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Abstract—Fast adaptation to changes in the environment re-
quires agents (animals, robots and simulated artefacts) to be able
to dynamically tune an exploration-exploitation trade-off during
learning. This trade-off usually determines a fixed proportion
of exploitative choices (i.e. choice of the action that subjectively
appears as best at a given moment) relative to exploratory choices
(i.e. testing other actions that now appear worst but may turn
out promising later). Rather than using a fixed proportion, non-
stationary multi-armed bandit methods in the field of machine
learning have proven that principles such as exploring actions
that have not been tested for a long time can lead to performance
closer to optimal – bounded regret. In parallel, researches in ac-
tive exploration in the fields of robot learning and computational
neuroscience of learning and decision-making have proposed
alternative solutions such as transiently increasing exploration
in response to drops in average performance, or attributing
exploration bonuses specifically to actions associated with high
uncertainty in order to gain information when choosing them. In
this work, we compare different methods from machine learning,
computational neuroscience and robot learning on a set of non-
stationary stochastic multi-armed bandit tasks: abrupt shifts;
best bandit becomes worst one and vice versa; multiple shifting
frequencies. We find that different methods are appropriate in
different scenarios. We propose a new hybrid method combining
bio-inspired meta-learning, kalman filter and exploration bonuses
and show that it outperforms other methods in these scenarios.

Index Terms—Bandits; Decision Making; meta-learning; Ac-
tive exploration; kalman filter; reinforcement learning; multi-
armed bandit

I. INTRODUCTION

Optimal action selection from a number of distinctive al-
ternatives in unknown environments, is not only a subject
of Game theory, but has thoroughly being studied in the
Machine Learning and Artificial Intelligence fields in gen-
eral. Its recent recapturing of attention is particularly due
to its characteristic as a keystone in reinforcement learning
research: The former can be seen as a special case of the
latter where a single decision step is required to get feedback
from the environment. Sophisticated trial and error strategies
have been developed, from genetic algorithms [1], to entropy
minimization techniques [2], which have led the scientific
community to establish fundamental benchmarks for proper
evaluation of decision making agents. Stochastic multi-armed
bandits constitute such a benchmark, where an agent chooses
an action from a number of discrete choices at each time-step

of its lifespan, receives a reward with some stochasticity or
noise, and then feedbacks its base of knowledge in order to
re-establish its policy of action selection while appropriately
handling exploration versus exploitation trade-off [3]. A con-
crete real-life example can be considered when a human has
to choose between two coffee machines at his office, both
delivering the same type of coffee, but each machine having
a different degree of reliability. The taste or the quantity of
coffee fluctuates from day to day in both machines, one of
them being on average a little bit better than the other one.
The human can not evaluate the machine based on a single
shot, but needs to learn by trial and error before sticking to
(exploiting) his preferred machine.

Stationary scenarios have been studied for more than a
decade. The EXP3 algorithm [4] enhanced the use of Boltzman
softmax function in order to achieve optimal regret – the regret
being defined as the difference between optimal performance
and accumulated reward. A Bayesian approach proposed in
[5] was shown to be also optimal, and the family of Upper-
Confidence-Bound (UCB) algorithms presented in [3], using
optimism under the face of uncertainty, constitute a simple and
powerful solution. The limits of efficiency for the above algo-
rithms though is that they remain in the frame of stationary
environments, for as shown in [6] an algorithm that achieves
optimal regret in stationary cases is lower bounded by T/logT
in non-stationary ones.

Non-stationary environments can be either drifting or
abrupt, with the later comprising a more challenging problem,
since the dynamics of variations in the history of rewards can
not be easily used for predictions of future optimal policy
changes. Back to our real-life example, one of the coffee
machines may have been repaired or even upgraded during
the night, so that our human subject needs to discover by
himself that it is now better than the other machine. This
is impossible mission if he had previously decided that he
prefers the other machine and never tries the one which is now
repaired (i.e. zero exploration). In [6], Discounted-UCB (D-
UCB) (firstly presented in [7]) and Sliding Window-UCB (SW-
UCB) have been analyzed and analytically proven to achieve a
sufficient upper bound of regret, upon proper parameter choice,
resulting from a prior knowledge of the environment dynamics
– the number or rate of optimal arm changes, as well as the
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time horizon. The Kalman Filter-Multi Armed Normal Bandit
(KF-MANB) algorithm proposed in [8] constitutes a Bayesian
approach which also indicated promising results with an
elegant and intuitive implementation. Finally, the Adapt-EvE
algorithm has shown a great performance during empirical
validation at the PASCAL-EvE 2006 challenge, using a Page
Hinkley statistics oriented change point detector, and a UCB-
tuned algorithm as decision maker.

