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Abstract

Onsager made corrections to the Poisson-Boltzmann equation, to more correctly

describe interactions in asymmetric electrolytes (those which have different charges,

in absolute value, for the cation and the anion). The equations established by

Onsager allow the calculation of symmetric total correlation functions, such that

hij(r) = hji(r). In this article it has been shown that these correlation functions,

describing in particular asymmetric electrolytes, can also be deduced from the Orn-

stein Zernicke integral equations by considering a nonlinear closure relation of the

HNC type. The excess free energy deduced from these correlation functions has

been found similar to that obtained in Mayer’s theory. Relations with the electro-

static association models on the one hand, and with the dressed ions theory on the

other hand, are recovered.

1 Introduction

The description of thermodynamic properties of electrolytes has given rise to many devel-

opments since the establishment of limiting laws by Debye and Hückel (DH) [1–3]. This

theory continues to inspire studies and extensions today [4–8]. Debye and Hückel have

used the Poisson-Boltzmann (PB) equations as a starting point to describe the interactions

between ions in the solution. By linearizing these equations, analytical expressions of the

electrostatic potential ψi around an ion i were obtained. Then, the activity coefficients

were determined from the expression obtained for the potential. In particular for point

ions, a limiting law in square root of the concentration, was established for the variation

of the mean activity coefficient. This law is only applicable for small electrolytes, weakly

charged, very diluted in a solvent of high dielectric constant. Then, taking into account

a minimum distance of approach, as a boundary condition when establishing the expres-

sion of the electrostatic potential, DH obtained a modeling of the activity coefficients at

higher concentrations. A few years later, it was noted that one of the weaknesses of the

DH theory came from the short-range linearization of the equations describing the inter-

actions between ions [9]. In particular Bjerrum proposed an alternative description of the
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interactions between unlike ions at low concentrations. Bjerrum assumed that due to the

strong attractive interactions between these ions at short distances, ion pairs can form.

Then, the free ions are fewer and the DH expressions for the potential and the activity

coefficients are modified. This phenomenon is particularly important when the ions are

more charged and when the dielectric constant of the solvent is low. As an alternative to

the Bjerrum model, corrections to the DH model have been made using perturbation cal-

culations of the neglected terms during the linearization of the PB equations [10–12]. This

type of computation turned out to be complicated and was little used thereafter to de-

scribe the thermodynamic properties of real solutions. These approaches have been rarely

applied due to the poor existing numerical tools when they were established. They seem

difficult to use at high concentrations, contrary to Bjerrum’s association theory. Never-

theless, taking into account of the electrostatic screening, they provide a more rigorous

theoretical description at low concentrations. Furthermore, Onsager made improvements

on these perturbation calculations by adding corrections to the PB equation [13].

Following the cluster expansion theory of McMillan and Mayer [14], statistical me-

chanics has been applied to the description of solutes in a solvent seen as a continuum.

The interaction potentials between charged solutes are assumed to be representative of

averages over the configurations of the surrounding solvent. As an application of the

McMillan and Mayer cluster expansion, the Mayer theory allowed to determine correc-

tions to the DH results for thermodynamic quantities such as the excess free energy or

the osmotic pressure [15]. Additionally, advances in the description of interactions have

been made using Ornstein Zernicke (OZ) integral equations to describe the distribution

of ions in solution [16]. In particular, the use of the mean spherical approximation (MSA)

as a closure relation to these integral equations has led to an analytical modeling of the

thermodynamic quantities applicable to higher concentrations than that given by the DH

theory [17–22]. The development of the numerical resolution of integral equations asso-

ciated with more elaborate closure relations [16, 23–25] and later of simulations, by the

Monte Carlo method or by molecular dynamics, provides an almost exact description of

the thermodynamics of charged solutes for given interaction potentials [26–28]. How-

ever, because of the complexity of numerical computations, it is always necessary to have
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analytical models to describe the properties of ions in solution. In thermodynamic mod-

eling, even when the solvent is taken into account explicitly, theories representing ions

as charged solutes in a continuum continue to be useful to account for their interactions.

