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Abstract—Online model-free reinforcement learning (RL)
methods with continuous actions are playing a prominent role
when dealing with real-world applications such as Robotics.
However, when confronted to non-stationary environments, these
methods crucially rely on an exploration-exploitation trade-
off which is rarely dynamically and automatically adjusted
to changes in the environment. Here we propose an active
exploration algorithm for RL in structured (parameterized)
continuous action space. This framework deals with a set of
discrete actions, each of which is parameterized with continuous
variables. Discrete exploration is controlled through a Boltzmann
softmax function with an inverse temperature β parameter. In
parallel, a Gaussian exploration is applied to the continuous
action parameters. We apply a meta-learning algorithm based
on the comparison between variations of short-term and long-
term reward running averages to simultaneously tune β and the
width of the Gaussian distribution from which continuous action
parameters are drawn. We first show that this algorithm reaches
state-of-the-art performance in the non-stationary multi-armed
bandit paradigm, while also being generalizable to continuous
actions and multi-step tasks. We then apply it to a simulated
human-robot interaction task, and show that it outperforms
continuous parameterized RL both without active exploration
and with active exploration based on uncertainty variations
measured by a Kalman-Q-learning algorithm.

I. INTRODUCTION

Important progresses have been made in recent years in
reinforcement learning (RL) with continuous action spaces,
permitting successful real-world applications such as Robotics
applications [1], [2]. Nevertheless, a recent review on rein-
forcement learning applied to Robotics [3] highlighted, among
other points, that (i) a variety of algorithms have been devel-
oped, each being appropriate to specific tasks: model-based
versus model-free (which we have previously addressed [4],
[5] but do not further consider here), function approximation
versus policy search, continuous versus discrete action spaces
(of particular interest here); (ii) important human knowledge
is injected concerning the search in the parameter space, either
by reducing it through learning from demonstration, or by
pre-adjusting parameters such as the exploration rate based
on the prior determination of the total number of episodes in
the experiment. In particular, the balance between exploration

and exploitation is often pre-determined with human prior
knowledge and does not extend well to tasks with non-
stationary reward functions.

To address the first issue about continuous versus discrete
action spaces, the recent proposal of RL algorithms in struc-
tured Parameterized Action Space Markov Decision Processes
(PAMDP) [6], [7] seems to open a promising line of research.
It combines a set of discrete actions Ad = {a1, a2, ..., ak},
each action a ∈ Ad featuring ma continuous parameters
{θa1 , ..., θama

} ∈ Rma . Actions are thus represented by tuples
(a, θa1 , ..., θ

a
ma

) and the overall action space is defined as A =
∪a∈Ad

(a, θa1 , ..., θ
a
ma

). This framework has been successfully
applied to simulations of a Robocup 2D soccer task where
agents have to learn to timely select between discrete actions
such as running, turning or kicking the ball, and should learn
at the same time with which speed to run, which angle to turn
or which strength to kick. To ensure algorithm convergence,
[6] alternate between learning phases: (i) given a fixed policy
for parameter selection, they use Q-Learning to optimize the
policy discrete action selection; (ii) Next, they fix the policy
for discrete action selection and use a policy search method to
optimize the parameter selection. In contrast, [7] learn both in
parallel by employing a parameterized actor that learns both
discrete actions and parameters, and a parameterized critic that
learns only the action-value function. Instead of relying on an
external policy search procedure, they are thus able to directly
query the critic for gradients.

Nevertheless, the exploration-exploitation trade-off is fixed
in these methods, thus falling into the second issue raised by
[3]’s review. Exploration in continuous action spaces being
different from discrete spaces, [7] adapt ε-greedy exploration
to parameterized action space by picking a random discrete
action a ∈ Ad with probability ε and sampling the action’s
parameters θai from a uniform random distribution. ε is arbi-
trarily annealed from 1.0 to 0.1 over the first 10,000 updates,
thus requiring human prior knowledge about the duration of
the task to appropriately tune exploration.