In the fields of robot learning [9]–[11] and computational
neuroscience of learning and decision-making [12]–[16], re-
searchers classically tackle the exploration-exploitation trade
off with a Boltzmann softmax function, sometimes including
exploration bonuses for specific actions [17], [18]. This has
provided evidence of great performance, yet several limitations
can be considered. In cases with constant inverse temperature
parameter β – controlling the exploration rate in the softmax
function – or constant increase of β, the exploration level is of-
ten not sufficient for quickly detecting environmental changes
in non-stationary scenarios. In [19], a biologically plausible
method was proposed for adaptation of meta parameters with
meta-learning in reinforcement learning, relating the feedback
component as the phasic and tonic components of dopamine
neurons firing. In the same work, it was proposed that the use
of inverse temperature as a meta-parameter, properly adapted
at each time step based on local variations of reward running
averages, can lead to efficient performance in non stationary
reinforcement learning scenarios. Here we provide empirical
evidence, that a simple update rule for inverse temperature
meta-parameter in Boltzmann softmax exploration function,
can lead to a meta-learning algorithm for bandits that exhibits a
good performance in many cases, yet suffers from large regret
at cases when a non optimal arm becomes optimal without
other alterations of the environment.

We then propose a hybrid algorithm that incorporates both
meta-learning for bandits and sibling kalman filters of KF-
MANB, testing its empirical performance on a set of different
non-stationary bandit setups where we variate the most crucial
components of a stochastic and changing environment. We
tune the parameters of each algorithm for a mid-case, and
compare their efficiency in terms of cumulative regret.

Section II describes related work and algorithms as also a
simplistic implementation of meta learning for bandits. Section
III describes the hybrid algorithm MLB-KF which incorpo-
rates meta-learning for bandits and KF-MANB. In section
IV we investigate different setups, providing simulations of
experiments and results. In section V we make the total
evaluation and discussion, while section VI concludes the
paper.

II. PROBLEM FORMULATION AND RELATED WORK

Stochastic multi armed-bandits can be considered as having
a set of arms K = {1, 2, ...,K} of a casino machine, where
a decision maker chooses an action a ∈ K at every timestep
t ∈ T = {1, 2, ..., T} of its lifespan T (also called the time
horizon). He then receives a reward rt(a) with probability
pt(a) and zero otherwise. While interested in arm’s expected

value of reward, without loss of generality, we can assume
Bernoulli arms where ∀(a, t) ∈ K×T the rewards are binary,
rt(a) ∈ {0, 1}. By choosing Bernoulli arms, the expected
value E[rt(a)] for every arm reward is equal to the probability
pt(a). When the environment is stationary, pt+1(a) = pt(a)
for all time steps. For non-stationary environments the above
rule does not stand. Specifically in drifting environments
|pt+1(a) − pt(a)| < ε, where ε is a small constant, while
in abruptly changing environments ∃t : |pt+1(a)−pt(a)| > δ,
where δ is a sufficiently large value in terms of probabilities.
Both ε and δ can be used as a measure of the environment
dynamics.

Denoting a∗ the optimal arm to choose, the regret at every
time step is then defined as E[Rt(a

∗) − Rt(a)] (with Rt
denoting the random variables of rewards), and the total
cumulative regret is

TR =

T∑
t=1

E[Rt(a
∗)−Rt(a)] =

T∑
t=1

(pt(a
∗)− pt(a)) (1)

which constitutes of a measure of evaluation, with lower
total regret denoting better decision makers. For stationary
environments the total regret is lower bounded by O(logT ),
though an algorithm that achieves optimal regret in these
environments cannot achieve a total regret lower than T/logT
in abruptly changing environments as shown in [6]. The above
formulation can be used for testing where the evaluator has
prior knowledge of the arm probabilities (while the decision
maker does not). The above will also be used for evaluation
of all algorithms on our test cases of the experiments section.

