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Abstract—Dynamic uncontrolled human-robot interaction re-
quires robots to be able to adapt to changes in the human’s
behavior and intentions. Among relevant signals, non-verbal cues
such as the human’s gaze can provide the robot with important
information about the human’s current engagement in the task,
and whether the robot should continue its current behavior or
not. In a previous work [1] we proposed an active exploration
algorithm for reinforcement learning where the reward function
is the weighted sum of the human’s current engagement and
variations of this engagement (so that a low but increasing
engagement is rewarding). We used a structured (parameterized)
continuous action space where a meta-learning algorithm is
applied to simultaneously tune the exploration in discrete and
continuous action space, enabling the robot to learn which
discrete action is expected by the human (e.g. moving an object)
and with which velocity of movement. In this paper we want to
show the performance of the algorithm to a simulated human-
robot interaction task where a practical approach is followed to
estimate human engagement through visual cues of the head
pose. We then measure the adaptation of the algorithm to
engagement perturbations simulated as changes in the optimal
action parameter and we quantify its performance for variations
in perturbation duration and measurement noise.

I. INTRODUCTION

Important progresses have been made in recent years in
reinforcement learning (RL) with continuous action spaces,
permitting successful real-world applications such as Robotics
applications [2], [3]. As a recent review for reinforcement
learning applications to Robotics highlights [4], many algo-
rithms have been developed for different tasks. For stationary
environments, human prior knowledge has also been used
in order to determine the balance between exploration and
exploitation, but such an approach denotes weak performance
for non-stationary environments.

For continuous action spaces, there has been important
contribution with promising real world applications in the
field of Robotics. Very recently though, the combination of
discrete actions Ad = {a1, a2, ..., ak} where each action
a ∈ Ad is described by a set of ma continuous parame-
ters {θa1 , ..., θama

} ∈ Rma was proposed for RL algorithms
in structured Parameterized Action Space Markov Dedision
Processes (PAMDP) [5], [6]. This approach was applied to
Robocup 2D soccer simulations, where an agent learned the
optimal action (kick the ball, run, turn, etc) as also the optimal
parameter value of each action (power, speed, angle, etc).

Similar work has been done in [6], where the optimal action
and parameters are learned in parallel, instead of altering
between learning phases, in order to ensure convergence.
However, these methods use a fixed exploration-exploitation
trade-off which results in issues discussed in [4].

Exploration in parameterized action space described in [6]
uses ε-greedy exploration by picking a random discrete action
a ∈ Ad with probability ε and then sample the action’s
parameters θai out of a uniform distribution. The value of
ε is decreased over time steps, but the decrease rate is set
by hand, thus requiring human prior knowledge. In [7] a
Gaussian distribution is used instead, but with a fixed value σ.
In our work, we use a hybrid algorithm in the sense that we
combine different learning processes in parallel that rely on
different types of representations: discrete action values at the
highest level, and continuous action parameters at the lowest
level. We apply the meta-learning algorithm proposed in [8],
and use short-term and long-term reward running averages to
both adaptively tune the inverse temperature parameter β of
Boltzmann softmax exploration function for action selection,
as well as the width of the Gaussian distribution from which
each action parameter is sampled around its current value. We
applied our proposed algorithm to a simple simulated human-
robot interaction task where the objective was to maximize
human engagement (modeled with a function unknown to
the robot). The results we obtained outperformed continuous
parameterized RL both without active exploration and with
active exploration when using Kalman RL-algorithm [9] based
on uncertainty variations.

In [1] we considered human engagement to be known to
the robot for the calculation of the reward. However, in real
human-robot interactions the engagement is not directly acces-
sible. To this purpose, social signals expressed through non-
verbal gestures and gaze behaviors have to be used in order to
automatically evaluate the engagement, as described in [11].
Here, we consider the human engagement to be unknown and
further assume that an estimation process is in place based on
visual features measured during human-robot interactions. In
order to have more realistic results we show how engagement
perturbations, modeled as temporary changes of the optimal
action parameter, affect the learning process. We also examine
how the algorithm behaves in the presence of noise that



introduces uncertainties in the engagement estimation process.
The goal is to conduct an initial evaluation as to how scalable
and generalizable the proposed learning algorithms are in
more close to real-life scenarios and how the presence of an
uncertainty on human engagement estimation may affect the
performance of the system.