The MSA theory provides improvements over that of Debye and Hückel to describe long-

range interactions. In addition, progress has been made thanks to the association model

for symmetric electrolytes. On the other hand, the description of asymmetric electrolytes

is less complete (asymmetric binary electrolytes are those in which the absolute value of

the charge of cations and anions are different). Then, in the work presented in this arti-

cle, corrections made by Onsager in the description of asymmetric electrolytes have been

considered again. Onsager derived his results from the Poisson Boltzmann equations. It

is well known that these equations do not describe in a symmetrical way the interactions

between the ions contrary to the OZ integral equations. So it seemed interesting to re-

cover Onsager’s corrections for asymmetric electrolytes using both integral equations and

statistical mechanics tools.

This article is dedicated to the memory of D. Henderson, who made very significant

contributions in the physics of liquids and more particularly to the theory of charged

double layers of electrolytes.

In the next section, Onsager’s approach is recalled. Subsequently, the integral equa-

tions are presented. Integral equations representing the excess, with respect to reference

distribution functions, are established. In the next section, a perturbative method for

solving these excess integral equations is explained. Thermodynamic properties deduced

from these corrective terms are deduced in the following section. Finally, the conclusions

and prospects are exposed.

2 Onsager’s corrections to the PB equations

Onsager’s contribution to the description of asymmetric electrolytes is a correction to the

theory of Debye and Hükel. It is therefore necessary to first recall the basis of this theory

and the approximations used by these authors to obtain analytical results. As mentioned

before, the DH theory is inspired by the earlier work of Gouy and Chapman [29,30]. The
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so-called Poisson-Boltzmann equations were introduced in these latter works. In these

models the solvent is described as a continuum uniquely characterized by its dielectric

constant εr. The Poisson equation is used to relate an average electrostatic potential ψi

around an ion i to the distribution of charged species in its environment.

∆ψi = −4π

ε

∑
k

nkek gik(r) (1)

Where ek = zke is the charge of an ion k, with zk the valence of this ion, e the charge

of the proton and ε = 4πεoεr where εo designates the vacuum dielectric constant and εr

the dielectric constant of the solvent. Moreover, nk denotes the concentration of the ions

k and gik(r) the radial distribution function of the ions k at the distance r from the ion

i. The function gik(r) is often defined using the mean force interaction potential wik(r)

between i and k considering a Boltzmann’s distribution

gik(r) = exp [−βwik(r)] (2)

Where β = 1/(kBT ) with kB the Boltzmann’s constant and T the temperature. In

addition, the hypothesis was made that the average potential wik(r) can be linked to the

electric potential ψi by the relation

wik(r) = ekψi(r) (3)

Using these relations to define gik(r) in the Poisson equation, the Poisson-Boltzmann

equation was obtained

∆ψi = −4π

ε

∑
k

nkeke
−ekβψi(r) (4)

In order to get an analytical expression of this potential, the exponential intervening to

the right of the equality in the preceding equation has been linearized by Debye and

Hückel. This simplification implies that the distribution function gik(r), as defined with

eqs. (2) and (3), can be approximated by

gik(r) ' e−ekβψi(r) ' 1− ekβψi(r) (5)

It leads to the linear differential equation for ψi used by DH,

∆ψi − κ2ψi = 0
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where the square of the Debye’s screening parameter κ is given by

κ2 =
4πβ

ε

∑
k

nke
2
k (6)

The activity coefficients γi of the ions i were later calculated from the expression obtained

for the potential ψi.

Following the work of Debye and Hückel, some authors have been interested in the

effect of the next terms in the expansion of the exponential defining the functions gij(r)

within the Poisson-Boltzmann equation. Thus for a symmetric binary electrolyte, by

continuing the series expansion of the exponential beyond the linear term, the following

differential equation was obtained [10]

∆ψi − κ2ψi =
β2

6
κ2 η2 (ψi)

3 +O (ψi)
5 (7)

where

η2 =

∑
k nke

4
k∑

k nke
2
k

(8)

When the terms to the right of equality in equation (7) are neglected, the DH equation

is recovered with its analytical expression of the potential ψDH
i . Then for a symmetric

electrolyte, in the differential equation beyond the linear term, the first nonzero term in

the exponential expansion is proportional to (ψi)
3.