A. Discounted UCB

D-UCB, proposed in [7] and mathematically analyzed in
[6], has been shown to achieve efficient empirical performance
by using a discount factor γ for calculating the discounted per
arm reward. UCB algorithms make use of Hoeffding inequality
to produce an exploration bonus for each arm, that can be
added to the discounted per arm reward make estimations in
the face of uncertainty. The actions are then taken with respect
to the arm that has the potential to be optimal, rather than the
currently best arm based on the empirical discounted average.
The value nt(a), describing the number of times that each arm
has been chosen until time step t, is also discounted with γ
parameter, therefore

nt(a; γ) =

t∑
s=1

γt−s1{as=a} (2)

where 1{.} denotes the indicator function. The average dis-
counted reward rt(a) for each arm is therefore defined as

rt(a; γ) =
1

nt(a; γ)

t∑
s=1

γt−srs(a)1{as=a} (3)

and the padding function or exploration bonus ct(a) for each
arm is defined by
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ct(a; γ, ξ) = 2B

√√√√ξ log(

K∑
a=1

nt(a))/nt(a) (4)

where B denotes an upper bound for rewards and ξ a param-
eter. The decision maker takes an action at each time step
according to the rule at = arg maxa (rt(a) + ct(a)), receives
a reward and updates the above values. Initialization also has
to take place by choosing every arm once at the beginning of
each session.

B. Sliding Window UCB

SW-UCB, is similar to D-UCB in that they belong to
the same family of algorithms proposed in [3]. Instead of
computing the discounted per arm reward, it uses a history
of the τ most recent rewards and actions taken. The number
nt(a) that each arm has been chosen with only the sliding
window as memory is

nt(a; τ) =

t∑
s=t−τ+1

1{as=a} (5)

adjusted appropriately when t < τ . The average per arm
reward, using the sliding window of width τ , is then

rt(a; τ) =
1

nt(a; τ)

t∑
s=t−τ+1

rs(a)1{as=a} (6)

and the exploration bonus has to take in mind the transitional
phase where the window width is larger than the current time
step, so

ct(a; τ, ξ) = B

√
ξ

nt(a)
log(min(t, τ)) (7)

with the decision maker following the same rule as in D-UCB,
that is at = arg maxa (rt(a) + ct(a)). Initialization has also
to take place by pulling each arm once.

C. Kalman Filter – Multi Armed Normal Bandit

With the use of sibling Kalman Filters, KF-MANB proposed
in [8] has shown evidence of satisfactory robustness and
performance for both stationary and non-stationary environ-
ments. Each arm can be modeled with a normal distribution
of mean µt(a) and variance σ2

t (a). It uses two parameters,
σ2
ob and σ2

tr, which relate to the stochastic part and the non-
stationary part of the environment respectively. It starts with
an initial set of values for means µ1(a) and variances σ2

1(a)
of each arm a ∈ K, takes a sample sa from the respective
distribution and makes the action choice according to the rule
at = arg maxa(sa). The reward rt(a), for a = at, is then
used to update the distribution of the respective arm with

µt+1(a) =
(σ2
t (a) + σ2

tr)rt(a) + σ2
obµt(a)

σ2
t (a) + σ2

tr + σ2
ob

(8)

σ2
t+1(a) =

(σ2
t (a) + σ2

tr)σ
2
ob

σ2
t (a) + σ2

tr + σ2
ob

(9)

while for arms a 6= at the means µt+1(a) maintain their
previous value, and a transitional variance is added to σ2

t+1(a)
in order to enhance exploration of non-chosen arms as shown
below

µt+1(a) = µt(a) and σ2
t+1(a) = σ2

t (a) + σ2
tr (10)

From (9) it can be deduced that the variance of the chosen
arm decreases, as σ2

t+1(a) < min{(σ2
t (a) + σ2

tr), σ
2
ob}, while

a low-pass filter in (8) updates the mean with an adaptive
learning rate.

D. Adapt-EvE

Adapt-EvE with meta bandits, proposed in [20], makes use
of a change point detector based on Page Hinkley statistics. It
starts with DUCB-tuned (DUCBT) algorithm (or simply UCB-
tuned; UCBT) which adaptively changes ξ parameter by using
an upper bound of variances for rewards of each arm. DUCBT
replaces the exploration bonus of Eq.4 with

ct(a; γ, ξ) =

√√√√ 2

nt(a)
log(

K∑
a=1

nt(a)) min{1/4, V ar(Rt(a))}

(11)

where V ar(Rt(a)) denotes an empirical upper bound of
variance for the rewards of arm a. For the Page Hinkley change
point detector, the average reward rt is used at every time step
to compute mt =

∑t
s=1(rs − rs + δ) (where δ is a tolerance

parameter). Then Mt = max{m1,m2, ...,mt} and the value
PHt = Mt −mt is finally compared with a threshold λ. If
PHt is greater than λ, a change point is detected. Instead of
reseting the history of DUCBT, a second bandit is then created
and initialized. Also a meta-bandit, either using DUCBT or
UCBT algorithm (with the former denoting a meta-ρ-bandit),
makes a decision on which bandit should decide for the next
action, the new or the old one. After tm time steps, the bandit
that has been chosen mostly by meta-bandit, is the only one to
remain. The above procedure decreases type I errors (defined
as incorrect change point detections), although when being
in this meta-bandit phase PH detector does not monitor the
rewards, therefore no new change points can be detected.

