1 + 1) EA in all cases, i.e., even for all three cases with
perturbation strengths k = 10.

As mentioned in Section IV-A, we have tested various
smoothness values. While s = 0.8 is among the best for
most experiments, smaller values become beneficial when the
frequency of change increases. For example, for τ = 1000 and
k = 3, the smoothREA with s = 0.05 is more efficient than
the one with s = 0.8, but the difference in performance is not
very large.

V. CONCLUSION

We have analyzed the performance of the REA proposed
in [2] in the context of high frequencies of change. We first
modified the REA for this setting, by switching off the REA
elements when a solution is found that is at least as good as
the best solution that was found for the fitness function before
the last perturbation. In this case, the modified REA continues
as a (1 + 1) EA. We then observed that this modified REA
is efficient only for the first steps after the fitness function
perturbation, but falls behind the efficiency of the (1 + 1) EA
after a certain number of steps. We have therefore proposed a
family of smoothREA algorithms, which interpolate the REA
with the (1 + 1) EA. We show that this version improves
over the original REA for a broad range of smoothness
parameters s > 0.

In contrast to the work presented in [2], our analysis is
purely empirical. Even though our algorithms use the shift
mutation operator suggested in [13], it should not be too
difficult to compute the exact point at which one should ideally
switch off the REA elements and continue with the (1+1) EA.
Likewise, it should not be too difficult to compute the optimal
smoothness parameter s in dependence of n and k.

All algorithms investigated in this work struggle to find
solutions that are better than a certain threshold that depends
on n, k, and τ . There is hence room for further improvements
of the re-optimization strategy.

Leaving the world of LEADINGONES instances, we plan
on investigating the basic working principles of the REA on

dynamic combinatorial problems such as dynamic scheduling
or dynamic routing problems [14], [15].
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