The original contribution of this paper consists in adapting
existing methods, combining them together and applying them



to a simple human-robot interaction scenario in the following
manner: We use the Gaussian exploration for continuous action
parameters proposed by [8], which in the original formulation
uses a fixed Gaussian width σ. We then apply a noiseless
version of the meta-learning algorithm of [9], which tracks
online variations of the agent’s performance measured by
short-term and long-term reward running averages. At each
timestep, we use the difference between the two averages
to simultaneously tune the inverse temperature βt used for
selecting between discrete actions aj , and the width σt of
the Gaussian distribution from which each continuous action
parameter θai is sampled around its current value. We first
test this algorithm in a standard non-stationary (i.e. switching)
multi-armed bandit paradigm proposed by [10]. We show that
it reaches similar performance to one of the state-of-the-art
upper confidence bound algorithms, while also being gener-
alizable to continuous actions and multi-step tasks (which is
not the case for bandit methods). We then apply the proposed
algorithm to a simple simulated human-robot interaction task,
where the algorithm tries to maximise reward computed as the
virtual engagement of the human in the task, this engagement
representing the attention that the human pays to the robot
actions. We show that the proposed algorithm outperforms
continuous parameterized RL both without active exploration
and with active exploration based on uncertainty variations
measured by a Kalman-RL algorithm [11].

II. ACTIVE EXPLORATION ALGORITHM

This section describes the mathematical formulation under-
lying the proposed active exploration method. The proposed
meta-learning algorithm is then summarised at the end of the
section (Algorithm 1). It first employs Q-Learning [12] to learn
the value of discrete action at ∈ Ad selected at timestep t in
state st:

δt = rt + γmax
a

(Qt(st+1, a))−Qt(st, at) (1)

Qt+1(st, at)← Qt(st, at) + αQδt (2)

where αQ is a learning rate and γ is a discount factor. The
probability of executing discrete action aj at timestep t is
given by a Boltzmann softmax equation:

P (aj |st, βt) =
exp (βtQt(st, aj))∑
a exp (βtQt(st, a))

(3)

where βt is a dynamic inverse temperature meta-parameter
which will be tuned through meta-learning (see below).

In parallel, continuous parameters θ̃aji,t with which action
aj is executed at timestep t are selected from a Gaussian
exploration function centered on the current values θaji,t(st)
in state st of the parameters of this action [8]:

P (θ̃
aj
i,t|st, aj , σt) =

1√
2πσt

exp
(
−(θ̃

aj
i,t − θ

aj
i,t(st))

2/(2σ2
t )
)
(4)

where the width σt of the Gaussian is a meta-parameter which
will be tuned through meta-learning (see below) and action
parameters θai,t(st) are learned with a continuous actor-critic
algorithm [8]. A reward prediction error is computed from the
critic: δt = rt + γVt(st+1)− Vt(st) and is used to update the
parameter vectors ωCt and ωAt of the neural network function
approximations in the critic and the actor:

ωCi,t+1 = ωCi,t + αCδt
δVt(st)

δωCi,t
(5)

ωAi,t+1 = ωAi,t + αAδt(θ̃
a
i,t − θai,t(st))

δθai,t(st)

δωAi,t
(6)

where αC and αA are learning rates. In contrast to the original
version where ωAt updates are performed only when δt > 0
[8] – which occasionally led to divergence in our simulations
–, here we update them all the time and proportionally to δt
as in [13].