E. Meta-learning for Bandits - MLB

In [21] was proposed that the difference between mid-term
rewards and long-term punishments can be used to explain the
variations of negative and positive affects in nature. In [19]
this idea was implemented with the dynamic tuning of meta-
parameters in reinforcement learning, to properly adjust the
exploration-exploitation trade-off in non-stationary environ-
ments. Here we present a modification of meta-reinforcement
learning, for proper use on a bandit problem (MLB). The main
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idea remains to tune the inverse temperature of the softmax
Boltzmann function for re-engaging exploration by decreasing
its value appropriately. In short, increases in performance (as
measured by relative variations of short- and long-term reward
running averages) lead to increases of the exploitation of
learned arm values, so that the agent can reach a nearly optimal
performance. Conversely, drops in the average reward can be
interpreted as signs of a change in the task conditions and thus
as a need to re-explore.

With βt denoting the inverse temperature meta-parameter,
and Qt(a) the action value of arm a, the probability of pulling
arm a at each time step t is

P (a|βt) =
exp(βtQ(a))∑

a∈K
exp(βtQ(a))

(12)

The immediate reward rt received from action a = at, is
then used to update the mid-term reward rt, and the long-
term reward rt,

rt = αmrt + (1− αm)rt−1 (13)

rt = α`rt + (1− α`)rt−1 (14)

where αm and α` are learning rates, inversely proportional
to two time constants τ1 and τ2 respectively, as defined in
[19]. The action value Q(a) of the pulled arm, and the inverse
temperature meta-parameter βt are then updated as follows

Qt+1(a) = (1− αQ)Qt(a) + αQrt (15)

βt+1 = max{βt + η(rt − rt)), 0} (16)

where η is a parameter of choice and αQ a learning rate.
In [19] the proposition was to also use αQ as a dynamically

tuned meta-parameter for reinforcement learning approaches.
However, here we explore how the simple biologically plau-
sible modification to the inverse temperature, making the use
of softmax Boltzmann comparable and even better in some
cases, with the state-of-the art algorithms for non-stationary
environments. With the above update rule of (16), βt increases
when the mid-term reward is greater than the long-term.
One can view this as an evidence that the recent actions
are more optimal, therefore exploitation may be increased. In
the opposite case when rt < rt, the recent actions denote
that the present policy has lower performance in getting
rewards compared to the past, therefore exploration should
be encouraged by reducing βt.

III. HYBRID META LEARNING WITH KALMAN FILTERS

Here we propose a new algorithm as a hybrid model that
integrates the sibling kalman filters of KF-MANB and the core
of MLB. With the description of our modification of meta-
learning for bandits, this new algorithm can now be described
in a straight forward way, with a simple substitution. Follow-
ing a proposition of computational neuroscience exploration
models [17], [18], the action values Q(a) used in the softmax
function for decision-making in (12) are complemented by an
arm-specific exploration bonus proportional to the uncertainty
associated with each arm. To do so, action values Q(a) are
simply replaced with a trivial linear combination of the mean
and the standard deviation of each arm’s distribution, accord-
ing to the sibling kalman filters of KF-MANB as follows

Qt(a) = µt(a) + φσt(a) (17)

Therefore, the probability an arm a to be chosen at time step
t, given the updated inverse temperature βt is

P (a|βt) =
exp(βt(µt(a) + φσt(a)))∑

a∈K
exp(βt(µt(a) + φσt(a)))

(18)

where µt(a) and σt(a) follow the update rules of KF-MANB
and φ is a constant of choice. This algorithmic procedure is
summarized in Algorithm 1.

