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Onsager made corrections to the Poisson-Boltzmann equation, to more correctly describe interactions in asymmetric electrolytes (those which have different charges, in absolute value, for the cation and the anion). The equations established by Onsager allow the calculation of symmetric total correlation functions, such that h ij (r) = h ji (r). In this article it has been shown that these correlation functions, describing in particular asymmetric electrolytes, can also be deduced from the Ornstein Zernicke integral equations by considering a nonlinear closure relation of the HNC type. The excess free energy deduced from these correlation functions has been found similar to that obtained in Mayer's theory. Relations with the electrostatic association models on the one hand, and with the dressed ions theory on the other hand, are recovered.

Introduction

The description of thermodynamic properties of electrolytes has given rise to many developments since the establishment of limiting laws by Debye and Hückel (DH) [START_REF] Debye | Gefrierpunktserniedrigung und verwandte erscheinunge[END_REF][2][START_REF] Robinson | Electrolyte Solutions[END_REF]. This theory continues to inspire studies and extensions today [START_REF] Maribo-Mogensen | Comparison of the Debye-Hückel and the mean spherical approximation theories for electrolyte solutions[END_REF][START_REF] Kontogeorgis | The Debye-Hückel theory and its importance in modeling electrolyte solutions[END_REF][START_REF] Zarubin | A closer look at the Debye-Hückel theory and its modification in the SiS model of electrolyte solutions[END_REF][START_REF] Kjellander | A multiple decay-length extension of the Debye-Hückel theory: to achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes[END_REF][START_REF] Silva | Investigation of the limits of the linearized Poisson-Boltzmann equation[END_REF]. Debye and Hückel have used the Poisson-Boltzmann (PB) equations as a starting point to describe the interactions between ions in the solution. By linearizing these equations, analytical expressions of the electrostatic potential ψ i around an ion i were obtained. Then, the activity coefficients were determined from the expression obtained for the potential. In particular for point ions, a limiting law in square root of the concentration, was established for the variation of the mean activity coefficient. This law is only applicable for small electrolytes, weakly charged, very diluted in a solvent of high dielectric constant. Then, taking into account a minimum distance of approach, as a boundary condition when establishing the expression of the electrostatic potential, DH obtained a modeling of the activity coefficients at higher concentrations. A few years later, it was noted that one of the weaknesses of the DH theory came from the short-range linearization of the equations describing the interactions between ions [START_REF] Bjerrum | Untersuchungen über ioenassoziation[END_REF]. In particular Bjerrum proposed an alternative description of the interactions between unlike ions at low concentrations. Bjerrum assumed that due to the strong attractive interactions between these ions at short distances, ion pairs can form.

Then, the free ions are fewer and the DH expressions for the potential and the activity coefficients are modified. This phenomenon is particularly important when the ions are more charged and when the dielectric constant of the solvent is low. As an alternative to the Bjerrum model, corrections to the DH model have been made using perturbation calculations of the neglected terms during the linearization of the PB equations [START_REF] Gronwall | Über den einfluss der sogenannten höheren glieder in der Debye-Hückelschen theorie der lösungen starker elektrolyte[END_REF][START_REF] Lamer | Activity coefficients of electrolytes. II. The unsymmetric valence-type effect in highly dilute solutions[END_REF][START_REF] Lamer | The influence of higher terms of the Debye-Hückel theory in the case of unsymmetric valence type electrolytes[END_REF]. This type of computation turned out to be complicated and was little used thereafter to describe the thermodynamic properties of real solutions. These approaches have been rarely applied due to the poor existing numerical tools when they were established. They seem difficult to use at high concentrations, contrary to Bjerrum's association theory. Nevertheless, taking into account of the electrostatic screening, they provide a more rigorous theoretical description at low concentrations. Furthermore, Onsager made improvements on these perturbation calculations by adding corrections to the PB equation [START_REF] Onsager | A Correction to the Poisson-Boltzmann equation for unsymmetrical electrolytes[END_REF].

Following the cluster expansion theory of McMillan and Mayer [START_REF] Mcmillan | The statistical thermodynamics of multicomponent systems[END_REF], statistical mechanics has been applied to the description of solutes in a solvent seen as a continuum.

The interaction potentials between charged solutes are assumed to be representative of averages over the configurations of the surrounding solvent. As an application of the McMillan and Mayer cluster expansion, the Mayer theory allowed to determine corrections to the DH results for thermodynamic quantities such as the excess free energy or the osmotic pressure [START_REF] Mayer | The theory of ionic solutions[END_REF]. Additionally, advances in the description of interactions have been made using Ornstein Zernicke (OZ) integral equations to describe the distribution of ions in solution [START_REF] Rasaiah | Integral equation methods in the computation of equilibrium properties of ionic solutions[END_REF]. In particular, the use of the mean spherical approximation (MSA) as a closure relation to these integral equations has led to an analytical modeling of the thermodynamic quantities applicable to higher concentrations than that given by the DH theory [START_REF] Waisman | Exact solution of an integral equation for the structure of a primitive model of electrolytes[END_REF][START_REF] Waisman | Mean spherical model integral equation for charged hard spheres I. Method of solution[END_REF][START_REF] Waisman | Mean spherical model integral equation for charged hard spheres[END_REF][START_REF] Blum | Mean spherical model for asymmetric electrolytes I. Method of solution[END_REF][START_REF] Blum | Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function[END_REF][START_REF] Hiroike | Supplement to Blum's theory for asymmetric electrolytes[END_REF]. The development of the numerical resolution of integral equations associated with more elaborate closure relations [START_REF] Rasaiah | Integral equation methods in the computation of equilibrium properties of ionic solutions[END_REF][START_REF] Van Leeuwen | New method for the calculation of the pair correlation function[END_REF][START_REF] Morita | A New approach to the theory of classical fluids[END_REF][START_REF] Verlet | On the theory of classical fluids[END_REF] and later of simulations, by the Monte Carlo method or by molecular dynamics, provides an almost exact description of the thermodynamics of charged solutes for given interaction potentials [START_REF] Friedman | Models having the thermodynamic properties of aqueous alkaline earth halides and NaCl-MgCl 2 mixtures[END_REF][START_REF] Hribar-Lee | Thermodynamic properties of charge asymmetric mixed electrolytes in the primitive model[END_REF][START_REF] Mohorič | Thermodynamics of asymmetric primitive model electrolytes via the hypernetted chain approximation[END_REF]. However, because of the complexity of numerical computations, it is always necessary to have analytical models to describe the properties of ions in solution. In thermodynamic modeling, even when the solvent is taken into account explicitly, theories representing ions as charged solutes in a continuum continue to be useful to account for their interactions.

The MSA theory provides improvements over that of Debye and Hückel to describe longrange interactions. In addition, progress has been made thanks to the association model for symmetric electrolytes. On the other hand, the description of asymmetric electrolytes is less complete (asymmetric binary electrolytes are those in which the absolute value of the charge of cations and anions are different). Then, in the work presented in this article, corrections made by Onsager in the description of asymmetric electrolytes have been considered again. Onsager derived his results from the Poisson Boltzmann equations. It is well known that these equations do not describe in a symmetrical way the interactions between the ions contrary to the OZ integral equations. So it seemed interesting to recover Onsager's corrections for asymmetric electrolytes using both integral equations and statistical mechanics tools. This article is dedicated to the memory of D. Henderson, who made very significant contributions in the physics of liquids and more particularly to the theory of charged double layers of electrolytes.

In the next section, Onsager's approach is recalled. Subsequently, the integral equations are presented. Integral equations representing the excess, with respect to reference distribution functions, are established. In the next section, a perturbative method for solving these excess integral equations is explained. Thermodynamic properties deduced from these corrective terms are deduced in the following section. Finally, the conclusions and prospects are exposed.

Onsager's corrections to the PB equations

Onsager's contribution to the description of asymmetric electrolytes is a correction to the theory of Debye and Hükel. It is therefore necessary to first recall the basis of this theory and the approximations used by these authors to obtain analytical results. As mentioned before, the DH theory is inspired by the earlier work of Gouy and Chapman [START_REF] Gouy | Sur la constitution de la charge électrique à la surface d'un électrolyte[END_REF][START_REF] Chapman | A contribution to the theory of electrocapillarity[END_REF]. The so-called Poisson-Boltzmann equations were introduced in these latter works. In these models the solvent is described as a continuum uniquely characterized by its dielectric constant ε r . The Poisson equation is used to relate an average electrostatic potential ψ i around an ion i to the distribution of charged species in its environment.