On the other hand, for an asymmetric binary electrolyte, the first corrective term

deduced from the series expansion of the exponential beyond the linear term is a correction

proportional to (ψi)
2 [11, 12]

∆ψi − κ2ψi = −β
2
κ2 η1 (ψi)

2 +O (ψi)
3 (9)

with

η1 =

∑
k nke

3
k∑

k nke
2
k

(10)

Similarly, disregarding the terms on the right-hand side of the equality, solving the equa-

tion (9) leads to the analytical expression ψDH
i of the potential. Next in order to make
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a correction to the potential deduced from the linearized solution, the term proportional

to (ψi)
2 on the right of the equality in the equation (9) has been evaluated in perturba-

tion [11, 12]. A first correction to the DH potential can be deduced from the differential

equation in which (ψi)
2 in the second member has been approximated by

(
ψDH
i

)2
. From

this corrected potential an additional contribution to the activity coefficients has been

deduced.

It is at this stage that Onsager, by considering the symmetry of the functions gij(r),

made a modification in the calculation of corrective terms to the expressions of DH. The

solution of the DH equation leads to a potential ψDH
i which is proportional to ei. Using

eq. (5), it can be seen that the function gij(r) deduced from this potential obtained with

the linearized differential equation is indeed symmetric in the exchange between i and j.

Now, when the term (ψi)
2 to the right of the equality is replaced by

(
ψDH
i

)2
, the solution

of the differential equation with right-hand side leads to a correction to the potential δψi

which is proportional to e2i . Using again Eq. (5), a corrective term for gij(r) is obtained

which is proportional to eje
2
i . Then, Onsager noticed that the calculation of gij(r) using

the Poisson-Boltzmann equation, leads to an asymmetrical expression in the exchange

between i and j [13]. In order for gij(r) to be equal to gji(r), Onsager required the radial

distribution function to have the following expansion:

gij(r) = g00(r) + ejei g11(r) +
(
e2jei + eje

2
i

)
g12(r) + . . . (11)

The term g00(r) is the only one remaining when the charges vanish. In the Debye, Hückel

and Onsager theories, for distances greater than the least approach distance between the

ions (all assumed to be the same size), at low concentrations, this term is considered to be

equal to 1. The term ejeig11(r) is closely related to the DH term when eiψj(r) = ejψi(r)

(with ψi proportional to ei). The next term is the first corrective term for an unsymmet-

rical electrolyte. In order to satisfy this symmetry in the charge exchange, Onsager intro-

duced a correction with respect to the development deduced from the Poisson-Boltzmann

equations. It has been considered that the potential deduced from the calculation in

perturbation can be developed in increasing powers of the charge according to

ψi(r) = eiφ1(r) + e2iφ2(r) + . . . (12)
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Then, coupled differential equations for the reduced potentials φ1 and φ2 were deduced

by Onsager as,

∆φ1 − κ2φ1 =κ2 η1φ2 (13a)

∆φ2 − κ2φ2 =− β

2
κ2 η1 (φ1)

2 (13b)

These equations similar to the previous equation (9) were solved in perturbation. Then

Onsager was able to deduce the functions g11(r) and g12(r) appearing in the expression

(11) for gij(r) using the expressions obtained for φ1 and φ2. We are not going to recall all

the formulas introduced by Onsager. The interested reader can refer to the original article.

As in previous calculations, in order to solve the system of equations, it is first assumed

that φ2 is negligible in Eq. (13a). Then the equation for φ1 returns the solution of DH for

the potential. Then Eq. (13b) for φ2 is solved by assuming that φ1 is given by the solution

obtained previously. So far this calculation is similar to the one that was done before.

Onsager brought two corrections compared to the calculation in perturbation performed

previously. First, the relations introduced by Onsager make it possible to obtain an

approximation for g12(r) and thus to have a symmetric expression of gij(r). Moreover,

Onsager then took into account the approximation obtained for φ2 in Eq. (13a) for φ1

and deduced a correction to this last function. Then from φ1 a correction to g11(r) could

be deduced. Finally, using a Guntelberg charging process, Onsager deduced a correction

to the chemical potential of the ions of unsymmetrical electrolytes.