Algorithm 1 MLB-KF
1: Choose parameters αQ, αm, α`, η, φ
2: Initialize β1, and µ1(a), σ1(a) ∀a ∈ K
3: for t = 1, 2, ..., T do
4: select action at ∈ K from distribution of (18)
5: observe the immediate reward rt
6: update rt, rt with (13), (14)
7: for a = at update µt+1(a), σ2

t+1(a) with (8), (9)
8: for all arms a 6= at update µt+1(a), σ2

t+1(a) with (10)
9: update βt+1 with (16)

10: end for

The idea of adding an exploration bonus to each arm with
the use of an uncertainty measure added to the exponential
argument of the softmax function is not new. When the Gaus-
sian distribution of an arm has high variance, the respective
arm should be explored more. However when the environment
suggests that no evidence of change is observed, KF-MANB
suffers from exploration since a transitional variance is always
added to the non-pulled arms. Meta-learning is also expected
to display large regret at cases where a non-optimal arm
becomes optimal after long periods of stationarity, since the
”rising” arm may never be chosen, also due to floating point
computational restrictions which affect the large values on the
computations in exponentials. The above implementation is a
trade off between those two cases, as we empirically present
evidence that it incorporates both the benefits of meta-learning
fast adaptation and small regret on many test cases, as also the
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robustness and great performance of KF-MANB (observed in
the experiments section of the next pages).

IV. EXPERIMENTS AND RESULTS

Regarding experimental non-stationary setups for bandits,
different features have to be taken into consideration. For
abruptly changing environments, the rate at which switchings
take place is one of the most important issues. Here we will
have a small horizon of 10000 time steps, where the optimal
arm will change from 1 to 10 times during this lifespan
(approximately). Comparing with other existing setups, one
can consider this to be a fast changing environment, however
we believe that in many real life situations, one time step
(also called episode) can be related to one day (or a few
actions like advertisement placements), therefore the need to
find fast adaptive algorithms, with adaptation to be efficiently
performed in a few hundreds or thousands of timesteps in such
cases is necessary.

Another major issue is the type of switching, which can
take place either globally (i.e at some time step all arm
probabilities change), or per arm, (i.e the probability pt(a) of
each arm may change independently of others). The difference
∆g between the expected reward of the optimal arm and
the second best arm is also another feature, with which
an equivalent of resolution limit measure of the decision
maker can be evaluated. Special cases where the optimal arm
becomes sub-optimal after long periods of stationarity, as also
cases where the worst arm becomes the optimal one while
all other arms remain stationary in terms of rewards, are
a few more cases to explore. Usually, in most simulations
presented in the literature, algorithms are tuned appropriately
before testing by selecting the best parameters for the test case.
This may present evidence of the optimal behavior, however
the environmental stochasticity should include variations of
all the above features. Here we tune the parameters of each
algorithm to a specific non-stationary stochastic setup with
5 arms, evaluate their performance on this setup, and test
on different setups with variations of all features, exploring
robustness and performance in terms of total cumulative regret.

In problem set 1, we investigate the performances while
changing the arm probabilities globally with a random walk,
altering the rate of change points. In problem set 2 we alter

Fig. 1. left: total cumulative regret in parameter space of D-UCB, right: total
cumulative regret in parameter space of KF-MANB

Fig. 2. top: the probabilities per arm at each time step, bottom: the averaged
cumulative regret for each algorithm for the specific test case

the gap ∆g between the optimal and second best arm, as also
the number of change points with global switchings, uniformly
distributed at fixed time steps. In problem set 3 we investigate
performances with simple arm switches between best and
worst expected value, keeping all other arms stationary.

A. Parameter Tuning

Parameter tuning is usually one of the most time consuming
procedures before the evaluation of algorithms. For D-UCB
and SW-UCB Garivier et al. in [6] provide close forms
for computing the parameters in order to assure an upper
bound of total cumulative regret. Nevertheless prior knowledge
regarding the number of change points and the time horizon is
needed. These parameters do not ensure the best performance
but only an upper bound of regret. In order to evaluate all
algorithms in an empirically fair way, we find here the optimal
parameters in terms of empirical performance (i.e minimum
average total cumulative regret).

