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Graphical Abstract

High-resolution far-infrared synchrotron FTIR spectroscopy and analysis of the
ν7, ν19 and ν20 bands of trioxane

C. Richard, P. Asselin, V. Boudon
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Highlights

High-resolution far-infrared synchrotron FTIR spectroscopy and analysis of the
ν7, ν19 and ν20 bands of trioxane

C. Richard, P. Asselin, V. Boudon

� Far infrared high resolution spectroscopy of four bands of the trioxane

� Complete line position analysis of ν7, ν19 and ν20 bands of trioxane.

� Comparison of tensorial and Watson’s formalism results
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Abstract

Rovibrational bands spectra of three ν20, ν7 and ν19 bands of 1, 3, 5 – trioxane (H2CO)3
were recorded in the 50–650 cm−1 range using a long path absorption cell coupled to a
high resolution Fourier transform spectrometer and synchrotron radiation at the AILES
beamline of the SOLEIL synchrotron. More than 16 000 lines were assigned with a dRMS
better than 0.17 × 10−3cm−1. Two different formalisms (tensorial and Watson) were used
to derive accurate rotational and quartic parameters for the three bands and for the first
time, a precise determination of Coriolis parameter and q+ l−doubling constant for both
ν20 and ν19 perpendicular bands was obtained. Last, each set of spectroscopic parameters is
compared and discussed between both formalisms.

Keywords:
Trioxane, High-Resolution Infrared Spectroscopy, Line positions, Tensorial Formalism,
Watson’s Formalism, Synchrotron radiation

1. Introduction

The molecule of 1, 3, 5 – trioxane (H2CO)3, cyclic trimer of formaldehyde, is an oblate
symmetric-top that belongs to the C3v symmetry group as illustred in the Fig. 1. It’s a good
example of a reasonably rigid molecule which owns 20 fundamental modes: 7 symmetric
vibrations of type A1 (parallel bands), 3 vibrations of type A2 (absorption inactive bands)
and 10 doubly degenerate vibrations of type E (perpendicular bands).

Because of its relatively high number of atoms (12) and its fairly high mass, the rota-
tional spectrum of trioxane is very outspread, leading to a possible radiastronomy detection.
For many years, trioxane is also known as a molecule that could be detected in comet
comae[1, 2], making it as highly relevant to studies of prebiotic chemistry. Its first mi-
crowave spectrum was realized by Oka et al.[3] in 1963, and the analysis was extended by
Colmont and co-workers[4, 5, 6, 7] for the excited states below 850 cm−1. Submillimetric
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spectra were then measured in its ground-state and its two lowest lying excited states ν7 = 1
at 467 cm−1 and ν20 = 1 at 307 cm−1[8]. Two jet-cooled mid-infrared spectroscopic studies
reported rovibrational spectra of the ν17 and ν16 bands, respectively centered at 1071 and
1177 cm−1[9].

Figure 1: Three-dimensional representation of the Trioxane molecule (H2CO)3.

This paper presents a complete analysis of three bands, observed at high resolution in
the far infrared:

� ν20 mode, CH2 torsion, E, 297 cm−1,

� ν7 mode, OCO bending, A1, 466 cm
−1,

� ν19 mode, OCO bending, E, 525 cm−1,

Infrared spectra of trioxane have been recorded in the 650 cm−1 range using a high
resolution Bruker IFS 125 interferometer located at the AILES beamline of the SOLEIL
synchrotron facility. Owing to its higher brilliance in the far-infrared region, the SOLEIL
synchrotron radiation was used to improve the signal-to-noise ratio of the spectrum at the
maximal resolution of 0.001 cm−1.

The three bands were analysed independently using two different formalisms. We used,
on one side a Watson’s model for symmetric-top molecules, giving common spectroscopic
constants, on the other tensorial formalism and group theory methods developed in the
Dijon group[10, 11], that allow us to provide a set of effective spectroscopic parameters. We
will discuss about the side comparison of both models and will expose why the first overtone
2ν20 (A1+E, 595 cm

−1) was measured but could not be analysed with same quality as other
bands.
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2. Experimental details