Ultimately, the theoretical approach developed by Onsager to overcome the short-

comings of the PB equation appears both ingenious and quite tedious. Consideration of

various types of electrolytes requires the introduction of additional φ functions. Indeed, if

one also wants to evaluate the first corrective term appearing in Eq. (7) for symmetrical

electrolytes we have to introduce a function φ3. Similarly, shorter range contributions

also require the introduction of new functions. Moreover, this approach is closely related

to the description of the ionic distributions only in terms of electrostatic potential. The

Poisson-Boltzmann equations are well suited to evaluate correlation functions when the

species under study are assumed to be subject only to Coulomb interactions. Currently,

in order to also take into account other types of interactions, (Lennard-Jones potential or

8



hard spheres repulsion for example), the statistical physics of liquids often prefers to use

integral equations to determine the total correlation functions hij(r) = gij(r)− 1. These

integral equations are known to lead to symmetric hij(r) correlation functions. This sym-

metry property should make it easier to find corrective terms of the type introduced by

Onsager for asymmetric electrolytes. Then, in the following section, it will be presented

how the type of distribution function given by Eq. (11) can be established within the

framework of integral equations.

3 Integral equations

In order to take into account the interactions between the ions, the total correlation

functions hij(r) are evaluated using the integral equations of Ornstein and Zernike (OZ)

instead of the Poisson-Boltzmann equations.

hij(r) = cij(r) +
∑
k

nk

∫
cik(|r− r′|) hkj(r′) dr′ (14)

As a starting point, to find the development of the distribution functions in increasing

charges, as given in Eq. (11), we must be able to recover the DH expression of the cor-

relation functions from the OZ equations. This expression can be seen as the zero-order

approximation in the perturbation expansion described by Onsager, since the higher-order

terms were evaluated, starting from the DH expression, after the expansion of the expo-

nential in the PB Eq. (4). In the context of integral equations, the DH expression of

the correlation functions will also constitute a first step to subsequently establish distri-

bution functions having the type of development in increasing charges as given by Eq.

(11). We will limit ourselves to the experimental conditions considered in the Onsager’s

study, namely a weakly charged and very dilute electrolyte. Under these conditions the

Debye length is greater than both the Bjerrum length LB (LB = e2β/ε) and the size of

the ions. All the ions are of the same diameter σ. The solution is sufficiently diluted so

that the hard sphere contribution to the correlation functions can be considered negligi-

ble compared to the electrostatic corrections. This condition is different from that used
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by Stell and Lebowitz [31]. In their expansion procedure the uncharged short distance

contribution was taken as a known reference.

It is well known that the OZ convolution equations are more easily solvable using

Fourier transforms of the functions hij(r) and cij(r). We define the Fourier transform

f̂(q) of a purely radial function f(r) using the following integral

f̂(q) =
4π

q

∫ ∞
0

rf(r)sin(qr)dr (15)

where f(r) represents one of the functions hij(r) or cij(r). Applying the Fourier transform

to the OZ equations allows to replace the convolution products between the correlation

functions into simple products of Fourier transforms of these correlation functions.

ĥij(q) = ĉij(r) +
∑
k

nkĉik(q) ĥkj(q) (16)

Closure relations are needed to solve the OZ integral equations. The mean spheri-

cal approximation (MSA) has been used as the closure relation of the OZ equations to

describe electrolyte solutions [17–22]. When ions are modeled as charged hard spheres,

this approximation provides analytical expressions for the activity and osmotic coefficients

which satisfy the limiting laws of Debye and Hückel at low concentrations and better takes

into account the size of the ions at high concentrations [21]. However, to simplify in a

first attempt, we will consider point ions, which facilitates the resolution of the equations.

Under these conditions the MSA approximation, used to define a first approximation of

the direct correlation functions cij(r) between the ions i and j is given simply by

cMSA
ij (r) = −βVij(r) (17)

where Vij(r) = eiej/(εr), is the Coulomb potential between these ions. It is recalled that

when the ions are not point-like, the relation (17) is only used for the distances r > σ.

The Fourier transform ĉij(q) of the Eq. (17) is given by

ĉij(q) = −4π
βeiej
εq2

(18)

The use of this approximation for ĉij(q) in the Fourier transform of the OZ equations

allows to determine an approximate expression ĥ0ij(q) of the total correlation functions,

10



given by

ĥ0ij(q) = −4π
βeiej

ε (q2 + κ2)
(19)

Using the inverse Fourier transformation it is possible to determine the corresponding

function h0ij(r). Thus the DH expressions for the total correlation functions of point-like

ions are recovered.

h0ij(r) = −βeiej
εr

e−κr (20)

3.1 Non-linear closure relation

The MSA closure relation linearizes the integral equations in order to obtain analytical

results. However, by using integral equations, in order to be able to account for the type of

thermodynamic correction presented by Onsager, it is necessary to take into consideration

the influence of nonlinear effects of the ionic interactions, in the form of a nonlinear closure

relation for the Ornstein-Zernicke equations. We will decompose the functions cij(r) using

the relation

cij(r) = cMSA
ij (r) + cEij(r) (21)

It is recalled that when the ions are points, cMSA
ij (r) is given by the relation (17) for all

distances. Thus, this relation introduces the excess direct correlation function cEij(r) with

respect to the closure relation previously used. The hypernetted chains relation [23–25] is

known to describe accurately the structure and thermodynamics of electrolytes in solution.