The setup for parameter optimization can be considered as a
mid-case scenario, yet there is no metric for such an estimate.
We consider 5 arms, with initial arm probabilities of 0.8, 0.4,
0.3, 0.2, 0.1 for each arm respectively, with a circular shift
of those at every 2000 time steps as can be seen in Fig.2.
We run 200 sessions, calculated the mean total cumulative
regret on a sparse parameter grid space and rerun for areas
with the best observed performance. For Adapt-EvE we had
to act differently due to its nature. We changed the Page
Hinkley statistics parameters, δ and λ, observed the change
points detected by adding a ”1” to a sequence of zeros, at
the respected time step. We repeated for 10 sessions and
smoothed the averaged binary outcome. We then computed
the correlation coefficients between the outcomes, and the true
binary change points sequence signal (also smoothed by a
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Hanning window). Hence we found areas of the parameter
space where these coefficients had the largest value. We used
UCBT as a basic decision maker for Adapt-EvE. The window
size of the meta-bandit’s lifespan tm was then empirically
chosen after observing simulation results. In Fig.1 the cumu-
lative regret in parameter space of D-UCB and KF-MANB
can be seen as an example. The other algorithms have similar
parameter spaces, although the computational complexity rises
exponentially with the increase of parameters (referred to as
the curse of dimentionality).

For D-UCB the parameters chosen were ξ = 0.22 and
γ = 0.9999, for SW-UCB ξ = 0.3 and τ = 998, for Adapt-
EvE δ = 0.13, λ = 40, tm = 50 and used UCBT as decision
makers and as meta-bandit. For KF-MANB σob = 0.2,
σtr = 0.01, initializing all means and variances to 0.5. For
MLB αQ = 0.14, αm = 1/15, α` = 1/350, η = 0.44. For
MLB-KF we kept the parameters found for MLB and KF-
MANB and only tuned φ = 1.5. All the parameters were kept
as above for all problem sets. From the average cumulative
regret for each algorithm, as seen in Fig.2 it is deduced
that MLB achieved the best performance, by demonstrating
both exploitative behavior when needed (deduced from the
flat horizontal regret), as also adjusted exploration at change
points. KF-MANB was the third best algorithm, as MLB-KF
demonstrated a performance in-between the former two. SW-
UCB also suffered from exploration even after stationarity
was settled (since it keeps only a window of memory). D-
UCB suffered from inertia at switch points but achieved a flat
behavior after learning the optimal arm. Adapt-EvE suffered
from regret of the meta-bandit phase which is required for its
implementation. Adapt-EvE demonstrated small regret after
adaptation though, which is the main reason that it has been
shown to be powerful in non-stationary environments with
lager intervals of stationarity than here. In terms of variances
(which are not shown in the figures) D-UCB and Adapt-
EvE had larger variances than all others, while KF-MANB

Fig. 3. total regret for different values of expected number of change points

Fig. 4. box plots of total regret for all values of change point rates tested

achieved the smallest value and MLB-KF the second best.
MLB had many outliers, while MLB-KF had not. MLB-KF
demonstrated evidence that it inherited both the robustness of
KF-MANB, as also the average performance of MLB.

B. Problem Set I

In this problem set, a global change point cp, may occur at
every time step t with a constant probability h (i.e pt(cp) = h).
When a change point occurs, all arm probabilities are then
re-sampled from a uniform distribution in [0, 1]. For each
subproblem (using only the set of probabilities generated for
each arm with the above type of random walk), we run each al-
gorithm for 20 sub-sessions, then regenerated another problem
set with the same probability h, and repeated the procedure
for 100 hyper-sessions. We then calculated the average total
cumulative regret with the assumption that the results are
representative due to central limit theorem. We increased h
and repeated all the above, for h ∈ [2/10000, 8/10000] with a
step of 1/10000. Therefore, an average of 2 to 8 global change
points occur (we have an horizon of 10000) for every step.

From the results shown in Fig.3, it was observed that MLB
had the best average performance for small expected number
of change points, while MLB-KF was the second best. When
the rate increased, MLB suffered from high variance (not
shown here) which also increased its regret. KF-MANB was
very robust at all cases, denoting on average a very good
performance for all values of h tested. MLB-KF inherited both
the good behavior of MLB for low switching rates, as also the
robustness and performance of KF-MANB for higher rates,
with even a slightly better performance. Adapt-EvE (using
the parameters as chosen and with UCBT as basic decision
agent), demonstrated large regret values, as also variance and
dramatically reduced its performance for high switching rates.
This was also the case with D-UCB, due to inertia created
from past decisions and rewards. SW-UCB had an overall
good and stable average performance at all cases, though from
the simulations it is clear that MLB-KF exhibited the best
performance between all of the algorithms, as also shown in
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Fig. 5. top left: Total cumulative regret of D-UCB for different gaps ∆g

and number of switches #cp, top middle: SW-UCB, top right: KF-MANB,
bottom left: Adapt-EvE, bottom middle: MLB, bottom right: MLB-KF. The
blue areas denote small values of regret, while red areas denote high values.
All figures have the same reference values for proper comparison.

the box plots of Fig.4, where the distributions of total regret
for all changing point rates can be observed.