∆ψ i = - 4π k n k e k g ik (r) (1) 
Where e k = z k e is the charge of an ion k, with z k the valence of this ion, e the charge of the proton and = 4πε o ε r where ε o designates the vacuum dielectric constant and ε r the dielectric constant of the solvent. Moreover, n k denotes the concentration of the ions k and g ik (r) the radial distribution function of the ions k at the distance r from the ion i. The function g ik (r) is often defined using the mean force interaction potential w ik (r) between i and k considering a Boltzmann's distribution

g ik (r) = exp [-βw ik (r)] (2) 
Where β = 1/(k B T ) with k B the Boltzmann's constant and T the temperature. In addition, the hypothesis was made that the average potential w ik (r) can be linked to the electric potential ψ i by the relation

w ik (r) = e k ψ i (r) (3) 
Using these relations to define g ik (r) in the Poisson equation, the Poisson-Boltzmann equation was obtained

∆ψ i = - 4π k n k e k e -e k βψ i (r) (4) 
In order to get an analytical expression of this potential, the exponential intervening to the right of the equality in the preceding equation has been linearized by Debye and Hückel. This simplification implies that the distribution function g ik (r), as defined with eqs.

(2) and (3), can be approximated by

g ik (r) e -e k βψ i (r) 1 -e k βψ i (r) (5) 
It leads to the linear differential equation for ψ i used by DH,

∆ψ i -κ 2 ψ i = 0
where the square of the Debye's screening parameter κ is given by

κ 2 = 4πβ k n k e 2 k (6) 
The activity coefficients γ i of the ions i were later calculated from the expression obtained for the potential ψ i .

Following the work of Debye and Hückel, some authors have been interested in the effect of the next terms in the expansion of the exponential defining the functions g ij (r) within the Poisson-Boltzmann equation. Thus for a symmetric binary electrolyte, by continuing the series expansion of the exponential beyond the linear term, the following differential equation was obtained [START_REF] Gronwall | Über den einfluss der sogenannten höheren glieder in der Debye-Hückelschen theorie der lösungen starker elektrolyte[END_REF] 

∆ψ i -κ 2 ψ i = β 2 6 κ 2 η 2 (ψ i ) 3 + O (ψ i ) 5 (7) 
where

η 2 = k n k e 4 k k n k e 2 k ( 8 
)
When the terms to the right of equality in equation ( 7) are neglected, the DH equation is recovered with its analytical expression of the potential ψ DH i . Then for a symmetric electrolyte, in the differential equation beyond the linear term, the first nonzero term in the exponential expansion is proportional to (ψ i ) 3 .

On the other hand, for an asymmetric binary electrolyte, the first corrective term deduced from the series expansion of the exponential beyond the linear term is a correction proportional to (ψ i ) 2 [START_REF] Lamer | Activity coefficients of electrolytes. II. The unsymmetric valence-type effect in highly dilute solutions[END_REF][START_REF] Lamer | The influence of higher terms of the Debye-Hückel theory in the case of unsymmetric valence type electrolytes[END_REF] 

∆ψ i -κ 2 ψ i = - β 2 κ 2 η 1 (ψ i ) 2 + O (ψ i ) 3 (9) 
with

η 1 = k n k e 3 k k n k e 2 k ( 10 
)
Similarly, disregarding the terms on the right-hand side of the equality, solving the equation (9) leads to the analytical expression ψ DH i of the potential. Next in order to make a correction to the potential deduced from the linearized solution, the term proportional to (ψ i ) 2 on the right of the equality in the equation ( 9) has been evaluated in perturbation [START_REF] Lamer | Activity coefficients of electrolytes. II. The unsymmetric valence-type effect in highly dilute solutions[END_REF][START_REF] Lamer | The influence of higher terms of the Debye-Hückel theory in the case of unsymmetric valence type electrolytes[END_REF]. A first correction to the DH potential can be deduced from the differential equation in which (ψ i ) 2 in the second member has been approximated by ψ DH i 2 . From this corrected potential an additional contribution to the activity coefficients has been deduced.

It is at this stage that Onsager, by considering the symmetry of the functions g ij (r), made a modification in the calculation of corrective terms to the expressions of DH. The solution of the DH equation leads to a potential ψ DH i which is proportional to e i . Using eq. ( 5), it can be seen that the function g ij (r) deduced from this potential obtained with the linearized differential equation is indeed symmetric in the exchange between i and j.

Now, when the term (ψ i ) 2 to the right of the equality is replaced by ψ DH i 2 , the solution of the differential equation with right-hand side leads to a correction to the potential δψ i which is proportional to e 2 i . Using again Eq. ( 5), a corrective term for g ij (r) is obtained which is proportional to e j e 2 i . Then, Onsager noticed that the calculation of g ij (r) using the Poisson-Boltzmann equation, leads to an asymmetrical expression in the exchange between i and j [START_REF] Onsager | A Correction to the Poisson-Boltzmann equation for unsymmetrical electrolytes[END_REF]. In order for g ij (r) to be equal to g ji (r), Onsager required the radial distribution function to have the following expansion: g ij (r) = g 00 (r) + e j e i g 11 (r) + e 2 j e i + e j e 2 i g 12 (r) + . . .

The term g 00 (r) is the only one remaining when the charges vanish. In the Debye, Hückel and Onsager theories, for distances greater than the least approach distance between the ions (all assumed to be the same size), at low concentrations, this term is considered to be equal to 1. The term e j e i g 11 (r) is closely related to the DH term when e i ψ j (r) = e j ψ i (r)

(with ψ i proportional to e i ). The next term is the first corrective term for an unsymmetrical electrolyte. In order to satisfy this symmetry in the charge exchange, Onsager introduced a correction with respect to the development deduced from the Poisson-Boltzmann equations. It has been considered that the potential deduced from the calculation in perturbation can be developed in increasing powers of the charge according to

ψ i (r) = e i φ 1 (r) + e 2 i φ 2 (r) + . . . (12) 
Then, coupled differential equations for the reduced potentials φ 1 and φ 2 were deduced by Onsager as,

∆φ 1 -κ 2 φ 1 =κ 2 η 1 φ 2 (13a) ∆φ 2 -κ 2 φ 2 = - β 2 κ 2 η 1 (φ 1 ) 2 (13b)
These equations similar to the previous equation [START_REF] Bjerrum | Untersuchungen über ioenassoziation[END_REF] were solved in perturbation. Then

Onsager was able to deduce the functions g 11 (r) and g 12 (r) appearing in the expression [START_REF] Lamer | Activity coefficients of electrolytes. II. The unsymmetric valence-type effect in highly dilute solutions[END_REF] for g ij (r) using the expressions obtained for φ 1 and φ 2 . We are not going to recall all the formulas introduced by Onsager. The interested reader can refer to the original article.

As in previous calculations, in order to solve the system of equations, it is first assumed that φ 2 is negligible in Eq. (13a). Then the equation for φ 1 returns the solution of DH for the potential. Then Eq. (13b) for φ 2 is solved by assuming that φ 1 is given by the solution obtained previously. So far this calculation is similar to the one that was done before.

Onsager brought two corrections compared to the calculation in perturbation performed previously. First, the relations introduced by Onsager make it possible to obtain an approximation for g 12 (r) and thus to have a symmetric expression of g ij (r). Moreover, Onsager then took into account the approximation obtained for φ 2 in Eq. (13a) for φ 1 and deduced a correction to this last function. Then from φ 1 a correction to g 11 (r) could be deduced. Finally, using a Guntelberg charging process, Onsager deduced a correction to the chemical potential of the ions of unsymmetrical electrolytes.

Ultimately, the theoretical approach developed by Onsager to overcome the shortcomings of the PB equation appears both ingenious and quite tedious. Consideration of various types of electrolytes requires the introduction of additional φ functions. Indeed, if one also wants to evaluate the first corrective term appearing in Eq. [START_REF] Kjellander | A multiple decay-length extension of the Debye-Hückel theory: to achieve high accuracy also for concentrated solutions and explain under-screening in dilute symmetric electrolytes[END_REF] for symmetrical electrolytes we have to introduce a function φ 3 . Similarly, shorter range contributions also require the introduction of new functions. Moreover, this approach is closely related to the description of the ionic distributions only in terms of electrostatic potential. The Poisson-Boltzmann equations are well suited to evaluate correlation functions when the species under study are assumed to be subject only to Coulomb interactions. Currently, in order to also take into account other types of interactions, (Lennard-Jones potential or hard spheres repulsion for example), the statistical physics of liquids often prefers to use integral equations to determine the total correlation functions h ij (r) = g ij (r) -1. These integral equations are known to lead to symmetric h ij (r) correlation functions. This symmetry property should make it easier to find corrective terms of the type introduced by

Onsager for asymmetric electrolytes. Then, in the following section, it will be presented how the type of distribution function given by Eq. ( 11) can be established within the framework of integral equations.