Gas-phase trioxane (> 99%, Aldrich), was injected in a multipass cell equipped with
polypropylene films of 50µm thickness as cell windows of which the optics (White-type
arrangement) were set to obtain a 150m long absorption path. The three low frequency
ν20, ν7 and ν19 fundamental bands of trioxane are predicted to have very different infrared
intensities, respectively calculated to 0.1, 19 and 8 km/mol[12], which requires to record three
spectra at different trioxane pressures to maximize absorption signal of each band: 815 µbar
for the very weak ν20 mode, 10µbar for both intense ν7 and ν19 modes and 50 µbar for the
2ν20 overtone. The three far-IR spectra have been recorded at the maximal resolution of
0.001 cm−1 using the SOLEIL synchrotron FIR radiation extracted by the AILES beamline as
the continuum source of the FT interferometer equipped with a He-cooled bolometer detector
and a 6µbar mylar beamsplitter, resulting in a significant improvement of the signal-to-noise
ratio in comparison with a globar source[13, 14]. Consequently, the acquisition times for the
FTIR spectra of ν20, ν7, ν19 and 2ν20 bands of trioxane were only 9 h, 11 h and 11 h30min,
respectively. Both spectra were calibrated using accurate far-IR water lines absorption[15].
Thanks to the high signal-to-noise ratio obtained, the line position accuracy was estimated
to 0.0002 cm−1 for all trioxane lines observed.
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Figure 2: Overview of the high resolution spectra of the ν20, ν7, ν19 and 2ν20 bands of a sample of trioxane.
The different bands were recorded at different pressure conditions, 815 µbar for ν20, 10 µbar for ν7 and ν19
and 50 µbar for 2ν20.

Fig. 2 displays an enlarged view of the far-IR FT spectra of trioxane recorded at high
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resolution. The characteristic PQR band structure of three fundamentals observed is fully
resolved, enabling to perform a global rovibrational analysis. However, hot bands starting
from the lowest frequency ν20, ν7 and ν19 modes are expected in a room temperature ab-
sorption spectrum. These are particularly visible in the P branch of the ν7 parallel band
(Fig. 3) where two series of red shifted Q branches are observed, the first one at about 461.8,
457.2 and 452.0 cm−1 and tentatively assigned to nν20 + ν7 ← nν20 transitions up to n = 3,
the second one at 457.8 and 449.3 cm−1 of the type (n + 1)ν7 ← nν7 up to n = 2 with
anharmonicities estimated to -4.8(1) and -8.7(1) cm−1, respectively. Due to the stronger
density of lines in the rotational branches of perpendicular bands, hot bands are much less
visible in the ν20 and ν19 spectra but their presence could be easily evidenced by subtracting
the fundamental band contour simulated from the experimental ones. Consequently, the
analysis of perpendicular bands is expected to be less straightforward than the parallel one,
particularly in the Q branch region due to the high density of rotational lines at high J
values and the additional rotational structure of hot bands.
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Figure 3: Two series of hot bands visible in the P branch of the ν7 parallel branch. They have been
tentatively assigned to nν20 + ν7 ← nν20 and (n+ 1)ν7 ← nν7 transitions.
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3. Theoretical Models

The idea of working with two different models comes from the difficulty encountered
during the analysis of 2ν20 as explained in the section 4.4. While the analysis of ν7, ν19 and
ν20 was straightforward using Watson’s formalism, the analysis of the first overtone did not
yield acceptable results. Therefore, we decided to try to analyse the molecule with another
model as explained below.

3.1. Tensorial formalism

Because of its high symmetry (a C3v symmetric-top), trioxane is a good candidate to
be analyzed by the C3v Top Data System (hereafter C3vTDS) software[16] developed in the
Dijon group. Let us recap briefly the principles of this formalism.

The theoretical model used in C3vTDS is based on the tensorial formalism and vibrational
extrapolation methods described for instance in [17, 18, 19]. In the following,

• Γ( = 0+, 0−, 1, 2, · · · ) denotes C∞v irreducibles representations (irreps),

• C( = A1, A2, E) is used for C3v irreps.

All operators are symmetrized in the O(3) ⊃ C∞v ⊃ C3v group chain. The O(3) standard
basis set |J,M⟩ is oriented in the subgroups through the relation

|J,Γ, C, σ⟩ =
∑

δ=+,−

(Γ)V δ
Cσ

∑
M=−Γ,+Γ

(J)WM
Γδ |J,M⟩, (1)

where σ is the component of C if this one is degenerate (in practice, when C = E). The
(J)WM

Γδ are given by (note that there is a phase change compared to [20]):

Γ ̸= 0± : (J)WM
Γδ =

∣∣∣∣∣∣∣∣
M

|M |
√
2
, δ = +,

(−1)J√
2
, δ = −,

Γ = 0± : (J)WM
0± = 1. (2)

The (Γ)V δ
Cσ matrix elements are given in [20]. The tensorial operators are oriented in the

same way.
Let us consider a molecule whose vibrational levels are grouped in a series of polyads

designed by Pk(k = 0, ..., n, ...), P0 being the ground-state (GS). The Hamiltonian can be
developed as a sum of operators specific to each polyad as:

H = H{P0=GS} +H{P1} + ...+H{Pk} + ...+H{Pn−1} +H{Pn} + ... (3)

We can now define an effective Hamiltonian for a given vibrational polyad (or group of
vibrational levels) by