Finally, in order to perform active exploration, we need to
dynamically update βt and σt through a meta-learning process
based on variations of the robot’s performance. The idea is that
increases in the average reward obtained by the robot can be
interpreted as improvement of performance which can thus
result in increasing the exploitation of learned action values
[9], [14]. Conversely, drops in the average reward can be
interpreted as signs of a change in the task conditions and thus
as a need to re-explore. Nevertheless, the average reward is not
an absolute measure and should rather be considered relatively
to a reference such as the estimated average value of the
task [15]. For instance, in tasks where only punishments are
received, the average value of the task is negative, but should
not be interpreted as an indication that the robot should only
explore and never exploit. Thus here, following the proposition
of [9], we measure a long-term reward running average ¯̄rt
serving as reference, and a short-term one r̄t serving as current
measure of performance. When r̄t > ¯̄rt, this means that the
current performance is above average and that exploration can
be decreased. When r̄t < ¯̄rt , this means that the current
performance is below average and that exploration should be
increased. Contrary to the noisy version of [9] which can lead
to meta-learning instability, here we implement a noiseless
version of the algorithm. We compute short- and long-term
reward running averages in the following manner:

∆r̄t = (rt − r̄t)/τ1 and ∆¯̄rt = (r̄t − ¯̄rt)/τ2 (7)

where τ1 and τ2 are two time constants. We then update βt
and σt with:

βt+1 = (R ◦ F) (βt, µτ2∆¯̄rt) and σt+1 = G(µτ2∆¯̄rt) (8)

where R(x) is a rectifier, F(x, y) is affine, µ is a learning
rate and 0 < G(x) < 0.1M is a sigmoid, with M denoting
the parameter range.



We also compared this meta-learning algorithm with the
Kalman Q-Learning proposed by [11]. We first tested the
original formulation which proposes a purely exploratory
agent by replacing Q-values in Equation 3 by the action-
specific diagonal terms of the covariance matrix – these terms
representing the current variance/uncertainty about an action’s
Q-value. We then tested an extended version of the algorithm
were diagonal terms of the covariance matrix are treated as
exploration bonuses bat which, like in a previous computational
neuroscience work [16], are multiplied by a weight η and
added to Q-values in Equation 3. A particular novelty here
is that we also use the covariance terms bat in replacement of
¯̄rt in Equation 8 to tune action-specific σat with function G(x).
As the result section will show, this turns out to be much more
efficient in our task than the original purely exploratory agent
proposed in [11]. This nevertheless does not outperform the
meta-learning algorithm proposed in this article.

Algorithm 1 Active exploration with meta-learning
1: Initialize ωAi,0, ωCi,0, Qi,0, β0 and σ0
2: for t = 0, 1, 2, ... do
3: Select discrete action at with softmax(st, βt) (Eq. 3)
4: Select action parameters θ̃ai,t with

GaussianExploration(st, at, θ
a
i,t, σt) (Eq. 4)

5: Observe new state and reward {st+1, rt+1} ←
Transition(st, at, θ̃

a
i,t)

6: Update Qt+1(st, at) in the discrete Q-Learning (Eq. 2)
7: Update function approx. ωCi,t+1 and ωAi,t+1 in continuous

actor-critic (Eq. 5, Eq. 6)
8: if meta-learning then
9: Update reward running averages r̄t and ¯̄rt (Eq. 7)

10: Update βt+1 and σt+1 (Eq. 8)
11: end if
12: end for

III. EXPERIMENTS

A. Non-stationary multi-armed bandit

While multi-armed bandit problems have different setups,
they can be formulated as having a set of arms K = {1, ...,K},
each of them attached to a gambling machine. At every episode
t ∈ T , with T = {1, ..., T} denoting the sequence of decision
episodes, the decision maker pulls an arm a ∈ K and receives
a reward rt(a) with some unknown probability pt(a), and zero
otherwise.

Here we compare our algorithm to bandit methods for
two reasons: (i) one can consider the multi-armed bandit
problem as a generalized fundamental benchmark for the
evaluation of algorithms at the lower level of reinforcement
learning framework; and (ii) the simple single-state human-
robot interaction task that we will use in the next section can
be seen as a non-stationary multi-armed bandit task extended
to continuous action parameters. Thus we first evaluated the
performance of our algorithm, simplified appropriately for

such a case (i.e. only considering discrete actions without con-
tinuous parameters), on a non-stationary 3-armed bandit task
with binary rewards adapted from [10] (Figure 1). Despite its
multi-state nature, we provide evidence for its performance, by
comparing with SW-UCB [10], D-UCB [17] and UCB1 [18],
with the former two constituting proven efficient algorithms on
non-stationary cases, on the same swithing setup used by [10],
where K = 3, T = 10000, the rewards are binary rt ∈ {0, 1},
pt(1) = 0.5, pt(2) = 0.3, pt(3) = 0.9 for 3000 ≤ t < 5000
and pt(3) = 0.3 otherwise.