Integral equations

In order to take into account the interactions between the ions, the total correlation functions h ij (r) are evaluated using the integral equations of Ornstein and Zernike (OZ) instead of the Poisson-Boltzmann equations.

h ij (r) = c ij (r) + k n k c ik (|r -r |) h kj (r ) dr (14) 
As a starting point, to find the development of the distribution functions in increasing charges, as given in Eq. ( 11), we must be able to recover the DH expression of the correlation functions from the OZ equations. This expression can be seen as the zero-order approximation in the perturbation expansion described by Onsager, since the higher-order terms were evaluated, starting from the DH expression, after the expansion of the exponential in the PB Eq. ( 4). In the context of integral equations, the DH expression of the correlation functions will also constitute a first step to subsequently establish distribution functions having the type of development in increasing charges as given by Eq.

(11). We will limit ourselves to the experimental conditions considered in the Onsager's study, namely a weakly charged and very dilute electrolyte. Under these conditions the Debye length is greater than both the Bjerrum length L B (L B = e 2 β/ ) and the size of the ions. All the ions are of the same diameter σ. The solution is sufficiently diluted so that the hard sphere contribution to the correlation functions can be considered negligible compared to the electrostatic corrections. This condition is different from that used by Stell and Lebowitz [START_REF] Stell | Equilibrium properties of a system of charged particles[END_REF]. In their expansion procedure the uncharged short distance contribution was taken as a known reference.

It is well known that the OZ convolution equations are more easily solvable using Fourier transforms of the functions h ij (r) and c ij (r). We define the Fourier transform f (q) of a purely radial function f (r) using the following integral

f (q) = 4π q ∞ 0 rf (r)sin(qr)dr ( 15 
)
where f (r) represents one of the functions h ij (r) or c ij (r). Applying the Fourier transform to the OZ equations allows to replace the convolution products between the correlation functions into simple products of Fourier transforms of these correlation functions.

ĥij (q) = ĉij (r) + k n k ĉik (q) ĥkj (q) (16) 
Closure relations are needed to solve the OZ integral equations. The mean spherical approximation (MSA) has been used as the closure relation of the OZ equations to describe electrolyte solutions [START_REF] Waisman | Exact solution of an integral equation for the structure of a primitive model of electrolytes[END_REF][START_REF] Waisman | Mean spherical model integral equation for charged hard spheres I. Method of solution[END_REF][START_REF] Waisman | Mean spherical model integral equation for charged hard spheres[END_REF][START_REF] Blum | Mean spherical model for asymmetric electrolytes I. Method of solution[END_REF][START_REF] Blum | Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function[END_REF][START_REF] Hiroike | Supplement to Blum's theory for asymmetric electrolytes[END_REF]. When ions are modeled as charged hard spheres, this approximation provides analytical expressions for the activity and osmotic coefficients which satisfy the limiting laws of Debye and Hückel at low concentrations and better takes into account the size of the ions at high concentrations [START_REF] Blum | Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function[END_REF]. However, to simplify in a first attempt, we will consider point ions, which facilitates the resolution of the equations.

Under these conditions the MSA approximation, used to define a first approximation of the direct correlation functions c ij (r) between the ions i and j is given simply by

c MSA ij (r) = -βV ij (r) (17) 
where V ij (r) = e i e j /( r), is the Coulomb potential between these ions. It is recalled that when the ions are not point-like, the relation ( 17) is only used for the distances r > σ.

The Fourier transform ĉij (q) of the Eq. ( 17) is given by

ĉij (q) = -4π βe i e j q 2 (18) 
The use of this approximation for ĉij (q) in the Fourier transform of the OZ equations allows to determine an approximate expression ĥ0 ij (q) of the total correlation functions, given by ĥ0 ij (q) = -4π

βe i e j (q 2 + κ 2 ) (

Using the inverse Fourier transformation it is possible to determine the corresponding function h 0 ij (r). Thus the DH expressions for the total correlation functions of point-like ions are recovered.

h 0 ij (r) = - βe i e j r e -κr (20) 

Non-linear closure relation

The MSA closure relation linearizes the integral equations in order to obtain analytical results. However, by using integral equations, in order to be able to account for the type of thermodynamic correction presented by Onsager, it is necessary to take into consideration the influence of nonlinear effects of the ionic interactions, in the form of a nonlinear closure relation for the Ornstein-Zernicke equations. We will decompose the functions c ij (r) using the relation

c ij (r) = c MSA ij (r) + c E ij (r) (21) 
It is recalled that when the ions are points, c MSA ij (r) is given by the relation ( 17) for all distances. Thus, this relation introduces the excess direct correlation function c E ij (r) with respect to the closure relation previously used. The hypernetted chains relation [START_REF] Van Leeuwen | New method for the calculation of the pair correlation function[END_REF][START_REF] Morita | A New approach to the theory of classical fluids[END_REF][START_REF] Verlet | On the theory of classical fluids[END_REF] is known to describe accurately the structure and thermodynamics of electrolytes in solution.

The HNC closure is given by

ln g ij (r) = -βV ij (r) + h ij -c ij (r) (22) 
If we also use the relation between the mean force potential w ij (r) and g ij (r) given by Eq. (2), we obtain the following relation between c E ij (r) and w ij (r)

c E ij (r) = exp [-βw ij (r)] -1 + βw ij (r) (23a) = ∞ n=2 (-βw ij (r)) n n! (23b)
For point ions, in order to have an explicit approximation, the potential of mean force w ij (r) can be replaced by its DH expression deduced from Eq. ( 20), namely βw ij (r) = -h 0 ij (r). This approximation has been called extended mean spherical approximation (EMSA) in other studies [START_REF] Martina | Extended mean spherical approximation for electrolyte solutions[END_REF][START_REF] Mitchell | Range of the screened coulomb interaction in electrolytes and double layer problems[END_REF][START_REF] Knackstedt | Correlations and thermodynamic coefficients in dilute asymmetric electrolyte solutions[END_REF]. In particular, when we limit the sum appearing in Eq. ( 23) to its first term (n = 2), we obtain

c E ij (r) β 2 2 w ij (r) 2 (24) 
This approximation as been used previously in studies of asymmetric electrolytes [START_REF] Falkenhagen | Equilibrium properties of ionized dilute electrolytes. Ionic Interactions From Dilute Solution to fused Salts[END_REF][START_REF] Rasaiah | Computations for higher valence electrolytes in the restricted primitive model[END_REF].

If it is recalled that in the DH approximation, we have w ij (r) = -e i ψ j , then by using equation ( 24) c E ij (r) is proportional to e 2 i ψ 2 j . So, using this approximation for c E ij (r) we take into account corrections proportional to ψ 2 j as in Eqs. ( 9) and (13b).

Excess integral equations

In order to make easier the determination of corrections made to the function ĥij (q), due to the consideration of the excess function ĉE ij (q), it is possible to perform a transformation of the OZ equations. The goal is to rewrite the function ĥij (q) as the sum of a reference function ĥref ij (q) previously determined with ĉE ij (q) = 0 and an excess function δ ĥij (q) induced by the function ĉE ij (q). Then for point ions, by replacing in the OZ equations, c ij (r) by the relation [START_REF] Blum | Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function[END_REF] we obtain

ĥij (q) = - 4πβ q 2 e i e j + k n k e k ĥkj (q) + ĉE ij (q) + k n k ĉE ik (q) ĥkj (q) (25) 
After multiplication by n i e i , a summation over i of the equations allows to rewrite the first sum over the functions ĥkj (q), to the right of the equality, according to the excess correlation functions and the DH functions ĥ0 kj (q). This rearrangement of the Eq. ( 25) gives

ĥij (q) = ĥ0 ij (q)+ĉ E ij (q)+ k n k ĉE ik (q) ĥkj (q) + ĥ0 ik (q) ĉE kj (q) + l n l ĉE kl (q) ĥlj (q) ( 26 
)
This equation makes it easier to separate the functions ĥij (q) into a reference term ĥref ij (q) (here, it is ĥ0 ij (q)), and corrective terms depending on the excess functions ĉE ij (q). It should be noted that this separation can be established with other reference functions.