II. ACTIVE EXPLORATION ALGORITHM

This section briefly describes the mathematical formulation
underlying the proposed active exploration method that is
extensively analyzed in [1]. The meta-learning algorithm is
summarised in Algorithm 1. It first employs Q-Learning [10]
to learn the value of a discrete action at ∈ Ad selected at
timestep t in state st:

δt = rt + γmax
a

(Qt(st+1, a))−Qt(st, at) (1)

Qt+1(st, at)← Qt(st, at) + αQδt (2)

where αQ is a learning rate and γ is a discount factor. The
probability of executing discrete action aj at timestep t is
given by a Boltzmann softmax equation:

P (aj |st, βt) =
exp (βtQt(st, aj))∑
a exp (βtQt(st, a))

(3)

where βt is a dynamic inverse temperature meta-parameter
which will be tuned through meta-learning (see below). In par-
allel, continuous parameters θ̃aji,t are selected from a Gaussian
exploration function centered on the current values θaji,t(st) in
state st of the parameters of this action [7]:

P (θ̃
aj
i,t|st, aj , σt) =

1√
2πσt

exp
(
−(θ̃

aj
i,t − θ

aj
i,t(st))

2/(2σ2
t )
)
(4)

where the width σt of the Gaussian is a meta-parameter which
will be tuned through meta-learning (see below) and action
parameters θai,t(st) are learned with a continuous actor-critic
algorithm [7]. A reward prediction error δt = rt+γVt(st+1)−
Vt(st) is computed from the critic and is used to update the
parameter vectors ωCt and ωAt of the neural network function
approximations in the critic and the actor:

ωCi,t+1 = ωCi,t + αCδt
δVt(st)

δωCi,t
(5)

ωAi,t+1 = ωAi,t + αAδt(θ̃
a
i,t − θai,t(st))

δθai,t(st)

δωAi,t
(6)

where αC and αA are learning rates and Vt(st) is the output of
the function approximation at time t with state st as input. In
order to perform active exploration, we need to dynamically
update βt and σt through a meta-learning process based on
variations of the robot’s performance. Thus here, following the
proposition of [8], we measure a long-term reward running

average ¯̄rt serving as reference, and a short-term one r̄t
serving as current measure of performance. When r̄t > ¯̄rt, this
means that the current performance is above average and that
exploration can be decreased. When r̄t < ¯̄rt , this means that
the current performance is below average and that exploration
should be increased. Contrary to the noisy version of [8] which
can lead to meta-learning instability, here we implement a
noiseless version of the algorithm. We compute short- and
long-term reward running averages in the following manner:

∆r̄t = (rt − r̄t)/τ1 and ∆¯̄rt = (r̄t − ¯̄rt)/τ2 (7)

where τ1 and τ2 are two time constants. We then update βt
and σt with:

βt+1 = (R ◦ F) (βt, µτ2∆¯̄rt) and σt+1 = G(µτ2∆¯̄rt) (8)

where R(x) is a rectifier, F(x, y) is affine, µ is a learning
rate and 0 < G(x) < 0.1M is a sigmoid, with M denoting
the parameter range.

Algorithm 1 Active exploration with meta-learning
1: Initialize ωAi,0, ωCi,0, Qi,0, β0 and σ0
2: for t = 0, 1, 2, ... do
3: Select discrete action at with softmax(st, βt) (Eq. 3)
4: Select action parameters θ̃ai,t with

GaussianExploration(st, at, θ
a
i,t, σt) (Eq. 4)

5: Observe new state and reward {st+1, rt+1} ←
Transition(st, at, θ̃

a
i,t)

6: Update Qt+1(st, at) in the discrete Q-Learning (Eq. 2)
7: Update function approx. ωCi,t+1 and ωAi,t+1 in continuous

actor-critic (Eq. 5, Eq. 6)
8: if meta-learning then
9: Update reward running averages r̄t and ¯̄rt (Eq. 7)

10: Update βt+1 and σt+1 (Eq. 8)
11: end if
12: end for

III. EXPERIMENTS

A. Simple HRI simulation

We tested the algorithm described in Section 2 in a simple
simulated human-robot interaction task involving a single
state, 6 discrete actions, and continuous action parameters
between -100 and 100. Each action corresponds to a pointing
gesture of the robot to one of the 6 objects in front of it and the
action parameter represents the movement intensity. An action
will yield reward only when its continuous parameters are cho-
sen within a Gaussian distribution around the current optimal
action parameter µ? with variance σ?. Every n timesteps, µ?

changes so that the task is non-stationary and requires constant
re-exploration and learning by the robot.