H̃<polyad> = P<polyad>HP<polyad>, (4)
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where
P<polyad> =

∑
i

|ψi
v⟩⟨ψi

v| (5)

is the projection operator on the vibrational Hilbert subspace, {|ψi
v⟩}, for the polyad under

consideration. The effective Hamiltonian for a given polyad Pn can be written as a sum of
contributions of the different polyads, if the contact transformation has been built to remove
inter-polyad interactions :

H̃<Pn> = H̃<Pn>
{GS} + H̃<Pn>

{P1} + · · ·+ H̃<Pn>
{Pn} . (6)

The contribution of polyad Pn necessarily contains the operators and parameters of the lower
polyads. The different terms are written as

H̃ =
∑

all indexes

t̃
Ω(L,ΓR)(Γ1Γ2ΓV )Γ
{ns}{ms} T

Ω(L,ΓR)(Γ1Γ2ΓV )Γ
{ns}{ms} . (7)

All the indexes represent the intermediate quantum numbers and symmetries resulting from
the construction. The t̃ ’s are the parameters of the model. Each T operator is constructed
as a tensorial coupling between a rotational (R) and a vibrational (V ) operator:

T
Ω(L,ΓR)(Γ1Γ2ΓV )Γ
{ns}{ms} = β(RΩ(L,ΓR) ⊗ εV

Γ1Γ2(ΓV )
{ns}{ms} )

(Γ,A1). (8)

where

β =

{ √
[Γ1](−

√
3
4
)(

Ω
2
) if L = 0,

1 if L ̸= 0,
(9)

is used to let scalar terms be equal to their equivalent in the “usual” non tensorial formalism
[21]. RΩ(L,ΓR) and εV

Γ1Γ2(ΓV )
{ns}{ms} are rotational and vibrational operators of respective maximum

degree Ω in the rotational angular momentum components Jx, Jy and Jz and Ωv degree in
creation and annihilation vibrational operators. The order of each individual term is defined
as Ω + Ωv − 2. Let us note that here we use a coupling scheme slightly different from that
of our paper [22]. i.e. all our couplings are made in the C∞v group, then we carry out the
C∞v ⊃ C3v reduction (in [22], all couplings were realized in C3v).

Such a Hamiltonian development scheme enables the treatment of any polyad system.
In this work and as an example, we will use the following effective Hamiltonians:

• The ground-state effective Hamiltonian

H⟨GS⟩ = H⟨GS⟩
{GS}, (10)

• The fundamental νi band effective Hamiltonian (with i = 7, 19 or 20 in our case)

H⟨νi⟩ = H⟨νi⟩
{GS} +H

⟨νi⟩
{νi}. (11)
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H
⟨νi⟩
{νi} is constructed using εV

Γ1Γ2(Γv)
{i}{i} vibrational operators which involve creation a+ and

annihilation a operators symmetrized in C∞v. The rovibrational basis functions are built
according to the same coupling scheme as for the operators:∣∣∣[Ψ(Jr,Γr)

r ⊗Ψ({vs},Γv)
v

](Γ,C)

σ

〉
, (12)

where Ψ
(Jr,Γr)
r is the rotational basis set and Ψ

({vs},Γv)
v is the vibrational one. For the

twenty normal modes of vibration of trioxane, we have:

Ψ({vs},Γv)
v = Ψ(0+)

v1
× · · · ×Ψ(0+)

v7
×Ψ(0−)

v8
×Ψ(0−)

v9
×Ψ(0−)

v10
(13)

×
(
(· · · (Ψ(Γ11)

v11
⊗Ψ(Γ12)

v12
)Γ11,12 ⊗ · · · )(Γ11···19) ⊗Ψ(Γ20)

v20

)(Γv)
. (14)

v1,...,v20 are vibration quantum numbers for the trioxane molecule. Γ (resp. C) is the C∞v

(resp. C3v) total symmetry and we have the reduction:

D(Γ) ⊃ D(C). (15)

Expressions of the matrix elements of the rovibrational Hamiltonian can be easily calculated
thanks to the Wigner-Eckart theorem. All the rovibrational levels are described by (J,C, α)
labels where α is a numbering index for levels that have the same C3v symmetry C within
a J block. In this way, the usual K quantum number is hidden in the output and related
to α and C symmetry. So, the K values do not appear explicitly in our labels and the △K
nomenclature does not occur in our transition labels (although K is used internally as a
C∞v label).

C3vTDS package was successfully validated in 2016 with the study of methyl iodide (CH3I)
on the band ν6 = 1, lying in the mid-infrared spectral region[23].

3.2. Watson’s formalism

Defined in 1968 by James K.G. Watson in its milestone article[24], in which he simplified
the vibration–rotation molecular Hamiltonian, the so-called Watsonian, is now widely used
for studying polyatomic molecules.