The HNC closure is given by

ln gij(r) = −βVij(r) + hij − cij(r) (22)

If we also use the relation between the mean force potential wij(r) and gij(r) given by

Eq. (2), we obtain the following relation between cEij(r) and wij(r)

cEij(r) = exp [−βwij(r)]− 1 + βwij(r) (23a)

=
∞∑
n=2

(−βwij(r))n

n!
(23b)
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For point ions, in order to have an explicit approximation, the potential of mean force

wij(r) can be replaced by its DH expression deduced from Eq. (20), namely βwij(r) =

−h0ij(r). This approximation has been called extended mean spherical approximation

(EMSA) in other studies [32, 35, 36]. In particular, when we limit the sum appearing in

Eq. (23) to its first term (n = 2), we obtain

cEij(r) '
β2

2

(
wij(r)

)2
(24)

This approximation as been used previously in studies of asymmetric electrolytes [37,38].

If it is recalled that in the DH approximation, we have wij(r) = −eiψj, then by using

equation (24) cEij(r) is proportional to e2iψ
2
j . So, using this approximation for cEij(r) we

take into account corrections proportional to ψ2
j as in Eqs. (9) and (13b).

3.2 Excess integral equations

In order to make easier the determination of corrections made to the function ĥij(q), due

to the consideration of the excess function ĉEij(q), it is possible to perform a transformation

of the OZ equations. The goal is to rewrite the function ĥij(q) as the sum of a reference

function ĥrefij (q) previously determined with ĉEij(q) = 0 and an excess function δĥij(q)

induced by the function ĉEij(q). Then for point ions, by replacing in the OZ equations,

cij(r) by the relation (21) we obtain

ĥij(q) = −4πβ

εq2
ei

(
ej +

∑
k

nkekĥkj(q)
)

+ ĉEij(q) +
∑
k

nkĉ
E
ik(q) ĥkj(q) (25)

After multiplication by niei, a summation over i of the equations allows to rewrite the

first sum over the functions ĥkj(q), to the right of the equality, according to the excess

correlation functions and the DH functions ĥ0kj(q). This rearrangement of the Eq. (25)

gives

ĥij(q) = ĥ0ij(q)+ĉ
E
ij(q)+

∑
k

nk

[
ĉEik(q) ĥkj(q) + ĥ0ik(q)

(
ĉEkj(q) +

∑
l

nl ĉ
E
kl(q) ĥlj(q)

)]
(26)

This equation makes it easier to separate the functions ĥij(q) into a reference term ĥrefij (q)

(here, it is ĥ0ij(q)), and corrective terms depending on the excess functions ĉEij(q). It
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should be noted that this separation can be established with other reference functions.

For example if the ions are considered as hard charged spheres, Eq. (21) for cij(r) can still

be used and by following the same rearrangement as before, we obtain an equation similar

to Eq. (26) for ĥij(q) but with the functions ĥ0ij(q) replaced by ĥMSA
ij (q) (see Appendix

A).

At this stage, our goal is to find, from the integral equations, distribution functions

similar to those obtained by Onsager. To do this, we will start from the excess integral

equations (26). We will deduce from these equations, differential equations applicable to

low concentrations.

4 Perturbative expansion

It has been shown that the excess integral equations can be obtained starting either

from the functions ĥ0ij(q), or from the functions ĥMSA
ij (q). Moreover, it has been shown

that the distribution functions obtained with the MSA tend towards those given by the

DH expressions at low concentrations [21]. Compared to those of Debye and Hückel,

the distribution functions obtained with the MSA are applicable to high concentrations.

However at high concentrations, the distribution functions obtained from the MSA can no

longer be represented with a single exponential function like those of Debye and Hückel.

In particular, oscillations are observed above some concentration. In his perturbation

expansion, Onsager took as initial distribution functions those given by Debye and Hückel.