C. Problem Set II

In these scenarios, we evaluated the performance of all
algorithms, by altering the gap ∆g , which denotes the dif-
ference between the expected reward of the optimal arm and
the second best arm, while also circularly changing the arm
probabilities at fixed time steps. The best optimal arm always
had a probability of 0.8, the second best 0.8 −∆g , the third
0.8 − 2∆g and so forth. For our experiments we begun with
#cp = 1 (where #cp denotes the number of change points).
This change point occurred at t = T/2, when the probability
of the best arm dropped from 0.8 to 0.8-∆g , the probability
of the second best dropped from 0.8-∆g to 0.8-2∆g (and so
forth for other intermediate arms), while the probability of
the worst arm increased from 0.8-4∆g to 0.8. We altered ∆g

from 0.02 to 0.2 with a step size of 0.02 for each independent
test case, while we simulated all algorithms on each case for
200 sessions, observing the average final cumulative regret.
We then increased #cp by one, fixed the change point time
steps to be evenly distributed over the timesteps, and repeated
the procedure. In Fig.5 a visualization of the performance for
each algorithm is presented, for different gaps ∆g (rows), and
#cp (columns).

The results once again provided evidence that MLB-KF
combines the behavior of both MLB and KF-MANB in a
satisfactory manner. The blue bottom left area of the per-
formance test space of MLB, was inherited by MLB-KF.
The satisfactory performance of KF-MANB, on the right side
of the test space, was also inherited by MLB-KF. D-UCB
and SW-UCB exhibited similar performances, while Adapt-
EvE achieved great performance for small number of change
points, but dramatically increased its regret on this type of
fast changing environment (as also noted in problem set I).
For a total average evaluation, we observed the distribution

Fig. 6. averaged total regret from problem sets with different gaps ∆g and
number of change points #cp

of each algorithm’s total cumulative regret, for all ∆g and
#cp. The results are here shown as box plots in Fig.6. MLB-
KF demonstrated the lowest total average regret, with also
sufficient interquartile range, better than that of MLB but
slightly larger than that of KF-MANB. D-UCB had a better
performance in this stochastically changing environment, than
the one of problem set I.

D. Problem Set III

Here we investigated the performance of all algorithms on
4 different cases of single arm switching. In a Best-Worst
scenario (BW) the optimal arm abruptly becomes the worst
while in Worst-best (WB) the worst arm becomes the optimal
one. With the same ideas we also investigated BWB and WBW
cases. The initial probabilities are initialized as 0.8, 0.5, 0.4,
0.3, 0.2 for each arm respectively. For BW case the optimal
arm of probability 0.8 abruptly drops to 0.1 at t = T/2. In WB
case the worst arm with probability 0.2 abruptly rises to 0.9 at
t = T/2. For BWB the best arm drops to 0.1 at t = T/3 and
rises back to 0.8 at t = 2T/3 and for WBW case the worst
arm rises to 0.9 at T/3 and falls back to 0.2 at t = 2T/3.
We run 200 sessions for each algorithm and calculated the
average performance in terms of regret as seen in Fig.7 for all
4 scenarios.

In BW case, MLB and MLB-KF achieved the optimal
performance. This is because reduced immediate rewards
lead to a decay of mid-term reward rt. Yet the long-term
reward rt has higher inertia. Therefore their difference rt−rt
becomes less than zero, resulting in a decay of βt, re-engaging
exploration efficiently. KF-MANB was the second best, while
D-UCB once again suffered from inertia.

In WB case MLB exhibited very large values of regret.
From the graphs of Fig. 7, it seems that the policy of action
choice remained unchanged. The same ocurred with Adapt-
EvE, while D-UCB achieved the best performance. SW-UCB
and KF-MANB exhibited similar performances. It can be seen
that, MLB-KF followed the behavior of MLB at first, but
when MLB started to perform badly, it adapted its behavior by
denoting similar performance with KF-MANB. This example
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Fig. 7. top left: best-worst case, top right: worst-best case, bottom left: best-worst-best case, bottom right: worst-best-worst case

encapsulates the core of this hybrid algorithm in the best
manner.

In BWB a combination of the former two take place, where
MLB-KF demonstrated the best performance, with KF-MANB
running second and SW-UCB third. MLB adapted very fast at
the first change point (since this was a BW case), but its regret
increased on the next change point (since this is a WB case). In
WBW case MLB-KF achieved similar performance with KF-
MANB, where the two of them exhibited better performance
than all others.