SW-UCB has previously shown to achieve better results than
D-UCB for the above test case, by using a sliding window of
width τ episodes, as memory of the history of rewards and
actions taken. Let us write a composite form for all three, as:

Nt(a; γ, τ) =

t∑
s=t−τ+1

γt−s1{as=a} (9)

where as denotes the action taken at episode s, γ ∈ (0, 1]
a discount factor and τ the width of the memory window in
number of episodes. The average discounted windowed reward
can then be written as:

Rt(a; γ, τ) =
1

Nt(a)

t∑
s=t−τ+1

γt−srs(a)1{as=a} (10)

where rs(a) denotes the reward taken at episode s ∈ T from
action a ∈ K. The padding function, also called exploration
bonus, can be written as:

ct(a; γ, τ, ξ) = B

√√√√ ξ

Nt(a)
log(min(

K∑
a=1

Nt(a), τ)) (11)

where ξ is related to the rate at which exploration decreases in
time and B relates to the upper bound of rewards. The action
chosen by the decision maker is determined by:

at = arg max
a

(
Rt(a) + ct(a)

)
(12)

For SW-UCB the width of the window τ is constant, the
discount factor γ = 1, meaning no discount occurs, and B
is the upper bound for the rewards. When the window size
changes dynamically such that τ = t, it falls down to UCB1.

Fig. 1. Probability that an arm a will return a reward upon choice in the
non-stationary multi-armed bandit task tested here. Adapted from [10].



Additionally when γ 6= 1, B is twice the reward upper bound
and τ ≥ T , it changes to D-UCB. For the simulations, ξ, γ
and τ , were chosen as proposed in [10].

For our implementation we used the Boltzmann softmax
of Equation 3 for action selection, while updated Q-values
according to:

Qt+1(at)← (1− αQ)Qt(at) + αQrt(at) (13)

using αQ = 0.4. We then updated the inverse temperature
parameter of the softmax by using a simplistic affine for F of
Equation 8, leading to the following iterative procedure:

βt+1 ← max{0, βt + µτ2∆¯̄rt + ε} (14)

using µ = 0.25, τ1 = 20, τ2 = 300 and ε a very small constant
to ensure increment of exploitation on long stationary inter-
vals. For finding optimal parameters, we run the simulation on
a large scale parameter grid space, observed robust areas with
both low mean and variance of final cumulative regret, and
rerun on smaller denser areas until no significant fluctuations
of performance occurred. We then repeated our simulations for
500 sessions, computed the averaged total regret per episode,
the final cumulative regret and the final cumulative reward for
each session. Comparing our results with UCB1, SW-UCB
and D-UCB as seen in Figure 2, we observed a performance
comparable to that of SW-UCB.

In more detail, from episodes 1 to 3000, UCB1 outperforms
all others as expected. After the first switch though, when the
gap between the expected value of the optimal arm and the
second best arm is large, meta-learning outperforms all others
as observed by the flat line from 3500 to 5000, reaching ”no
regret” performance, while SW-UCB suffers from exploration.
After the second switch, the gap becomes small again, and
SW-UCB demonstrated better performance in such case.

Providing analytical mathematical details and guarantees
about convergence falls out of the scope of the present
work. Nevertheless, these results confirm that our algorithm is
relevant for non-stationary problems and suggest a promising
performance at the lower level of adaptation of the reinforce-
ment learning framework.