The ro-vibrational structure of the trioxane molecule was analyzed using the following
Hamiltonian:

ĤWatson = Tv +BJ(J + 1) + (C −B)K2 (16a)

−DJJ
2(J + 1)2 −DJ −DJKJ(J + 1)K2 −DKK

4 (16b)

+HJJ
3(J + 1)3 +HJKJ

2(J + 1)2K2 +HKJJ(J + 1)K4 +HKK
6 (16c)

− 2CζKl + ηJJ(J + 1)Kl + ηKK
3l (16d)

+
1

2

[
q +DqJJ(J + 1) +DqKK

2
] (
L2
+J

2
− + L2

−J
2
+

)
. (16e)

Terms (16a), (16b) and (16c) are standard terms for symmetric-top molecules that are
used for ground- and excited states. In our work, the development to the sextic constants was
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needed because they have been derived in the ground state from the millimeter-wave study of
Klein et al.[29]. The other terms, only appropriate for excited states, represent the Coriolis
parameters (16d) and l-doubling constants (16e). Nevertheless, these are only needed for
perpendicular bands. We purposely omitted here unused terms, like pure rotational C3v

splitting tems ε, εJ , . . ., that were not fitted in the present study.

3.3. Conversion between both formalisms

Although the two models are different, they are both built on the same general principles.
It is thus possible to convert spectroscopic parameters from one formalism to another. This is
done by expanding both the Watsonian and our tensorial Hamiltonian in terms of elementary
rotational operators J+, J− and Jz and then by identifying the coefficients of each term.
In practice, this is performed thanks to the Maxima symbolic computation software[25]. In
this section, we will list the resulting formulas needed to convert tensorial parameters to
Watsonian parameters (and vice versa) in the case of the trioxane molecule. Further details
on how these formulas were determined are described in another publication[26] in the case
of purely rotational operators. Yet, Coriolis (ζ, ηJ) and l-doubling constants (q+) are derived
from comparing the eigenvalues of the corresponding operators in both models. As for ηK is

not so straightforward because parameter t
3(3,S−)
i is a more complex combination of Coriolis

and higher order l-doubling constants like t
4(2,D)
i , so its expressions requires a complete

analytical development of ro-vibrational operator that will be proceeded in the near future.
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3.3.1. Tensorial to Watson

Expression of Watson’s parameters (except ηK , see above), in terms of tensorial param-
eters: 

B = −3 2
7
2 t

4(4,S+)
i√
35

− 2
3
2 t

2(2,S+)
i√
3

+ t
2(0,S+)
i ,

C =
19 2

5
2 t

4(4,S+)
i√
35

+
2

5
2 t

2(2,S+)
i√
3

+ t
2(0,S+)
i ,

DJ = −32
√
6 t

6(4,S+)
i√
35

− 3 2
5
2 t

4(4,S+)
i√
35

− 2
7
2 t

4(2,S+)
i

3
− t4(0,S

+)
i ,

DJK =
810

3
2 t

6(4,S+)
i√
21

+
24
√
10 t

4(4,S+)
i√
7

+ 2
7
2 t

4(2,S+)
i ,

DK = −4
√
70 t

4(4,S+)
i ,

ζ = −t
1(1,S−)
i

C
√
2
,

ηJ = 4

√
2

3
t
3(1,S−)
i ,

q+ = 2t
2(2,D)
i ,

HJ = −16
√
6 t

6(4,S+)
i√
35

− 2
11
2 t

6(2,S+)
i

3
3
2

+ t
6(0,S+)
i ,

HJK =
32
√
30 t

6(4,S+)
i√
7

+
2

11
2 t

6(2,S+)
i√
3

,

HKJ = −16
√
70 t

6(4,S+)
i√
3

.

(17)
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3.3.2. Watson to tensorial

Expression of tensorial parameters, in terms of Watson’s parameters, without t
3(3,S−)
i and

t
4(2,D)
i (see the explanation at the beginning of Sect. 3.3):

t
1(1,S−)
i = −ζC

√
2,

t
2(0,S+)
i =

DK

15
+

2B

3
+
C

3
,

t
2(2,S+)
i =

5DK

14
√
6
− B

2
√
6
+

C

2
√
6
,

t
2(2,D)
i =

q+
2
,

t
3(1,S−)
i = ηJ

√
3

4
√
2
,

t
4(0,S+)
i = −HKJ

15
− DK

5
− DJK

3
−DJ ,

t
4(2,S+)
i =

5HKJ

7 2
7
2

+
3DK

7 2
5
2

+
DJK

2
7
2

,

t
4(4,S+)
i = − DK

4
√
70
,

t
6(0,S+)
i =

HKJ

5
+
HJK

3
+HJ ,

t
6(2,S+)
i =

3
3
2 HKJ

7 2
9
2

+

√
3HJK

2
11
2

,

t
6(4,S+)
i = −

√
3HKJ

16
√
70

.