For example if the ions are considered as hard charged spheres, Eq. ( 21) for c ij (r) can still be used and by following the same rearrangement as before, we obtain an equation similar to Eq. ( 26) for ĥij (q) but with the functions ĥ0 ij (q) replaced by ĥMSA

ij (q) (see Appendix A).
At this stage, our goal is to find, from the integral equations, distribution functions similar to those obtained by Onsager. To do this, we will start from the excess integral equations [START_REF] Friedman | Models having the thermodynamic properties of aqueous alkaline earth halides and NaCl-MgCl 2 mixtures[END_REF]. We will deduce from these equations, differential equations applicable to low concentrations.

Perturbative expansion

It has been shown that the excess integral equations can be obtained starting either from the functions ĥ0 ij (q), or from the functions ĥMSA ij (q). Moreover, it has been shown that the distribution functions obtained with the MSA tend towards those given by the DH expressions at low concentrations [START_REF] Blum | Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function[END_REF]. Compared to those of Debye and Hückel, the distribution functions obtained with the MSA are applicable to high concentrations.

However at high concentrations, the distribution functions obtained from the MSA can no longer be represented with a single exponential function like those of Debye and Hückel.

In particular, oscillations are observed above some concentration. In his perturbation expansion, Onsager took as initial distribution functions those given by Debye and Hückel.

Since we limit ourselves to low concentrations, to simplify and in order to consider only one screening length, we will therefore take in the rest of this study an initial distribution function of the type of those given by Debye and Hückel. Now, in order to initiate the perturbative expansion, we split the function ĥij (q) into two contributions

ĥij (q) = ĥ0 ij (q) + δ ĥij (q) (27) 
Then, as a starting point, it will be assumed that the functions ĥ0 ij (q) can be seen as a good approximation of the correlation functions ĥij (q). So we can replace ĥij (q) with ĥ0 ij (q) in the terms to the right of equality in equation [START_REF] Friedman | Models having the thermodynamic properties of aqueous alkaline earth halides and NaCl-MgCl 2 mixtures[END_REF]. This leads to a first correction which can be separated into three term:

δ ĥij (q) = δ ĥ(1) ij (q) + δ ĥ(2) ij (q) + δ ĥ(3) ij (q) (28) 
with δ ĥ( 1)

ij (q) =ĉ E ij (q) (29a) δ ĥ(2) ij (q) = k n k ĉE ik (q) ĥ0 kj (q) + ĥ0 ik (q)ĉ E kj (q) (29b) δ ĥ(3) ij (q) = k n k ĥ0 ik (q) l n l ĉE kl (q) ĥ0 lj (q) (29c)
It is observed that this expression is symmetric for the inversion of the indices i and j. We note that each of the three terms is proportional to a function ĉE ij (q). A remark can be made on this approximation. For simplicity, it seems tempting to limit ourselves to the first corrective term and to consider that δ ĥij (q) ĉE ij (q). This immediately leads to δh ij (r) c E ij (r). When the Eq. ( 23) is used to define the direct correlation functions c E ij (r), this leads to a so-called exponential approximation of the Debye and Hückel potential which has been used before. However, whatever the choice made to define c E ij (r), the fact of considering that δh ij (r) c E ij (r), implies that electroneutrality is no longer preserved. Indeed, the electroneutrality condition can be computed from the functions ĥij (q) by taking the limit where q tends to zero.

j n j e j ĥij (0) = -e i ( 30 
)
If it is assumed that δ ĥij (q) = ĉE ij (q), then it is found that the relationship (30) is not verified. On the other hand, if δ ĥij (q) is given by Eq. ( 28), then the electroneutrality relation [START_REF] Chapman | A contribution to the theory of electrocapillarity[END_REF] holds regardless of the definition chosen for c E ij (r).

In this section, in order to find expressions like those of Onsager, the perturbation computation was limited to the first order power of ĉE ij (q). In the last section we will return to the study of the influence of higher order terms in a power expansion of ĉE ij (q).

Approximate correlation functions

First, it is obvious that δh

(1) ij (r), the inverse Fourier transform of δ ĥ(1) ij (q), is the function c E ij (r). If this function is approximated by the expression [START_REF] Morita | A New approach to the theory of classical fluids[END_REF], we find the first corrective term coming from the expansion to order two of the PB equation ( 4), as it is used in the equation [START_REF] Bjerrum | Untersuchungen über ioenassoziation[END_REF].

Next, in order to be able to obtain an expression of δh

(2) ij (r), a differential equation has been deduced from the equation (29b). As a starting point, equation (29b) has been multiplied on either side of the equality by the denominator of the functions ĥ0 ij (q), namely (q 2 + κ 2 ). Then, the following relation has been introduced:

δh (2) ij (r) = e i Φ j (r) + e j Φ i (r) (31) 
with the following differential equation:

(∆ -κ 2 )Φ j (r) = 4π β k n k e k c E jk (r) (32) 
Here, it has been used that the Fourier transform of ∆Φ j (r) is given by -q 2 Φj (q). Solving

Eq. ( 32) allows us to determine δh

(2) ij (r) when an explicit expression of c E ij (r) is given. When c E ij (r) is evaluated using the Eq. ( 24), we find a contribution to δh ij (r), proportional to e 2 i e j + e i e 2 j like the one that can be deduced from the Eq. [START_REF] Lamer | Activity coefficients of electrolytes. II. The unsymmetric valence-type effect in highly dilute solutions[END_REF].

Next, to simplify the evaluation of δh

ij (r) it is noted that the Eq. (29c) can be rewritten, given the expressions ( 31) and (32) deduced from δ ĥ(2) ij (q), following

δ ĥ(3) ij (q) = e j k n k ĥ0 ik (q) Φk (q) ( 33 
)
As before both sides of this equation can be multiplied by (q 2 + κ 2 ), and the following differential equation is found

∆ -κ 2 δh (3) ij (r) = 4π βe i e j k n k e k Φ k (r) (34) 
It is noted that this corrective term is proportional to e i e j . When the Eq. ( 24) is used again to define c E ij (r), this term corresponds to the second correction found by Onsager.

In order to determine the functions δh ij (r), it is necessary to impose boundary conditions to complete these differential equations. It is of course imposed that the functions δh ij (r) are finite when the distance r tends to infinity. Furthermore, for its calculation, Onsager used as a starting function the DH expression of the potential ψ DH i (r), which takes into account a distance of least approach. The corresponding DH correlation function h DH ij (r) is deduced from Eq. ( 5), (with ψ i replaced by

ψ DH i ) h DH ij (r) = - βe i e j (1 + κσ)r e -κ(r-σ) (35) 
Therefore, this correlation function has been used as a starting point to evaluate the correction δh ij (r). From this reference function, the function w ij (r) was determined using the relation:

-βw ij (r) = h DH ij (r).
Then c E ij (r) can be defined as a function of w ij (r) using Eq. ( 23), or alternatively Eq. ( 24) if one wishes to be satisfied with the first term of the limited development of the previous equation. In this way, the first contribution δh (1) ij (r) can be immediately determined as before from the corresponding definition of c E ij (r). In order to integrate the differential equations ( 32) and [START_REF] Henderson | An extended mean spherical approximation calculation of the potential of an electrified interface[END_REF] we have adopted the boundary conditions at r = σ introduced by Onsager which allows to determine the two other contributions to δh ij (r). More details and usefull expressions to evaluate δh

(2) ij (r) and δh

(3) ij (r) are given in Appendix B. Once the δh ij (r) functions have been determined, it is possible to evaluate their effects on the thermodynamic quantities.

Thermodynamics

Several thermodynamic quantities can be evaluated from integrals which depend on the total correlation functions h ij (r). Due to the approximations used to express h ij (r), all possible quantities are not calculated with the same precision. For electrolyte solutions it is well known that the internal energy can be relatively well described from the functions h DH ij (r). Then, it is interesting to determine the contribution to the internal energy due to the functions δh ij (r).

The internal energy

The variation of the internal energy due to the functions δh ij (r) can be computed wih the following formula

∆E = 2π i, j n i n j ∞ σ r V ij (r) δh ij (r) dr = 2π i, j n i e i n j e j ∞ σ r δh ij (r) dr (36) 
Taking into account the three contributions of δh ij (r) is quite tedious but straightforward.

Strong term compensations were found between the three contributions. The boundary conditions have been used to simplify the evaluation of the various contributions. More details have been presented in Appendix C.1. It was eventually found

∆E = 2π

i, j

n i e i n j e j ∞ σ r F ij (r) dr (37) 
with

F ij (r) = 1 1 + κσ e -κ(r-σ) 1 - 1 2 κr + κ 2 σ 2 2 (1 + κσ) c E ij (r) (38) 
It is recalled that c E ij (r) can be defined as a function of w ij (r) using Eq. ( 23), or alternatively Eq. ( 24).