Since during interaction tasks the actions performed by
a robot can have delayed effects on the human’s behavior
and engagement [11], we chose the reward to be given by



a dynamical system. This is based on the virtual engagement
e(t) of the human in the task which represents the attention
that the human pays to the robot.

et+1 =


et + η1(emax − et)H(θat ), if at = a? & H(θat ) ≥ 0

et − η2(emin − et)H(θat ), if at = a? & H(θat ) < 0

et + η2(emin − et), otherwise

where η1 is the increasing rate, η2 is the decreasing rate,
H(x) = 2

(
exp

(
− (x−µ?)2

2σ?2

)
− 0.5

)
is the reengagement

function and a?, µ? and σ? are respectively the optimal action,
action parameter and variance around a?. We modeled this
attention to be between 0 (no attention) to 10 (maximum
attention) and the reward function was computed as r(t+1) =
(1−λ)e(t+ 1) +λ∆e(t+ 1) where λ = 0.7 is a weight. This
formulation has great meaning, since the reward is modeled
by using both the engagements current value as also its rate
of change.

We run the simulation and compared the results for different
models: active exploration with meta-learning, without active
exploration (we used fixed values for σ) and active exploration
with Kalman Q-Learning algorithm. These were tested in a
task where the optimal action tuple (a?, µ?) alternated between
(a2,−50) and (a6, 50) every 1000 time steps. We repeated this
task running 10 simulations for each algorithm, and monitored
the average and standard deviation of the engagement (Fig.1
top). The algorithm without active exploration never exceeded
an engagement over 6 for every interval and the Kalman Q-
learning adapted fast but progressively decreased its achieved
engagement. Our active exploration with meta-learning algo-
rithm achieved the best performance, reaching high values of
engagement (optimum at some intervals). More particularly,
when the engagement dropped, the inverse temperature pa-
rameter βt also dropped and the action parameter variance σt
of the gaussian exploration function increased. This resulted
on re-engaging exploration when needed, without loosing the
exploitation convergence on large stationary intervals.

We also created a virtual simulation environment using
V-REP robot simulator, in order to have a more realistic
representation before any application to the real world (Fig.1
bottom). In this simulation environment, we considered a
preliminary scenario where 6 cubes were present in front of
the robot. We assumed that the optimal action at this state was
the pointing gesture and the task was to find the optimal action
intensity which maximized the human attention to the pointed
cube. In this preliminary work, the engagement value was
returned to the robot at every timestep, however more realistic
scenarios are also being considered and tested in simulation,
as described in the following subsection.

B. Engagement Estimation Process
In order to make the simulated HRI scenario more realistic

and obtain a more reliable assessment on the applicability of
the developed learning algorithms in real use-case scenarios,
we consider an estimation process that evaluates human en-
gagement through visually extracted metrics.

Fig. 1. Top: Comparison of engagement in 10 simulations of the meta-
learning model (dark gray), the model without active exploration (black), and
the Kalman-QL (light gray). Bottom: V-REP simulations of the NAO robot
interacting with a human.

As mentioned in [11], [12], head pose data is proved to
be highly correlated with human engagement. In the current
implementation of the simulated HRI scenario, the human head
pose is generated by sampling a normal distribution centered
around the position of the object corresponding to the action
(i.e. pointing gesture) currently performed by the robot. The
standard deviation of this probability distribution is assumed to
be proportional to the absolute difference between the action
parameter executed by the robot and its optimal value. Thus,
when the action parameter deviates from its optimal value,
the human engagement drops and the head pose variance
increases, meaning that the human is disengaged from the task
and essentially starts looking around. Accordingly, when the
action parameter is near to its optimal value, the head pose
variance decreases meaning that the human pays attention to
the action performed by the robot.

The engagement estimation is achieved by measuring the
mean standard deviation (MSD) of the human’s head yaw
angle with respect to the cube pointed by the robot in a
specified time window. In particular, at each trial the robot
collects and processes n observations of the human head
pose before selecting and executing a new action. The head
pose measurement error is taken into account and modeled
as an additive Gaussian noise with standard deviation σ that
depends on the accuracy of the visual head pose estimation.
It is thus evident that the higher the head pose MSD, the
lower the human engagement. Our estimator evaluates the
current human engagement based on this MSD value and
provides it to the robot as a reward. The reward function
now considers the estimated engagement ê and is computed
as r(t+ 1) = (1− λ)ê(t+ 1) + λ∆ê(t+ 1).