(18)

The “Dijon” tensorial model relies on the so-called “vibrational extrapolation” (see Eq. 6)
that possesses a clear advantage to ensure the convergence of fits and consistency of param-
eters. In practice, this means that effective Hamiltonian parameters for a given vibrational
state or polyads are (presumably small) corrections to the parameters of the states (or
polyads) below. Just as a simple illustration, we can say that the traditional approach
consists in fitting parameters for each state: B0, D0, . . . , B1, D1, . . .. The vibrational extrap-
olation methods rather consists in fitting B0, D0, . . . ,∆B1 = B1 − B0,∆D1 = D1 −D0, . . ..
Ensuring that parameter values for each state are not too far from the ground state ones
amounts to verify that ∆B1 = B1−B0,∆D1 = D1−D0, . . . are small. Fixing these difference
to zero, like ∆D1 = 0 for instance amounts to force excited state parameters to be identical
to the ground state ones in the fit when such a constraint appears necessary.

This principle is applied in the present study. Thus, for the connection with Watson’s
formalism, in order to apply the conversion formulas, we first started to convert our “differ-
ence” excited state parameters, let’s call them ∆tki (i = 7, 19 or 20, and k the parameter
index representing Ω(L,ΓR)) to “absolute” excited state value by adding the ground state
value (tki = ∆tki + tk0, were t

k
0 is a ground-state parameter). Then, the conversion formulas

10



give Watsonian parameters for state i, like Bi, etc. Of course, some excited state parameters
like Coriolis ones have no counterpart in the ground state and are thus not differences but
directly “absolute” excited state values.

In the case of fundamental excited states (v = 1) with E symmetry (ν19 and ν20 in our
case), all ∆tki have to be multiplied by the matrix element of the vibrational operator, which
is 1/
√
2 and, when L = 0, one also has to take into account the

√
[Γ1] =

√
2 factor which

is present in the β factor (see Eqs. (8) and (9) above). The general conversion formulas for
any vibrational state will be the subject of a future paper.

4. Analysis and discussion

Spectra analyses were conducted with different software packages. First, for the tensorial
formalism, we used the software suite developed in the Dijon group ; SPVIEW (Spectrum-
View)[11], in its version 2.01, for the line assignment and XTDS (eXtended spherical-Top
Data System)[11], using C3vTDS package, for spectra modeling and job executions. Then, for
Watson’s formalism, we used the well known PGOPHER[27], program for rotational, vibrational
and electronic spectra developed by the late Dr Colin Western and SPFIT[28], the program
of H.M. Pickett originally written to fit and predict spectra of asymmetric-top molecules
involving spin- and rotation-vibration interaction and treating symmetric-top ones as special
cases.

Fig. 4 compares experiment and simulation for the ν7 band. Some insets show again that
the fine structure is very well modeled.

4.1. Analysis in the tensorial formalism

This analysis takes advantage from the millimeter-wave study of Klein et al.[29] in the
ground-state region around 350–950GHz. Data from the paper were converted into a 2-
columns flat file in order to produce a stick spectrum readable by SPVIEW. Then, we pro-
ceeded to a line assignment to perform a standard iterative Levenberg-Marquardt non-linear
least squares fit. A total of 289 lines (218 different frequencies) were used, giving a root mean
square deviation of 0.0015MHz with eight parameters up to the sixth order (six free and two
fixed), as shown in Table 1. As pure rotational data for only one isotopologue don’t allow
to fit C and DK , the molecule’s structure remains undetermined. These parameters were
derived from a study of Colmont[30] in 1974 thanks to 13C and 18O isotopic substitutions,
thus breaking the symmetry. On our side, all ground-state parameters were injected in the

formulas (18) as a starting point of our fit and the two spectroscopic parameters t
2(2,S+)
i and

t
4(2,S+)
i were fixed to the calculated value.

The ν7, ν19 and ν20 bands were analysed successively, first by manually estimating the
band center and using rotation constants from ground-state in order to produce a fit and
a first prediction. Then, the fit was iteratively improved, releasing more parameters, by
adding new identified lines.

1https://icb.u-bourgogne.fr/interactions-et-controle-quantiques-icq/

spview-logiciel-dattribution-et-danalyse-de-spectres-moleculaires/
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Figure 4: The ν7 band, compared to the simulation. The insets display a few lines in the Q branches and
the K series in R(11).