The Helmholtz free energy

The Helmholtz free energy can be deduced from the internal energy using a Kirkwood charging process.

∆A = 2π

i, j

n i e i n j e j 1 0 dλ ∞ σ r δh ij (λ, r) dr = 2π i, j n i e i n j e j 1 0 dλ ∞ σ r F ij (λ, r) dr (39) 
Here δh ij (λ, r) represents the function δh ij (r) for which the set of charges e k have been replaced by λ 1/2 e k . Consequently the parameter κ is also replaced by λ 1/2 κ. Similarly F ij (λ, r) represents the function F ij (r) in which all charges e k are replaced by λ 1/2 e k , with also κ replaced by λ 1/2 κ. Since F ij (r) is given by eq. ( 38), then F ij (λ, r) is proportional to c E ij (λ, r). In order to perform the thermodynamic integration on λ, it is necessary to provide an explicit expression of these excess direct correlation functions. The expression [START_REF] Van Leeuwen | New method for the calculation of the pair correlation function[END_REF] was used. In this particular case it was found that the thermodynamic integration can be carried out explicitly. This leads to a relatively simple expression for the excess of the Helmholtz free energy ∆A (see Appendix C.2).

β∆A = -2π i,j n i n j ∞ σ e -βw ij (r) -E 2 -βw ij (r) r 2 dr ( 40 
)
with βw ij (r) = -h DH ij (r), and

E N x = N k=0 x k k! (41) 
This result presents similarities with the expression of the Helmholtz free energy obtained within the framework of the so-called DHLL+B 2 theory [START_REF] Rasaiah | Integral equation methods in the computation of equilibrium properties of ionic solutions[END_REF][START_REF] Friedman | Electrolyte solutions at equilibrium[END_REF][START_REF] Haga | On Mayer's theory of dilute ionic solutions[END_REF][START_REF] Friedman | Charge-asymmetric mixtures of electrolytes at low ionic strength[END_REF].

-β (A ex ) DHLL+B 2 = κ 3 12π + i,j n i n j B ij (κ) (42) 
where the second virial coefficient B ij (κ) has the form

B ij (κ) = 2π ∞ 0 e -β(u HS ij (r)+w 0 ij (r)) -E 2 -βw 0 ij (r) r 2 dr (43) 
in which u HS ij (r) is the hard sphere potential and βw 0 ij (r) = -h 0 ij (r). This equation results from the application to electrolytes of the thermodynamic density expansion due to Mayer [START_REF] Mayer | The theory of ionic solutions[END_REF]. In Eq. ( 42), the first term (proportional to κ 3 ), is the contribution to the free energy obtained in the theory of Debye and Hückel for point ions, namely the Debye and Hückel limiting law (DHLL). By contrast, it should be noted that in this present study, the free energy ∆A given by Eq. ( 40) is an excess term over the contribution obtained in the Debye and Hückel theory taking into account the excluded volume of the ions. In Eq. ( 42), the second term (proportionnal to B ij (κ) is very similar to the free energy ∆A given by Eq. [START_REF] Haga | On Mayer's theory of dilute ionic solutions[END_REF]. The excess term given by Eq. ( 40) can be compared to the contribution for distances larger than σ deduced from the equation for B ij (κ). For these distances the two expressions are almost identical except that w 0 ij (r) appearing in Eq. ( 43)

is replaced by w ij (r) in Eq. ( 40). The thermodynamic cluster expansions deduced from Mayer's theory have been used to establish series in increasing power of the concentration beyond the limiting law of Debye and Hückel [START_REF] Valleau | Primitive model electrolytes. II. The symmetrical electrolyte[END_REF][START_REF] Ebeling | Zur theorie der Bjerrumschen ionenassoziation in elektrolyten[END_REF]. Thermodynamic developments of the DHLL+B 2 type are especially applicable at low concentrations [START_REF] Haga | On Mayer's theory of dilute ionic solutions[END_REF][START_REF] Yokayama | A theory of ion association as a complement of the Debye-Hückel theory[END_REF]. It has been shown that in order to better describe the thermodynamics at high concentrations it is necessary to take into account higher order virial coefficients which are more difficult to evaluate, beyond the B 2 terms [START_REF] Friedman | Electrolyte solutions at equilibrium[END_REF].

Since our initial goal was to find the specific thermodynamic contribution of asymmetric electrolytes, the excess free energy β∆A is separated into two parts, namely the asymmetric contribution β∆A 2 and the remainder of the excess free energy β∆A SR , which is assumed to be a contribution from shorter distances. The part β∆A 2 can be deduced when only the first term of the series expansion of the term between square brackets in Eq. ( 40) is retained.

β∆A 2 = π 3 β (1 + κσ) 3 k n k e 3 k 2 e 3κσ E 1 (3κσ) (44) 
with

E 1 (x) = ∞ x dt e -t t (45) 
At high dilution, Eq. ( 44) tends towards the excess free energy term, proportional to ( k n k e 3 k ) 2 , as presented in [START_REF] Valleau | Primitive model electrolytes. II. The symmetrical electrolyte[END_REF][START_REF] Ebeling | Zur theorie der Bjerrumschen ionenassoziation in elektrolyten[END_REF].

The shortest range contribution to the excess free energy β∆A SR is given by

β∆A SR = -2π i,j n i n j ∞ σ e -βw ij (r) -E 3 -βw ij (r) r 2 dr ( 46 
)
Contrary to the previous contribution, this one remains for symmetrical electrolytes. In particular, the integral involved in this expression can also be evaluated in the limit where the concentration tends towards zero. In this limit, the potential w ij (r) is replaced by the Coulomb potential V ij (r). Then, at low concentrations, the term β∆A SR becomes proportional to the square of the concentration. Obviously, by differentiation the excess pressure can be deduced from the free energy. At low concentrations, the contribution to the excess pressure deduced from β∆A SR is also proportional to the square of the concentration [START_REF] Ebeling | An analytical calculation of the equation of state and the critical point in a dense classical fluid of charged hard spheres[END_REF]. This attractive electrostatic contribution has been embed in models considering the formation of anion-cation pairs [START_REF] Ebeling | An analytical calculation of the equation of state and the critical point in a dense classical fluid of charged hard spheres[END_REF][START_REF] Zhou | Criticality of charged systems. I. The restricted primitive model[END_REF].

Excess osmotic coefficient

From the Helmholtz free energy, the excess pressure and osmotic coefficient can be determined by differentiation. The excess osmotic coefficient ∆ϕ can be obtained by using the

relation ∆ϕ = β∆P n = k n k ∂ ∂n k β∆A n ( 47 
)
where ∆P is the excess pressure deduced from the free energy ∆A and n = j n j . Starting from β∆A given by Eq. ( 40), the osmotic pressure can then be deduced:

β∆P = β∆A - πβ (1 + κσ) i,j n i e i n j e j ∞ σ e -κ(r-σ) κr - κ 2 σ 2 1 + κσ c E ij (r) r dr (48)
The asymmetric contribution β∆P 2 deduced from β∆A 2 is given in Appendix C.3.

Additionally, using Eq. ( 48), it is found that the shortest range contribution β∆P SR to the excess pressure, becomes equal to β∆A SR at very low concentrations. In this limit, the potential w ij (r) is replaced by the Coulomb potential V ij (r). Therefore, β∆P SR is proportional to the square of the concentration at high dilution. This attractive contribution can be taken into consideration within models involving ionic association. In models considering ion pairs formation, if we denote by n P the concentration of pairs, then the osmotic excess coefficient contains the additional term: -n P /n. In these models, by imposing that the concentration of ion pairs is equal to -β∆P SR at high dilution, then this attractive contribution to the pressure is simply taken into consideration [START_REF] Ebeling | An analytical calculation of the equation of state and the critical point in a dense classical fluid of charged hard spheres[END_REF][START_REF] Zhou | Criticality of charged systems. I. The restricted primitive model[END_REF]. This last approach, both takes into account the development deduced from the thermodynamic cluster expansions, and also describes well the evolution of thermodynamic properties at high concentrations. The modeling of the phase separation in symmetrical electrolytes has been performed with this type of model [START_REF] Yeh | Phase separation of ionic fluids: An extended Ebeling-Grigo approach[END_REF][START_REF] Pitzer | Thermodynamics of electrolytes. I. Theoretical basis and general equation[END_REF][START_REF] Pitzer | Electrolyte theory -Improvements since Debye and Hückel[END_REF]. In this work it has been shown that these correlation functions, describing in particular asymmetric electrolytes, can also be deduced from the OZ integral equations by considering a nonlinear closure relation of the HNC type. These equations were solved in perturbation, starting from a linearized solution. It should be noted that the approximate calculation, used to explicitly evaluate these correlation functions, satisfies the conditions of electroneutrality. The free energy associated with these correlation functions has been calculated. Surprisingly, the excess free energy, with respect to that of Debye with volume excluded, has a mathematical form similar to that deduced from Mayer's theory. We found the specific contribution of asymmetric electrolytes. Moreover, the contributions from shorter distances, responsible for the electrostatic association, are also recovered.