Since we limit ourselves to low concentrations, to simplify and in order to consider only

one screening length, we will therefore take in the rest of this study an initial distribution

function of the type of those given by Debye and Hückel.

Now, in order to initiate the perturbative expansion, we split the function ĥij(q) into

two contributions

ĥij(q) = ĥ0ij(q) + δĥij(q) (27)

Then, as a starting point, it will be assumed that the functions ĥ0ij(q) can be seen as

a good approximation of the correlation functions ĥij(q). So we can replace ĥij(q) with
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ĥ0ij(q) in the terms to the right of equality in equation (26). This leads to a first correction

which can be separated into three term:

δĥij(q) = δĥ
(1)
ij (q) + δĥ

(2)
ij (q) + δĥ

(3)
ij (q) (28)

with

δĥ
(1)
ij (q) =ĉEij(q) (29a)

δĥ
(2)
ij (q) =

∑
k

nk

[
ĉEik(q) ĥ

0
kj(q) + ĥ0ik(q)ĉ

E
kj(q)

]
(29b)

δĥ
(3)
ij (q) =

∑
k

nk ĥ
0
ik(q)

∑
l

nl ĉ
E
kl(q) ĥ

0
lj(q) (29c)

It is observed that this expression is symmetric for the inversion of the indices i and

j. We note that each of the three terms is proportional to a function ĉEij(q). A remark

can be made on this approximation. For simplicity, it seems tempting to limit ourselves

to the first corrective term and to consider that δĥij(q) ' ĉEij(q). This immediately

leads to δhij(r) ' cEij(r). When the Eq. (23) is used to define the direct correlation

functions cEij(r), this leads to a so-called exponential approximation of the Debye and

Hückel potential which has been used before. However, whatever the choice made to

define cEij(r), the fact of considering that δhij(r) ' cEij(r), implies that electroneutrality

is no longer preserved. Indeed, the electroneutrality condition can be computed from the

functions ĥij(q) by taking the limit where q tends to zero.∑
j

njejĥij(0) = −ei (30)

If it is assumed that δĥij(q) = ĉEij(q), then it is found that the relationship (30) is not

verified. On the other hand, if δĥij(q) is given by Eq. (28), then the electroneutrality

relation (30) holds regardless of the definition chosen for cEij(r).

In this section, in order to find expressions like those of Onsager, the perturbation

computation was limited to the first order power of ĉEij(q). In the last section we will

return to the study of the influence of higher order terms in a power expansion of ĉEij(q).
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4.1 Approximate correlation functions

First, it is obvious that δh
(1)
ij (r), the inverse Fourier transform of δĥ

(1)
ij (q), is the function

cEij(r). If this function is approximated by the expression (24), we find the first corrective

term coming from the expansion to order two of the PB equation (4), as it is used in the

equation (9).

Next, in order to be able to obtain an expression of δh
(2)
ij (r), a differential equation

has been deduced from the equation (29b). As a starting point, equation (29b) has been

multiplied on either side of the equality by the denominator of the functions ĥ0ij(q), namely

(q2 + κ2). Then, the following relation has been introduced:

δh
(2)
ij (r) = eiΦj(r) + ejΦi(r) (31)

with the following differential equation:

(∆− κ2)Φj(r) =
4π

ε
β
∑
k

nkekc
E
jk(r) (32)

Here, it has been used that the Fourier transform of ∆Φj(r) is given by −q2Φ̂j(q). Solving

Eq. (32) allows us to determine δh
(2)
ij (r) when an explicit expression of cEij(r) is given.

When cEij(r) is evaluated using the Eq. (24), we find a contribution to δhij(r), proportional

to
(
e2i ej + eie

2
j

)
like the one that can be deduced from the Eq. (11).