B. Simple HRI simulation

We then test the algorithm described in Section 2 in a simple
simulated human-robot interaction task involving a single
state, 6 discrete actions, and continuous action parameters
between -100 and 100. The task is similar to a non-stationary
stochastic multi-armed bandit task except that rather than
associating a fixed probability of reward to each discrete
action, an action will yield reward only when its continuous
parameters are chosen within a Gaussian distribution around
the current optimal action parameter µ? with variance σ?

(which are unknown to the robot). Every n timesteps, µ?

changes so that the task is non-stationary and requires constant
re-exploration and learning by the robot.

Previous researches on human-robot interaction have shown
that the human engagement can be a critical aspect of the
quality of the interaction [19]. Nevertheless, during interaction
tasks the actions performed by a robot can have delayed
effects on the human’s behavior and on his engagement. To
mimic this, we chose the reward to be given by a dynamical
system which is based on the virtual engagement e(t) of the
human in the task. This engagement is supposed to represent
the attention that the human pays to the robot. It starts
at 5, increases up to a maximum emax = 10 when the
robot performs the appropriate actions with the appropriate
parameters, and decreases down to a minimum emin = 0
otherwise:

et+1 =


et + η1(emax − et)H(θat ), if at = a? & H(θat ) ≥ 0

et − η2(emin − et)H(θat ), if at = a? & H(θat ) < 0

et + η2(emin − et), otherwise

where η1 = 0.1 is the increasing rate, η2 = 0.05 is the
decreasing rate, and H(x) is the reengagement function given
by H(x) = 2

(
exp

(
− (x−µ?)2

2σ?2

)
− 0.5

)
where a?, µ? and

σ? are respectively the optimal action, action parameter and
variance around a?.

The reward function is then computed as r(t + 1) = (1 −
λ)e(t + 1) + λ∆e(t + 1) where λ = 0.7 is a weight. This
reward function ensures that the algorithm gets rewarded in
cases where the engagement e(t+1) is low but nevertheless has
just been increased by the action tuple (a(t), θa(t)) performed
by the robot.

We first simulated the algorithm without active exploration
(thus with a fixed σ = 20) in a task where the optimal action
tuple (a?, µ?) is (a6,−20) during 200 timesteps (σ? = 10 in

Fig. 2. Performance in the bandit task. Top: The averaged cumulative regret
per episode. Bottom left: The final cumulative regret for 500 sessions. Bottom
right: The final cumulative reward for 500 sessions
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Fig. 3. Simulations of the parameterized reinforcement learning (RL) algorithm with (A) fixed σ = 20 and β = 4 (no active exploration), (B) fixed σ = 10
and β = 4 (no active exploration), (C) σa

t and bat tuned by Kalman-RL (active exploration) or (D) σt and βt tuned by meta-learning (active exploration).

all the experiments presented here), then switches to (a2,−20)
until timestep 600. Figure 3A shows that the algorithm first
learns the appropriate action tuple (a6,−20), then takes some
time to learn the second tuple, making the engagement drop
between timesteps 200 and 400 and eventually finds the second
optimal tuple. Nevertheless, σ = 20 makes the robot select
action parameters θ̃at with a large variance (illustrated by
the clouds of blue dots around the learned action parameters
θ2t and θ6t plotted as black curves). As a consequence, the
engagement is not optimized and always remains below 7.5.
In contrast, the same algorithm with a smaller fixed variance
σ = 10 can make the engagement reach the optimum of 10
when the optimal action tuple is learned (Figure 3B before
timestep 400), but results in too little exploration which
prevents the robot from finding a new action parameter which
is too far away from the previously learned one (after timestep
400, the new optimal action tuple is (a6, 20)). These two
examples illustrate the need to actively vary the variance σt
as a function of changes in the robot’s performance.