Fig. 2. Estimated vs. real (simulated) engagement in one run involving a step
change (of 100%) after 100 trials, based on n = 5 head pose observations
per trial and Gaussian measurement noise with σ = 1.

The first series of numerical experiments that we conducted
involves step changes in the optimal (continuous) action
parameter performed every 100 trials. Figure 2 depicts the
results of a single run for the estimated vs. the real (simulated)
engagement, when the robot is assumed to collect n = 5
head pose observations per trial (for the human engagement
estimation process) with a Gaussian measurement noise of
σ = 1. In this run the action parameter undergoes a step
change of 100% after 100 trials. It is found that in such a
situation the real (simulated) engagement does not drop below
a value of 7 (i.e. 70% from the optimal engagement) and
consistently converges rapidly to a value above 90% after
approximately 10 − 15 trials. A series of 50 runs for the
same step-change scenario has also been conducted and the
results are shown in Figure 3. It is assumed that the optimal
action parameter undergoes a change of 100% (i.e. doubles
from a value of 5 to a value of 10) and after 100 trials goes
back to its initial value. Figure 3 (bottom) shows the actual
executed action parameter (mean and variance after 50 runs).
These results show that although the optimal action parameter
suddenly doubled, the adaptation was fast enough to keep
the engagement above a 70% value and consistently make it
converge to a value above 90% after approximately 15 trials
(Figure 3, top).

During a human-robot interaction task, it is natural for a
person and much more for a child to be distracted by an
external event (loud noise, presence of other people, etc). We
simulate such a perturbation as an abrupt and short in time
(impulse-type) change of the optimal action parameter. The
behavior of the algorithm (mean and variance of 50 sample
runs) is depicted in Figure 4 for various durations of the
perturbation impulse. Here, the optimal parameter has a value
of 5 which is changed to 10 during the perturbation. We
observe that when the perturbation lasts for only 1 trial, the
executed action parameter is almost unaffected and the human
engagement does not drop lower than a value of 9.

In order to further quantify the performance of the learning
algorithm, we calculate the mean absolute deviation (MAD)
of the real (simulated) engagement and of the executed action

Fig. 3. Top: Real (simulated) human engagement (mean and standard
deviation after 50 runs) when the optimal action parameter undergoes step
changes every 100 trials as shown in left figure (engagement does not drop
below a 70% value). Bottom: Executed action parameter (mean and standard
deviation after 50 runs) involving step changes.

parameter from their optimal values, for perturbation durations
in the range of 1 to 10 trials. The results are depicted in Figure
5, which indicates that longer perturbations lead to slower
adaptation and result in larger MAD values. The same results
are also numerically shown in Tables I to IV (end of the paper),
including the maximum engagement deviation as well as the
number of trials needed for the engagement to recover to 90%
of its maximal value after the end of the perturbation. It should
also be highlighted, though, that as illustrated by the obtained
results, no matter how long the perturbation, the algorithm will
always reconverge to the optimal value.

In a similar way, Figure 6 shows the engagement and action
parameter deviation for an increasing value of σ representing
the head pose measurement noise. In this particular numerical
experiment, the perturbation duration is assumed to last for a
single trial. It is clear from this figure that larger σ values (i.e.
amplitude of noise in the head pose data and consequently
in the human engagement estimation process) lead to larger
deviations for the engagement and for the action parameter
from their optimal values. However, it is also apparent that
there is a range of values in σ (corresponding to a range of
uncertainty in the human engagement estimation process) that
results in a quite robust system performance (numerically, in
this case, up to a value of σ = 2). Evaluating the robustness of



Fig. 4. Action parameter perturbations with durations of 1, 2, 5 and 10 trials, respectively.

Fig. 5. Performance for increasing perturbation duration. Left: Engagement
mean absolute deviation from its maximum value (10). Right: Action param-
eter mean absolute deviation from its optimal value (5). The measurement
noise has a σ = 1.