Finally, we performed a global fit using a dedicated polyad scheme where P0 is the
ground-state, P3 − P0 stands for the ν20 band, P4 − P0 for ν7 and P5 − P0 for ν19. In this
scheme it is possible to add the first overtone of ν20 in P6−P0. We obtained an excellent fit
whose root mean squares deviation are 0.0015MHz, 1.32×10−4cm−1, 1.38×10−4cm−1 and
1.63×10−4cm−1 for the transitions GS−GS, ν7−GS, ν19−GS and ν20−GS, respectively. The
global standard deviation is of 0.245 for a total of 16 320 lines. Fig. 5 details the fit residuals
for line positions for these four types of transitions, along with some statistics, then all the
fit results are gathered in Table 1.
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Figure 5: Fit residuals for line positions for the rotational and the three different types of ro-vibrational
transitions used in the present work.

13



Table 1: Spectroscopic constants of the ground-vibrational state, ν7, ν19 and ν20 bands of Trioxane fitted in the tensorial formalism.

Parameters Value / cm−1 (Hamiltonian H̃)

t
Ω(K,nC)
i GS ν7 ν19 ν20

t
0(0,S+)
i 466.618966(37) 524.466369(30) 297.703777(50)

t
1(1,S−)
i 9.25909(12) ×10−2 3.91660(11) ×10−2

t
2(0,S+)
i 1.498526396(12) ×10−1 -3.46744(31) ×10−4 4.7671(27) ×10−5 -1.38378(70) ×10−4

t
2(2,S+)
i -1.5948802396† ×10−2 5.3640(12) ×10−5 -6.4955(13) ×10−5 2.7883(31) ×10−5

t
2(2,D)
i -2.16888(36) ×10−4 -1.29879(74) ×10−4

t
3(1,S−)
i 4.060(27) ×10−8 2.288(15) ×10−8

t
3(3,S−)
i -1.018(14) ×10−8 -8.65(12) ×10−9

t
4(0,S+)
i -2.357311(25) ×10−8 1.2388(57) ×10−9 -7.470(53) ×10−10 1.32(23) ×10−10

t
4(2,S+)
i -5.5033842448† ×10−9 2.262(12) ×10−10 -1.454(14) ×10−10 4.23(60) ×10−11

t
4(2,D)
i -5.064(40) ×10−10 1.84(19) ×10−11

t
4(4,S+)
i -1.74069(41) ×10−10 6.138(47) ×10−11 -4.658(52) ×10−11

t
4(4,D)
i -1.016(52) ×10−10

t
5(1,S−)
i -1.38(12) ×10−13

t
6(0,S+)
i 1.1285(18) ×10−14

t
6(2,S+)
i 3.146(20) ×10−16

t
6(4,S+)
i -1.17956(68) ×10−15

Lines fitted 289 5851 7540 2640

Jmax 89 80 90 88

free parameters 6 6 13 10

dRMS
∗ 0.015 0.132 0.138 0.163

Total of Lines 16 320

Standard deviation 0.245
∗ dRMS is given in 10−3cm−1 except GS that is in MHz.
† Fixed value.
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4.2. Analysis in the Watson’s formalism

Preliminary simulations of the three far-IR bands of trioxane were carried out separately
using PGOPHER program configured with the Watson’s Hamiltonian dedicated to oblate top-
symmetric molecules. The rovibrational analysis of the ν7 OCO bending mode (A symmetry)
centered at about 466 cm−1 is realized on grounds of a parallel band using only (16a), (16b)
and (16c) standard terms of ĤWatson. For both ν20 CH2 torsion and ν19 OCO bending modes
(E symmetry) centered at about 297 and 524 cm−1, the presence of Coriolis parameters
and l-doubled states requires to use (16d) and (16e) non standard terms. The fit of each
band is realized by fixing the ground state constants to Klein et al values and excited state
sextic constants to ground state ones. At low values of J , K, only the band center and
two rotational constants are adjusted for a parallel band to which the ζ Coriolis and q+
l-doubling parameter are added for a perpendicular band. At higher values of J , K, quartic
constants and higher order of ζ and q+ are introduced.

The three linelists obtained from the PGOPHER simulations are then converted in a single
.lin file to realize a global adjustment of ν7, ν19 and ν20, bands with the SPFIT program
We obtained a root mean squares deviation of 1.17 × 10−4 cm−1, 2.52 × 10−4 cm−1 and
1.56 × 10−4 cm−1 for the transitions ν7–GS, ν19–GS and ν20–GS, respectively. The global
standard deviation is of 0.597 for a total of 15 373 lines. Fig. 6 details the fit residuals
for line positions for these 3 transitions, along with some statistics while the spectroscopic
parameters are gathered in Table 2.
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Table 2: Spectroscopic constants of the ground-vibrational state, ν7, ν19 and ν20 bands of Trioxane. These parameters were determined in the
Watsonian formalism using SPFIT program.