We next tested active exploration with the Kalman Q-
Learning algorithm in a task alternating between optimal
tuples (a2,−20) and (a6, 20) every 400 timesteps. Since the

original purely exploratory Kalman-QL agent proposed in [11]
did not manage to get an average engagement higher than
1.5 out of 10 in this task – due to the non-stationarity of
the environment –, in the following we only present detailed
results for the Kalman-QL with exploration bonuses. Figure
3C shows the results of this extended version of Kalman-
QL. The diagonal terms of the covariance matrix COV in
the Kalman filter nearly monotonically decrease, resulting in
a large variance σt when action a6 is executed until about
timestep 600, and progressively decreasing the variance until
the end of the experiment. Nevertheless, the algorithm quickly
finds the appropriate action parameters and rapidly shifts
between actions a2 and a6 after each change in the task
condition. In the long run, the model progressively averages
the statistics of the two conditions and learns to perform both
actions with 50/50 probabilities (bottom part of Figure 3C)
which decreases the simulated engagement (top).

We then tested active exploration with the meta-learning
algorithm in a slightly more difficult task where the optimal
action tuple alternate between (a2,−50) and (a6, 50) every
1000 timesteps (Figure 3D). Transient drops in the engagement
result in transient decreases in the exploration parameter



Fig. 4. Comparison of engagement in 10 simulations of the meta-learning
model (red), the model without active exploration (blue), and the Kalman-QL
(green).

βt as well as transient increases in the variance σt. This
enables the algorithm to go through quick transient but wide
exploration phases and to rapidly reconverge to exploitation,
thus maximizing the simulated engagement.

Finally, we performed 10 simulations of each model on
the difficult version of the task described in the previous
paragraph and plotted the average and standard deviation of the
simulated engagement (Figure 4). The blue curve shows the
performance of the algorithm without active exploration (i.e.
fixed σ = 19 obtained through parameter optimization), which
adapts to each new condition but never exceeds a plateau of
about 6. The green curve shows the active exploration with
Kalman, which adapts faster at the beginning but progressively
decreases its maximal engagement. The red curve shows the
active exploration with meta-learning which initially takes
more time to adapt but then only performs short transient
explorations and reaches the optimum engagement of 10.

C. Realistic V-REP HRI simulation

In order to have a more realistic demonstration of the
proposed algorithm and to gain a better insight of its envisaged
application to HRI tasks, we created and visualized a scenario
using the V-REP robot simulator. In the considered scenario,
a small humanoid robot, in this case a NAO, interacts with
a human subject, where the envisaged goal is to collabora-
tively perform a task involving pointing at, picking up and
placing objects in the scene in order to build a puzzle. Such
a collaborative HRI scenario is in line with the objectives
defined in the frames of the EU-funded project BabyRobot
(H2020-ICT-24-2015-6878310), where a set of child-robot in-
teraction use-cases will be designed and implemented to study
the development of specific socio-affective, communication
and collaboration skills in children. In particular, the task
considered in this first simulated scenario comprises a set of
6 objects (cubes) set in front of the human and the robot
(Figure 5). Each robot action at the current implementation
stage corresponds to a pointing gesture of the robot (with its
right arm) towards one of the 6 cubes. The human engagement
is expressed through the gazing direction with respect to the
pointed cube. In essence this means that, if the engagement
is high, the attention of the human subject is directed towards
the pointed cube, while if the engagement is low, the human
turns his head around.

Fig. 5. V-REP simulations of the NAO robot interacting with a human.

In the current implementation, the human gaze is sampled
from a normal distribution centered around the position of the
object corresponding to the action (pointing gesture) currently
performed by the robot, with a standard deviation that depends
(inversely proportionally) on the current human engagement
value. Changes of human gaze direction are sampled and
executed every T1 time-steps, while each robot action is per-
formed and remains unchanged for T2 time-steps (T2 = nT1);
meaning that the robot is assumed to collect n observations of
human gaze direction changes before selecting and executing
a new action. In the current simulation scenario, a simple case
is considered, where the actual simulated human engagement
value is assumed to be directly known to the robot. In future
work, more realistic scenarios will be implemented and tested
in simulation, where the actual human engagement value
will be assumed to be unknown to the robot and estimated
on-line by means of a visual perception module, based on
observations of the human gaze directions. Furthermore, the
action parameter will also be integrated in the task and will
represent a measure of the overall “intensity” of the robot’s
arm movements when executing a communicative action (e.g.
a pointing gesture).