Conclusion and prospects

The excess integral equations were solved in perturbation starting with the DH correlation functions chosen as reference. This limits the application of this study to low concentrations. Other reference functions are possible. In particular, the integral equations describing the excess, when the reference functions are those of the MSA theory, have also been established. They could be used for more concentrated solutions.

Furthermore, changes in the electrostatic screening length compared to that of Debye's theory have been described previously [START_REF] Falkenhagen | Equilibrium properties of ionized dilute electrolytes. Ionic Interactions From Dilute Solution to fused Salts[END_REF][START_REF] Rasaiah | Computations for higher valence electrolytes in the restricted primitive model[END_REF][START_REF] Kjellander | Effective ionic charges, permittivity and screening length: dressed ion theory applied to 1:2 electrolyte solutions[END_REF][START_REF] Ulander | Screening and asymptotic decay of pair distributions in asymmetric electrolytes[END_REF][START_REF] Mcbride | The screening length of charge-asymmetric electrolytes: A hypernetted chain calculation[END_REF][START_REF] Stillinger | Ion-pair theory of concentrated electrolytes. I. Basic concepts[END_REF][START_REF] Stillinger | General restriction on the distribution of ions in electrolytes[END_REF]. An accurate description of the behavior of screening in binary electrolytes has been obtained by applying the dressed ion theory. The dressed ion theory (DIT) was introduced in particular to extend the field of application of Debye and Hückel's theory [START_REF] Kjellander | Effective ionic charges, permittivity and screening length: dressed ion theory applied to 1:2 electrolyte solutions[END_REF][START_REF] Ulander | Screening and asymptotic decay of pair distributions in asymmetric electrolytes[END_REF]. This theory has been also applied to the description of asymmetric electrolytes [START_REF] Mcbride | The screening length of charge-asymmetric electrolytes: A hypernetted chain calculation[END_REF][START_REF] Stillinger | Ion-pair theory of concentrated electrolytes. I. Basic concepts[END_REF]. Starting from the excess integral equations ( 26), an analysis according to the dressed ion theory has been performed. This allowed to assess the effect of higher order terms in a power expansion of ĉE ik (q) functions. A description of the summation method used is given in Appendix D. This approach led to consider effective charges e * i and an effective screening parameter κ * , instead of bare charges e i and the Debye screening parameter κ. To make a comparison with the expressions obtained previously, only the result obtained at low concentrations is presented here. In this limit it was found,

ĥij (q) ĉE ij (q) - 4π β e * i e * j q 2 + κ 2 * (51) 
with

e * i = e i + k n k e k ĉE ik (q) (52) 
and the effective screening parameter κ * can be defined from these effective charges

κ 2 * = 4π β i n i e i e * i (53) 
In Eq. ( 51), the second term after ĉE ij (q), looks like ĥ0 ij (q) as given in ( 19), but with e * i e * j in place of e i e j and κ 2 * in place of κ 2 . For comparison, the next term after ĉE ij (q) in Eq. ( 51), can be expanded to the first order power of ĉE ik (q). Two terms proportional to e i e j are found, which are actually ĥ0 ij (q) and δ ĥ(3) ij (q). Then, the function δ ĥ(3) ij (q) represents at low concentrations the effect of the variation of the screening length on the part of the correlation function proportional to e i e j . When the product e * i e * j is expanded to first order power of ĉE ik (q) and ĉE jk (q), the function δ ĥ(2) ij (q) is also recovered. Then, the functions δ ĥ(2) ij (q) account for the difference between the effective charges e * i and the bare charges e i , to the first order in power of the ĉE lk (q) functions. Therefore, Onsager's perturbation method, as adapted in this study, provides an alternative approach to evaluate variations in screening length and effective charges.

The approximation used to calculate the correlation functions δ ĥij (q) fullfills the electroneutrality relation (deduced when q → 0). Using the OZ equations, the Stillinger and Lovett relations [START_REF] Outhwaite | Comment on the second moment condition of Stillinger and Lovett[END_REF][START_REF] Murphy | Corrections to the FuossOnsager theory of electrolytes[END_REF][59] could also be studied, especially when more accurate references will be used. In addition, the correlation functions δh ij (r) obtained in this study could also be used to evaluate the effect of these corrections on transport properties such as electrical conductivity [60].

Appendices :

A Excess integral equations relative to other reference total correlation functions In this appendix, generalizations are presented for the excess integral equations introduced in section 3.2. Instead of ĥ0 ij (q) other total correlation functions have been chosen as reference.

A.1 Debye and Hückel treatment with excluded volume

First the chosen reference correlation function ĥref ij (q) is that of Debye and Hückel with excluded volume ĥDH ij (q), instead of ĥ0 ij (q). Indeed, for its perturbation calculation, Onsager used as a starting function the expression of DH, which takes into account a distance of least approach. The Fourier transform of this function is given by:

ĥDH ij (q) = - 4πβ (1 + κσ)(q 2 + κ 2 )
e i e j cos (qσ) + κ q sin (qσ) [START_REF] Mcbride | The screening length of charge-asymmetric electrolytes: A hypernetted chain calculation[END_REF] It can be found that this function is the solution of the following integral equation

ĥij (q) = ĉDH ij (q) + k n k ĉ 0 ik (q) ĥkj (q) ( 55 
)
with ĉ 0 ik (q) given by Eq. ( 18) and ĉDH ij (q) = -4πβ (1 + κσ)q 2 e i e j cos (qσ) + κ q sin (qσ) [START_REF] Stillinger | General restriction on the distribution of ions in electrolytes[END_REF] or equivalently

c DH ij (r) =              -β κ 1+κσ e i e j if r < σ -β r e i e j if r > σ (57) 
It is observed in Eq. ( 55) that the effect of the excluded volume is taken into account only for the direct correlation function ĉDH ij (q). The indirect correlations with the ions k around the ion i remain described with the functions ĉ 0 ik (q) as for point ions. As is has been noted before, in the DH theory the screening of the surrounding ions does not depend on their size. Next, the introduction of the functions ĉE ik (q) into Eq. ( 55) leads to

ĥij (q) = ĉDH ij (q) + ĉE ij (q) + k n k ĉ 0 ik (q) + ĉE ik (q) ĥkj (q) (58) 
By performing the same transformation used for the point ions it is found ĥij (q) = ĥDH ij (q) + ĉE ij (q) + k n k ĉE ik (q) ĥkj (q) + ĥ0 ik (q) ĉE kj (q) + l n l ĉE kl (q) ĥlj (q) (59) which is similar to Eq. ( 26) but with the function ĥ0 ij (q) after equality, replaced by the function ĥDH ij (q).

A.2 The mean spherical approximation

Next, to extend this approach to higher concentrations, the chosen reference correlation function ĥref ij (q) could be the one given by the MSA theory. For ions of the same size, in the MSA approximation, the direct correlation functions are given by eq. ( 17) for r > σ.

There is also an additional contribution for r < σ. For ions of the same size σ, the Fourier transform of c MSA ij (r) can be separated into two terms as follows ĉMSA ij (q) = ĉHS 00 (q) + ĉ11 (q) e i e j (60) such that ĉHS 00 (q) and ĉ11 (q) are two functions which are independent of i and j. Then, using this relation and the Eq. ( 21) for c ij (r), starting from the OZ's equations we find ĥij (q) = ĥMSA ij (q) + ĉE ij (q) + k n k ĉE ik (q) ĥkj (q) + ĥMSA ik (q) ĉE kj (q) + l n l ĉE kl (q) ĥlj (q) (61)

which is similar to Eq. ( 26) but with all the functions ĥ0 (q) replaced by the corresponding functions ĥMSA (q).

B Integration of the functions δh ij (r)

In this appendix, the boundary conditions at r = σ introduced by Onsager are recovered.