V. TOTAL EVALUATION AND DISCUSSION

Testing an algorithm on a scenario that was also used in
order to tune its parameters, should restrict its evaluation
of performance to concern only this specific environment.
Here we avoided this bias by testing the algorithms on many
different scenarios, altering the most crucial components of
a stochastic and non-stationary multi armed bandit, while
keeping the parameters that were tuned on a simple mid-case.
However, it should also be mentioned that when we tested the
algorithms on the same scenario that was used for parameter
tuning, meta-learning achieved the best performance than all

others, while the hybrid model of meta-learning and sibling
kalman filters, achieved the second best.

Without taking in mind the performance of the hybrid algo-
rithm, it was observed that on an average picture, KF-MANB
and MLB battled for the first place. MLB demonstrated very
low regret in many cases, but also high variance and low
robustness. On the other hand, KF-MANB had the most robust
behavior, by also achieving one of the best performances. A
trade-off between their performances was embodied with the
use of a hybrid algorithm, which we named MLB-KF.

In nature, simple life events like everyday choices and
actions have usually faster dynamics of stochasticity in terms
of rewards, than the ones that have been tested in most of the
literature. The evaluation of decision makers on different rates
of abrupt changes, was therefore one of the many cases that
we explored. More specifically, the presence of global change
points in problem set 1 – occurring in a stochastic manner –
led MLB to exhibit the best performance for small expected
number of change points, while KF-MANB demonstrated both
robustness and low regret. MLB-KF inherited the best from
these performances, by following the regret dynamics of the
most optimal algorithm between the two, during the time steps
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of each session.
Distinguishing the best action when the expected rewards

between them vary from smallest values to largest ones has
also a significant meaning. The short term regret when choos-
ing a non optimal action at the presence of a small gap may
be low, but the cumulative regret after long periods will be in-
creased, at least linearly with time. In problem set 2, we altered
the difference between the expected reward of the optimal
arm and the second best, considering that these alterations can
provide an equivalent measure of the resolution limit that each
algorithm can achieve. We also altered the change point rate,
with a deterministic manner for better visualization of results,
to investigate how the environmental change rate also affects
the learning rate (as well as how the adaptation is correlated
with this gap). From our simulations it was deduced that our
hybrid algorithm MLB-KF demonstrated the best behavior on
these cases, demonstrating both robustness and low regret.

To properly test exploration-exploitation trade-off, cases
where the learned optimal action becomes the less optimal
should be tested. Similarly, cases where the learned optimal
action restrains its expected rewards but a non-optimal action
becomes optimal should also be tested. In problem set 3, MLB
adapted greatly in the former situation while D-UCB adapted
greatly in the latter. However both of them demonstrated
very large regret in the opposite case. MLB-KF once again
demonstrated the best average performance on these types of
setup. Cases where abrupt changes of each arm take place
independently (instead of globally) were also tested, as well
as cases with drifting changes of environment instead of abrupt
(not shown here). Likewise, MLB-KF demonstrated evidence
of an overall best empirical performance, yet these situations
can be evaluated independently and are not on the scope or
our work here.

VI. CONCLUSION

In this work we presented empirical evidence that a hybrid
algorithm which makes use of a bio-inspired approach to
properly tune exploration with meta-learning, combined with
a sibling Kalman filter to estimate each arm’s action value,
adding a measure of uncertainty as an exploration bonus, can
lead to an adaptive learning strategy which efficiently manages
the exploration-exploitation trade-off dilemma.

We evaluated the performance of some of the best state-
of-the-art algorithms, namely: KF-MANB [8] , D-UCB [7],
SW-UCB [6] and Adapt-Eve [20], with two new algorithms
proposed in this paper: a modification of meta-learning for
reinforcement learning proposed in [19] termed MLB (meta-
learning for bandits) and a new hybrid, named MLB-KF (meta-
learning for bandits with kalman filters), while manipulating
the most important components of the environment, using the
same set of parameters found after proper tuning on a mid-case
setup.

The results of our simulations suggest that a hybrid model
inheriting and combining the adaptive behavior from both
KF-MANB and the meta-learning algorithm with a proper

trade-off between performance (in terms of regret and fast-
adaptation) and robustness, resulted in efficient empirical
behavior in a series of simple non-stationary scenarios. These
results seem promising relative to real life applications due to
the higher rate of alterations of the environment in terms of
episodes, although more complex setups should be investigated
in the future.
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