It is interesting in this scenario to study and visualise the
performance of the proposed meta-learning active exploration
algorithm when the optimal action parameter changes (while
the optimal action itself remains the same). Figure 6 compares
the performance of the proposed meta-learning algorithm as
compared to the Kalman Q-learning mechanism, when the
optimal action parameter undergoes a 50% change (from a
value of -50 to -25). We can see that the meta-learning
algorithm adapts much faster to the new task parameter.
Specifically, the human engagement drops to no less than 70%
of the maximum engagement and recovers to 85% after a few
trials (in this case, after approximately 20 trials). In addition,
the action parameter converges fast to the optimal value (in
this example, after 26 trials). On the contrary, the Kalman Q-
learning algorithm fails to adapt to the new task parameter and
to raise the engagement back to its maximum value, resulting



Fig. 6. Left column: Comparison of engagement (top) and action parameter (bottom) convergence between the meta-learning and the Kalman-QL algorithms.
Right Column: zoomed-in plots depicting convergence performance of the proposed meta-learning algorithm.

in a sub-optimal engagement for the rest of the experiment.
This behavior is also illustrated by the oscillation of the action
parameter as it fails to converge to the optimal value.

Figure 7 shows indicative snapshots of the V-REP simulated
HRI scenario, showing human-centric (left) and robot-centric
(right) views of the scene. In the top views the human engage-
ment is high and the human gaze direction is focused on the
current robot action (pointing at the cube of cyan color). In the
bottom views, the human engagement is low and the human
gaze is oriented towards directions that do not focus on the cur-
rent robot action (blue cube). These initial simulations provide
a first understanding of practical considerations that will have
to be addressed towards the implementation and deployment
of more realistic HRI scenarios as already described. Initial
results are promising showing the potential of the proposed
meta-learning algorithm as a scheme to efficiently adapt to
non-stationary conditions in challenging HRI scenarios.

IV. DISCUSSION

In this work, we have shown that a meta-learning algorithm
based on online variations of reward running averages can
be used to adaptively tune two exploration parameters simul-
taneously used to select between both discrete actions and
continuous action parameters in a parameterized action space.

We first compared the proposed algorithm with standard
bandit methods in the non-stationary (switching) multi-armed
bandit task proposed by [10]. We showed that it reaches a
performance which is not different from one of the state-of-
the-art bandit methods, namely SW-UCB. Interestingly, SW-
UCB does not adapt well to some other non-stationary tasks
[20]. Moreover, bandit methods work specifically in single-
state tasks. The meta-learning algorithm proposed here seems
promising in that it is generalized to continuous actions and
multi-step tasks. In future work, we will compare it with bandit
methods in a variety of non-stationary tasks and then study its
performance in multi-state tasks.

Fig. 7. Snapshots of the V-REP simulated HRI scenario, showing human-
centric (left) and robot-centric (right) views of the scene. Top views: human
engagement is high. Bottom views: human engagement is low.

We then applied the proposed meta-learning algorithm to a
simple simulated human-robot interaction task, first in matlab
simulations alone and then controlling the continuous physical
simulator V-REP. We found that it outperforms continuous
parameterized RL both without active exploration and with
active exploration based on uncertainty variations measured
by a Kalman-Q-learning algorithm. While we had previously
successfully used the Kalman Q-Learning proposed by [11] to
coordinate model-based and model-free reinforcement learning
in a stationary task [21], it was not appropriate for the current
non-stationary task. In future work, we will test the algorithm



in more complex simulated interaction tasks before applying
it to real human-robot interaction.

The different results presented in this paper suggest that
the proposed active exploration scheme could be a promising
solution for Robotics applications of parameterized reinforce-
ment learning, especially in non-stationary settings involving
interaction with dynamic environments.
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