This allows to integrate the differential equations ( 32) and ( 34) and thus determine the functions δh

(2) ij (r) and δh

Starting from the previously determined Eqs. (29b) and (29c), the limit when the variable q → 0 of each of the contributions to δ ĥij (q) leads to the following relations:

∞ σ r 2 Φ j (r) dr = - 4πβ κ 2 k n k e k ∞ σ r 2 c E jk (r) dr (62) ∞ σ r 2 δh (3) ij (r) dr = - 4πβ κ 2 e i e j k n k e k ∞ σ r 2 Φ k (r) dr (63) 
Furthermore, the differential equations ( 32) and ( 34) can be written more explicitly as

∂ ∂r r 2 ∂Φ j (r) ∂r -κ 2 r 2 Φ j (r) = 4π β k n k e k r 2 c E jk (r) (64) ∂ ∂r r 2 ∂δh (3) ij (r) ∂r -κ 2 r 2 δh (3) ij (r) = 4π βe i e j k n k e k r 2 Φ k (r) (65) 
By using relations (62) and (63), it is found by integration of the differential equation and

C jk = - 1 -κσ 1 + κσ e 2κσ ∞ σ s e -κs c E jk (s) ds (70) 
Similarly, Eq. ( 34) can be integrated, leading to the following expression for δh and

D kl = - 2κσ 3 (1 + κσ) 2 ∞ σ s e -κs c E kl (s) ds + 1 -κσ κ(1 + κσ) ∞ σ s 2 e -κs c E kl (s) ds e 2κσ (73) 
If the excess direct correlation function c E ij (r) is defined by Eq. ( 23), then

c E ij (λ, r) = ∞ n=2 1 n! -λe i e j β (1 + λ 1/2 κσ) r n exp -nλ 1/2 κ(r -σ) (80) 
To make easier the integration, we used in place of λ the variable u = λ 1/2 and we expressed ∆A as a sum:

∆A = ∞ n=2 ∆A n (81) 
with

∆A n = 4π n! i,j n i e n+1 i n j e n+1 j -β n ∞ σ dr r n-1 • 1 0 du u 2n+1 (1 + κσu) n+1 1 - κru 2 + κ 2 σ 2 u 2 2 (1 + κσu) e -(n+1)κ(r-σ)u (82) 
Now using the relation:

∂ ∂u u 2n+2 2(n + 1) e -(n+1)uκ(r-σ) (1 + κσu) n+1 = u 2n+1 1 - κru 2 + κ 2 σ 2 u 2 2(1 + κσu) e -(n+1)uκ(r-σ) (1 + κσu) n+1 (83)
The integration on the variable u can be performed analytically to give:

∆A n = - 2π β(n + 1)! i,j n i n j ∞ σ -βw ij (r) n+1 r 2 dr (84) 
Finally, by noting the similarity with the terms of the series expansion of exp [-βw ij (r)],

the expression (40) of ∆A was obtained.

C.3 The excess pressure

In this subsection, explicit expressions for the excess pressure asymmetry contribution are detailed. To facilitate the numerical evaluation of the various expressions obtained, the sums ( k n k e 3 ) 2 have been expressed as functions of κ 2 and of the parameter η 1 introduced by Onsager (see Eq. ( 10)). This allowed to rewrite the prefactor found in Eq. ( 44) and in the equations for the excess pressure, according to

π 3 β (1 + κσ) 3 k n k e 3 k 2 = 1 48π κ 4 (1 + κσ) 3 β η 2 1 ( 85 
)
It is noted that the ratio βη 2 1 / has the dimension of a length.

First, from the equation ( 44) for the free energy β∆A 2 , by differentiation according to the Eq. ( 47), the excess pressure β∆P 2 was obtained

βP 2 = 1 48π κ 4 (1 + κσ) 3 β η 2 1 e 3κσ E 1 (3κσ) 1 + c A κ 2 σ 2 (1 + κσ) - 1 2 (86) 
with the coefficient c A = 3/2. The results of calculations carried out according to Eq. ( 86) are displayed in Fig. 1, for 2-1 or 3-1 electrolytes in water-like solvent at 25 o C (ε r = 78.3).

All the ions have the same diameter of 0.4 nm. For each type of salt, the contribution to the osmotic coefficient deduced by Debye and Hückel with volume excluded alone is compared with the sum of this contribution and the term βP 2 /n. We observe for both salts that the additional contribution βP 2 /n induces an upward deviation at low concentrations and a downward deviation at high concentrations, compared to the contribution given by Debye and Hückel.

Alternatively, the excess pressure can be evaluated from the virial using the Eq. ( 50).

Before evaluating the contribution of asymmetry it should be recalled that already for the term of reference deduced from the DH functions h DH ij (r), the differentiation of the free energy and the use of the virial formula do not lead to the same result. If in Eq. ( 49), δh ij (r) is replaced by h DH ij (r), the excess pressure β∆P v 1 can be evaluated.

β∆P v 1 = - 1 24π κ 3 1 + κσ
This relation is known to give poorer results than that deduced from the free energy by differentiation. This comes from approximations used to obtain the Debye and Hückel correlation functions h DH ij (r). then, for the corrective term δh ij (r) the comparison between the two paths to determine the excess pressure can also inform us about the robustness of the results obtained. From the Eq. ( 50), with c E ij (r) given by the relation [START_REF] Morita | A New approach to the theory of classical fluids[END_REF], the excess pressure β∆P v 2 has been deducted

β∆P v 2 = 1 48π κ 4 σ (1 + κσ) 2 + 1 3 β∆E 2 (87)
where β∆E 2 /3 was determined from the equation ( 36) The first term in β∆P v 2 gives a nonzero contribution for symmetric electrolytes. On the other hand, the second term β∆E 2 /3, proportional to η 2 1 is specific to asymmetric electrolytes. When the first term in β∆P v 2 is added to β∆P v 1 , the excess pressure calculated by Pitzer is obtained [START_REF] Kjellander | An exact but linear and Poisson-Boltzmann-like theory for electrolytes and colloid dispersions in the primitive model[END_REF][START_REF] Kjellander | Dressed ion theory for electrolyte solutions: a Debye-Hückel-like reformulation of the exact theory for the primitive model[END_REF]. The relation deduced by Pitzer is known to be a good correction of the expression β∆P v 1 . If δ∆P v 2 contains a corrective term compared to β∆P v 1 , then it is possible that the following contribution β∆P v 3 brings a correction to the asymmetric part deduced from β∆P v 2 . Indeed, the next term in the expansion of c E ij (σ) from Eq. ( 23), (namely: (-βw ij (r)) 3 /6), allows to determine with the first term of Eq. ( 50) a correction proportional to η 2 1 . In order to make comparisons with the asymmetric part β∆P 2 , we can separate the expression of the excess pressure deduced from the virial into a symmetric contribution β∆P v s and an asymmetric contribution β∆P v a . Shorter range terms are neglected here. The symmetrical contribution is that corresponding to the excess pressure calculated by Pitzer. The asymmetrical contribution is that deduced from the addition of second term of β∆P v 2 and of the first term in β∆P v 3 .

1 3 β∆E 2 = 1 48π κ 4 (1 + κσ) 3 β η 2 1 e 3κσ E 1 (3κσ) 1 + κ 2 σ 2 2(1 + κσ) - 1 
βP v a = 1 48π κ 4 (1 + κσ) 3 β η 2 1 e 3κσ E 1 (3κσ) 1 + c v κ 2 σ 2 (1 + κσ) -1 2 (89)

with the coefficient c v = 1/2. The comparison between β∆P 2 and β∆P v a indicates that these two equations differ only by the coefficient c A in (86), replaced by c v in (89).

D Analysis according to the dressed ion theory

In this section, starting from the functions ĥij (q) deduced from the integral equations, a representation of the type of that of the DIT is obtained. This analysis brings an additional interpretation on the corrective terms, introduced by Onsager and recovered using the integral equations.

The approximation [START_REF] Van Leeuwen | New method for the calculation of the pair correlation function[END_REF] was used to define the direct correlation functions c E ij (r). This allowed to evaluate the corrective terms δh ij (r) from a first-order expansion of the excess integral equation [START_REF] Friedman | Models having the thermodynamic properties of aqueous alkaline earth halides and NaCl-MgCl 2 mixtures[END_REF]. Implicitly, resolution limited to the first-order assumes that the corrective terms are small compared to the reference term. Since the corrective terms are proportional to concentration, they are smaller at lower concentrations. If the corrective terms become too important the convergence of a calculation in perturbation is not ensured. To better describe the functions at the highest concentrations, it seems necessary to also study the higher order terms and to carry out a resummation of the expressions obtained.