Fig. 6. Performance for increasing noise σ. Left: Engagement mean absolute
deviation from its maximum value (10). Right: Action parameter mean
absolute deviation from its optimal value (5). The measurement noise has
σ = 1.

the learning mechanisms under assumed measurement noise
and proposing counter-measures in the presence of large
estimation uncertainties is a work-in-progress and will be
further explored in future work.

IV. DISCUSSION

In this work, we have shown that a meta-learning algorithm
based on online variations of reward running averages can
be used to adaptively tune two exploration parameters simul-
taneously used to select between both discrete actions and
continuous action parameters in a parameterized action space.

We then applied the proposed meta-learning algorithm to
a simple simulated human-robot interaction task and found
that it outperforms continuous parameterized RL both without
active exploration and with active exploration based on uncer-
tainty variations measured by a Kalman-Q-learning algorithm.
The robustness of the algorithm was tested in situations where
the human is distracted by external events and we showed that
no matter the length of the perturbation, the algorithm would
always come back to optimal behavior afterwards. In fact, the
algorithm succeeded to keep human engagement above 90% of
its optimal value when engagement perturbations were short.

Then, we showed how engagement is affected by the
presence of measurement noise during engagement estima-
tion. Although the algorithm is not significantly affected by
small noise amplitudes, it fails when uncertainties in human
engagement are high. To improve this, the robot could reset
its engagement estimation when the human looks at a discrete
object whose location is known to the robot. The robot could
even ask the human to look at the object in order to recalibrate
its estimation. In future work, we will address these issues and
test the algorithm in more complex simulated interaction tasks
before applying it to real human-robot interaction.

The different results presented in this paper suggest that the
proposed active exploration scheme in combination with the
described engagement estimation process could be a promising
solution for applications related to human-robot interaction
tasks in dynamic environments.



Engagement MAD values

Perturbation Mean STD 25% 75%duration percentile percentile
1 0.34939 0.17679 0.23192 0.45413
2 0.52831 0.14063 0.44253 0.60892
3 0.68629 0.22575 0.53915 0.77973
4 0.89065 0.17484 0.77258 0.99155
5 1.0118 0.31078 0.81102 1.1657
6 1.2232 0.34815 0.99221 1.3546
7 1.2957 0.61759 0.96951 1.4515
8 1.249 0.38641 1.0064 1.5177
9 1.3374 0.39675 1.036 1.6112
10 1.4415 0.44524 1.1093 1.7176

TABLE I
ENGAGEMENT MAD VALUES

Action parameter MAD values

Perturbation Mean STD 25% 75%duration percentile percentile
1 1.0337 0.42043 0.7643 1.2693
2 1.1584 0.35795 0.89604 1.3987
3 1.2774 0.31868 1.0767 1.4055
4 1.3416 0.29543 1.1319 1.5626
5 1.4847 0.30732 1.2685 1.7003
6 1.6898 0.35503 1.4562 1.9139
7 1.5712 0.44293 1.2896 1.7477
8 1.7163 0.3111 1.5788 1.9216
9 1.9387 0.48988 1.5668 2.2712

10 1.8471 0.37307 1.5986 2.1704

TABLE II
ACTION PARAMETER MAD VALUES

Engagement max deviation

Perturbation Mean STD 25% 75%duration percentile percentile
1 1.1558 0.48699 0.88976 1.3209
2 1.7664 0.36121 1.6266 1.8775
3 2.2081 0.56905 1.9838 2.6328
4 2.8998 0.45312 2.5507 3.2255
5 3.2186 0.75891 2.7269 3.7832
6 3.8114 0.72485 3.3217 4.3216
7 4.0132 1.1746 3.5341 4.6
8 4.0311 0.98245 3.3356 4.8395
9 4.2334 1.1234 3.3556 5.0483

10 4.5097 1.0771 3.8666 5.2737

TABLE III
ENGAGEMENT MAX DEVIATION

Number of trials to 90%

Perturbation Mean STD 25% 75%duration percentile percentile
1 1.4 2.8714 0 0
2 5.72 3.5516 3 8
3 6.2 4.6861 3 7
4 5.3 3.6936 3 6
5 7.66 4.7536 4 11
6 9 5.9074 5 11
7 9.42 6.2632 5 11
8 11.5 7.0226 7 14
9 11.6 8.1039 6 16

10 12.2 9.6637 6 16

TABLE IV
NUMBER OF TRIALS TO 90%
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