Parameters GS ν7 ν19 ν20

Tv 466.618 962(12) 524.466 454(13) 297.703 910(15)

B (MHz) 5273.257 180† 5260.235 82(41) 5276.946 33(72) 5268.150 26(82)

C (MHz) 2933.950 † 2928.807 44(35) 2930.883 93(33) 2931.731 91(39)

DJ (kHz) 1.343 879 7† 1.275 85(9) 1.392 18(28) 1.343 04(28)

DJK (kHz) −2.016 295† −1.886 91(22) −2.1054(6) −2.0119(6)
DK (kHz) 0.17† 0.108 83(16) 0.2183(3) 0.1664(4)

ζ −0.668 696(2) −0.282 150(2)
ηJ (kHz) −2.313(8) −0.904(9)
ηK (kHz) −3.034(8) −2.266(9)
q+ (MHz) 12.9112(12) 7.6352(34)

HJ (mHz) 0.490 61† 0.490 61† 0.490 61† 0.490 61†

HJK (mHz) −2.0978† −2.0978† −2.0978† −2.0978†

HKJ (mHz) 2.7408† 2.7408† 2.7408† 2.7408†

Lines fitted 6405 4894 4005

Jmax 80 99 91

dRMS/10
−3cm−1 0.117 0.252 0.156

Total of Lines 15 304

dRMS/10
−3cm−1 0.180

† Ground-state parameters fixed to the value of Klein et al. [29].
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Figure 6: Fit residuals for line positions for the three different types of ro-vibrational transitions used in the
present work, with the Watson’s formalism.

4.3. Comparison of both formalisms

Thanks to the formulas transcribed in Sect. 3.3.1, we report the Watsonian spectroscopic
constants converted from the tensorial ones in Table 4. This allows an easier comparison
between the two models. In this section, we will detail each parameter and examine the
differences we observe.

First of all, not all spectroscopic constants have been converted because some of them

have no equivalence in the fit we have provided in Sect. 4.2. It is the case for t
3(3,S−)
i as

already explained in Sect. 3.3 and for t
5(1,S−)
i which is a Coriolis parameter at higher order

than ηJ . Then, the two parameters t
4(2,D)
i and t

4(4,D)
i represent the centrifugal distortion of

q+ l doubling constant, called DqJ and DqK in Eq. (16) but not fitted in this study with the
Watson’s model.

Second, sextic parameters are all together fixed to the values fitted for the ground-state.
This is simply because no sextic parameters were fitted for the excited states in our tensorial
model, as stated in Sect. 3.3.2. Regarding the residuals in Fig. 6, ν19−GS is less good than
the ones obtained with the other formalism in Fig. 5 and a polynomial shape is visible in
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the obs.−calc. plot. The fit could be improved by releasing sextic parameters, however the
constants thus derived have values that look spurious, and far from those of the GS. We
therefore decided to keep the results consistent for a better comparison of the models.

About rotational constants, the comparison between both formalisms of twoK−dependent
terms, namely (∆C −∆B)K2 and −2CζK shows a fair agreement for the parallel band ν7
with values of 7.8781 and 7.8788MHz for TDS and Watson formalisms, respectively. For
the perpendicular bands ν19 and ν20, we have illustrated in Table 3 the slight differences
between the K−dependent terms for different values of K. The sum of two terms differs
by about 60 and 500MHz between TDS and Watson formalisms for K equal to 10 and
80, respectively. The term −2CζK is mainly responsible for this variation as indicated on
Table 3. Knowing that the agreement between both formalisms is excellent for the Coriolis
parameter (only 0.3% variation for both bands), the main difference may come only from
the value of C in the ground state: in the Watsonian fit, C is fixed to 2933.95 cm−1[30] while
in the tensorial fit, the iterative fit detailed in Sect. 4.1 imposes that C in the ground state
is adjusted as all other ground and excited state parameters. The difference of about 3MHz
between both values of C leads to a difference of about 300 and 150MHz at K = 80 for
−2CζK, respectively for ν19 and ν20.

Table 3: Comparison between rotational constants for ν19 and ν20 and formalisms. For each K the first line
gives the value of the expression (∆C −∆B)K2, while the second one is the result of −2CζK. Values are
given in MHz.