Starting from the order zero for which ĥij ĥ0 ij , it was found that the additional terms to the first order are proportional to ĉE ij . Later, the second-order supplementary terms are proportional to (ĉ E ) 2 and so on. All these corrections are products of functions ĥ0 and functions ĉE . Moreover, it is observed in the set of corrective terms that any number of ĉE functions can succeed each other. This last characteristic can easily be deduced from Eq. ( 26). If we assume that all the functions ĥ0 ik = 0, in the equation ( 26) we obtain an OZ-like equation

ĥij = ĉE ij + k n k ĉE ik • ĥkj (90) 
The functions which are solutions of these particular equations were denoted ĥE ij . Evaluating in perturbation the solution of this equation we recover a sum of product of functions In the perturbation expansion of [START_REF] Friedman | Models having the thermodynamic properties of aqueous alkaline earth halides and NaCl-MgCl 2 mixtures[END_REF], when this sum of products of functions ĉE ij was found, it has been subsequently denoted ĥE ij . On the other hand, in all of these corrective terms, it is observed within each series that two functions ĉE can only be separated by a single function ĥ0 . Then, after considering all possible products of function ĉE , it is observed within each series that two functions ĥE can only be separated by a single function ĥ0 . Some corrections are series that start with a function ĥ0 ik and end with a function ĥ0 lj . For example, we find ĥ0 ij at zero order and at first order the product n k ĥ0 ik n l ĉE kl ĥ0 lj , which led to the term δ ĥ(3) ij . The set of corrective terms presenting this characteristic has been concentrations ĥE tends towards ĉE , the expression of δ ĥ(3) ij (q) presented before is recovered in this limit. Equivalently, the expansion at low concentrations of ĥ00 ij (q) can be performed from Eq. (93). In the denominator, q 2 +κ 2 * is replaced by q 2 +κ 2 +δκ 2 . Here, δκ 2 represents the difference between κ 2 * and κ 2 , given by Eq. ( 94). Expanding to first order in δκ 2 , at low concentrations we recover again the terms ĥ0 ij (q) and δ ĥ(3) ij (q). Therefore, the term δ ĥ(3) ij (q) represents the effect of the variation of the screening parameter coming from the first-order consideration of the functions ĉE ij (q). Similarly, the terms included in δ ĥ(2) ij (q) represent corrections coming from the difference between the effective charges e * i and bare charges e i .

Finally, if at low concentrations, it is assumed that ĥE ij (q) ĉE ij (q), then Eqs. (51-53) can be deduced from Eqs. (95-97).

  Onsager made corrections to the Poisson-Boltzmann equation, to more properly describe interactions in asymmetric electrolytes. His attention focused in particular on the symmetry of correlation functions, such that h ij (r) = h ji (r). The linearized equation of Debye and Hückel is indeed symmetric, since h ij (r) proportional to the product of the charges e i e i . It is no longer true, when we consider corrective terms deduced from an expansion in perturbation of the Poisson-Boltzmann equation. To correct this defect, Onsager has established a system of equations allowing to calculate symmetric correlation functions.

  integrate the differential equations[START_REF] Martina | Extended mean spherical approximation for electrolyte solutions[END_REF] and thus determine the functions δh (2) ij (r). The relation (31) is used to express δh(2) ij (r) with the Φ j (r) functions, for which it is foundΦ j (r) = -4π β k n k e k Ψ jk (r)(68)withΨ jk (r) = e -κr 2κr r σ s e κs c E jk (s) ds + e κr 2κr ∞ r s e -κs c E jk (s) ds + C jk e -κr 2κr (69)

n

  k e k n l e l X kl (r)

Figure 1 :

 1 Figure 1: Electrostatic contributions βP el /n to the osmotic coefficient as a function of the square root of the ionic strength. Cations and anions have the same diameter σ = 0.4 nm. The two upper curves relate to a 2-1 electrolyte. The lower curves relate to a 3-1 electrolyte. Continuous red curve with triangles: DH contribution with excluded volume for a 2-1 electrolyte. Green curve in dashes and dots: Same contribution + βP 2 /n determined from Eq. (86). Blue curve with squares: DH contribution with excluded volume for a 3-1 electrolyte. Dashed and dotted purple curve: Same contribution + βP 2 /n determined from Eq. (86). Black dotted line: DH limiting law for a 3-1 electrolyte.

As an alternative, instead of being determined by free energy differentiation, the contribution to the pressure associated to the functions δh ij (r) can be obtained via the virial theorem:

n i e i n j e j ∞ σ δh ij (r) r dr [START_REF] Pitzer | Electrolyte theory -Improvements since Debye and Hückel[END_REF] The pressure deduced with Eq. ( 49) represents a correction to the pressure β∆P v 1 , obtained with this same equation, when h DH ij (r) is considered instead of δh ij (r). Significant simplifications have been found when summing the three components of δh ij (σ) occurring in the first term of Eq. ( 49). Then, using the definition (36) of the internal energy, ones arrive at

The contribution β∆P v 2 obtained from Eq. ( 50), with c E ij (r) given by the Eq. ( 24), is also given in Appendix C.3. Surprisingly, considering that c E ij (σ) is defined by Eq. ( 24), the first term gives a non-zero contribution for symmetrical electrolytes. As before in β∆P 2 however, the second term β∆E 2 /3, deduced from the Eq. ( 36) is proportional to ( i nie 3 i ) 2 . It therefore vanishes for symmetrical electrolytes. When the first term, dependent on the c E ij (σ), in β∆P v 2 is added to the contribution β∆P v 1 , the expression determined by Pitzer is retrieved [START_REF] Kjellander | An exact but linear and Poisson-Boltzmann-like theory for electrolytes and colloid dispersions in the primitive model[END_REF][START_REF] Kjellander | Dressed ion theory for electrolyte solutions: a Debye-Hückel-like reformulation of the exact theory for the primitive model[END_REF]. Then, the sum of the two terms β(∆P v 1 + ∆P v 2 ) is equal to the corresponding term determined by Pitzer plus β∆E 2 /3.

When the excess pressure is deduced from the free energy, the DH term that remains for symmetric electrolytes, is determined independently of the asymmetric term β∆P 2 .

On the other hand, when the excess pressure is determined from the virial theorem the various contributions are not separated. Accordingly, the next term in the expansion of c E ij (σ) from Eq. ( 23) provides also a contribution proportional to ( i n i e 3 i ) 2 . More details have been presented in Appendix C.3.

C Thermodynamic integrations

In this appendix, more details are given on the simplifications used to perform the integrals involved in the thermodynamic quantities.

C.1 The internal energy

In order to facilitate the calculation of the various integrals encountered in ∆E, the boundary conditions introduced previously have been used. First, the differential equations [START_REF] Martina | Extended mean spherical approximation for electrolyte solutions[END_REF] and [START_REF] Henderson | An extended mean spherical approximation calculation of the potential of an electrified interface[END_REF] have been written more explicitly as

-κ 2 r δh

After integration between σ and ∞, and taking into account the boundary conditions ( 66) and (67), it is obtained

These relations as been used to simplify the expression of ∆E. It has been found

and using eq. ( 65) and (71), the eq. ( 37) for ∆E was obtained.

C.2 The Helmholtz free energy

The equation ( 39) used to calculate ∆A requires performing an integration according to λ of the function F ij (λ, r). This function is given by

denoted ĥ00 ij . The series of terms corresponding to ĥ00 ij (q) can be summed according to

Using the functions ĥE ij (q) and ĥ00 ij (q), it was found that ĥij (q) can be separated into five terms according to ĥij (q) = ĥE ij (q) + ĥ00 ij (q) + k n k ĥ00 ik (q) ĥE kj (q)

+ ĥE ik (q) ĥ00 kj (q) + l n l ĥ00 kl (q) ĥE lj (q) (92)

Using Eq. ( 19) for the functions ĥ0 ij (q), from Eq. ( 91), it was found that ĥ00 ij (q) can be rewritten as

Similarly, from Eq. (92), it was found that ĥij (q) can be rewritten as

Equivalently, the effective screening parameter κ * can be defined from these effective charges

Considering the expansion at low concentrations of ĥ00 ij (q) from Eq. (91), by replacing ĥ00 ij (q) in the right side by ĥ0 ij (q), we recover that ĥ00 ij (q) looks like ĥ0 ij (q) +δ ĥ(3) ij (q) as established in section 4, but with ĉE replaced by ĥE in this latter term. Since at low