Tensorial Watson

K ν19 ν20 ν19 ν20

1
−6.746 2.896 −6.755 2.889

3925.582 1660.523 3919.740 1654.376

10
−674.575 289.565 −675.522 288.883

39 255.816 16 605.232 39 197.407 16 543.763

50
−16 864.375 7239.125 −16 888.050 7222.075

196 279.079 83 026.158 195 987.036 82 718.816

80
−43 172.800 18 532.160 −43 233.408 18 488.512

314 046.526 132 841.853 313 579.258 132 350.105

The l−doubling constant q+ well agrees between them for both ν19 and ν20 bands (1.4%
variation in average). Nevertheless, values given in the publication of Oka et al.[3] (q+(ν19) =
7.50 and q+(ν20) = 12.60) seem to be swapped with regards to this work.
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Finally, regarding the parameter ηJ , that represent the J(J + 1) dependence of Coriolis
coupling constant, we report a mismatch in the two E bands that can be explained by
the fact that higher order parameters are used in tensorial formalism; as a consequence,
comparison has little meaning here.
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Table 4: Spectroscopic constants of the ground-state and the three ground-vibrational state, ν7, ν19 and ν20 bands of Trioxane. These values
were obtained from the tensorial formalism and converted to the Watsonian. As explained in Sect. 3.3.2, to apply the conversion formulas,
ground state value is added to the excited state parameters (tik = ∆tik + tk0).

Parameters GS ν7 ν19 ν20

Tv 466.618 966(37) 524.466 369(30) 297.703 777(50)

B (MHz) 5273.257 035(36) 5260.2359(11) 5276.2202(6) 5270.2176(15)

C (MHz) 2930.892 885(36) 2925.7498(15) 2927.1103(10) 2930.7491(24)

DJ (kHz) 1.343 880(11) 1.275 89(23) 1.369 534(43) 1.337 40(17)

DJK (kHz) −2.016 314(48) −1.886 81(16) −2.079 51(49) −1.9950(19)
DK (kHz) 0.174 643(41) 0.113 06(51) 0.207 69(41) 0.1616(14)

ζ −0.670 555 8(12) −0.283 293 3(11)
ηJ −3.9752(81) −2.2402(45)
q+ 13.0043(11) 7.7873(22)

HJ (mHz) 0.490 44(76) 0.490 44† 0.490 44† 0.490 44†

HJK (mHz) −2.0962(21) −2.0962† −2.0962† −2.0962†

HKJ (mHz) 2.7331(16) 2.7331† 2.7331† 2.7331†

† ν7, ν19 and ν20 sextic parameters are fixed to the ground-state values.

20



4.4. The first overtone 2ν20

The 2ν20 band, centered around 595 cm−1, is composed of a parallel sub-band (A1) and
a perpendicular sub-band (E) very close in energy and interaction as illustred in Fig. 7.
The second one is less intense but Q branches are clearly visible for both sub-bands. Using
parameters fitted for ν20 as a starting point of a new fit gives a prediction that seems close
in a first look. Nevertheless, while line assignment in the A1 sub-band seems to be not too
difficult thanks to the fair enough signal intensity, it is not the same for the other.

620610600590580570
Wavenumber / cm-1

E

A1

Q branches

2ν20 overtone

565-625 cm
-1

: 50 µbar

Figure 7: Part of the spectrum showing the first overtone 2ν20 composed of a parallel band and a perpen-
dicular band very close in energy and interaction. While the shape of the two Q branches is visible, the
perpendicular band has a poor signal-to-noise ratio and shows a very strong perturbation.

Attempts have been made to fit data iteratively as it was done for other bands. Nev-
ertheless, even if the line pattern is clearly visible, perturbations quickly grow as K value
does, as illustrated in Fig. 8. Analysis of A1 and E levels in interaction is then needed
but the signal-to-noise ratio is not good enough for the E sub-band and assignement is not
possible so far. As a consequence, A1 sub-band cannot be analyzed in its entirety, especially
for high K values. Recording another spectrum with a longer optical path could help to
fix this issue. The analysis of the 2ν20 ← ν20 hot band, observed along with the ν20 ← 0
fundamental transition could enable to assign unambiguously many ν20 = 2 rovibrational
states and untangle this overtone analysis.

5. Conclusion

Ro-vibrational spectra were analysed in the laboratory for the three bands ν7, ν19 and
ν20 bands of the trioxane molecule. We could determine with accuracy a set of spectroscopic
constants derived from Watson’s and tensorial formalism for C3v molecules developed in
the Dijon group. This study allowed us to compare results from both models in a reliable
way. From what we have observed, tensorial formalism is really well adapted to this type of
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Figure 8: Zoom on the K series of P (21) in the 2ν20 band. The higher the K, the more visible the
perturbations become.

molecule with such a symmetry. This model allows a systematic construction of all necessary
operators up to any order of the development and this makes it easy to program and more
flexible. Nevertheless, despite the fact we originally used this formalism to try to analyze
the 2ν20 band, it did not work better. The spectrum of the first overtone of the ν20 mode
was recorded but analysis could not get further because of the difficulty to assign lines in the
perpendicular sub-band E. Assigning the ν20 = 2 rovibrational states from the 2ν20 ← ν20
hot band could be of great help for going further in the analysis of the first overtone.
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