Next, to simplify the evaluation of δh
(3)
ij (r) it is noted that the Eq. (29c) can be

rewritten, given the expressions (31) and (32) deduced from δĥ
(2)
ij (q), following

δĥ
(3)
ij (q) = ej

∑
k

nk ĥ
0
ik(q) Φ̂k(q) (33)

As before both sides of this equation can be multiplied by (q2 + κ2), and the following

differential equation is found

(
∆− κ2

)
δh

(3)
ij (r) =

4π

ε
βeiej

∑
k

nkekΦk(r) (34)

It is noted that this corrective term is proportional to eiej. When the Eq. (24) is used

again to define cEij(r), this term corresponds to the second correction found by Onsager.
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In order to determine the functions δhij(r), it is necessary to impose boundary condi-

tions to complete these differential equations. It is of course imposed that the functions

δhij(r) are finite when the distance r tends to infinity. Furthermore, for its calculation,

Onsager used as a starting function the DH expression of the potential ψDH
i (r), which

takes into account a distance of least approach. The corresponding DH correlation func-

tion hDH
ij (r) is deduced from Eq. (5), (with ψi replaced by ψDH

i )

hDH
ij (r) = − βeiej

ε(1 + κσ)r
e−κ(r−σ) (35)

Therefore, this correlation function has been used as a starting point to evaluate the

correction δhij(r). From this reference function, the function wij(r) was determined using

the relation: −βwij(r) = hDH
ij (r). Then cEij(r) can be defined as a function of wij(r)

using Eq. (23), or alternatively Eq. (24) if one wishes to be satisfied with the first term

of the limited development of the previous equation. In this way, the first contribution

δh
(1)
ij (r) can be immediately determined as before from the corresponding definition of

cEij(r). In order to integrate the differential equations (32) and (34) we have adopted the

boundary conditions at r = σ introduced by Onsager which allows to determine the two

other contributions to δhij(r). More details and usefull expressions to evaluate δh
(2)
ij (r)

and δh
(3)
ij (r) are given in Appendix B. Once the δhij(r) functions have been determined,

it is possible to evaluate their effects on the thermodynamic quantities.

5 Thermodynamics

Several thermodynamic quantities can be evaluated from integrals which depend on the

total correlation functions hij(r). Due to the approximations used to express hij(r), all

possible quantities are not calculated with the same precision. For electrolyte solutions it

is well known that the internal energy can be relatively well described from the functions

hDH
ij (r). Then, it is interesting to determine the contribution to the internal energy due

to the functions δhij(r).
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5.1 The internal energy

The variation of the internal energy due to the functions δhij(r) can be computed wih

the following formula

∆E = 2π
∑
i, j

ninj

∫ ∞
σ

r Vij(r) δhij(r) dr

=
2π

ε

∑
i, j

niei njej

∫ ∞
σ

r δhij(r) dr (36)

Taking into account the three contributions of δhij(r) is quite tedious but straightforward.

Strong term compensations were found between the three contributions. The boundary

conditions have been used to simplify the evaluation of the various contributions. More

details have been presented in Appendix C.1. It was eventually found

∆E =
2π

ε

∑
i, j

niei njej

∫ ∞
σ

rFij(r) dr (37)

with

Fij(r) =
1

1 + κσ
e−κ(r−σ)

(
1− 1

2
κr +

κ2σ2

2 (1 + κσ)

)
cEij(r) (38)

It is recalled that cEij(r) can be defined as a function of wij(r) using Eq. (23), or alterna-

tively Eq. (24).

5.2 The Helmholtz free energy

The Helmholtz free energy can be deduced from the internal energy using a Kirkwood

charging process.

∆A =
2π

ε

∑
i, j

niei njej

∫ 1

0

dλ

∫ ∞
σ

r δhij(λ, r) dr

=
2π

ε

∑
i, j

niei njej

∫ 1

0

dλ

∫ ∞
σ

rFij(λ, r) dr (39)

Here δhij(λ, r) represents the function δhij(r) for which the set of charges ek have been

replaced by λ1/2ek. Consequently the parameter κ is also replaced by λ1/2κ. Similarly

Fij(λ, r) represents the function Fij(r) in which all charges ek are replaced by λ1/2ek, with
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also κ replaced by λ1/2κ. Since Fij(r) is given by eq. (38), then Fij(λ, r) is proportional

to cEij(λ, r). In order to perform the thermodynamic integration on λ, it is necessary to

provide an explicit expression of these excess direct correlation functions. The expression

(23) was used. In this particular case it was found that the thermodynamic integration

can be carried out explicitly. This leads to a relatively simple expression for the excess of

the Helmholtz free energy ∆A (see Appendix C.2).

β∆A = −2π
∑
i,j

ninj

∫ ∞
σ

[
e−βwij(r) − E2

(
−βwij(r)

)]
r2 dr (40)

with βwij(r) = −hDH
ij (r), and

E
N

(
x
)

=
N∑
k=0

xk

k!
(41)

This result presents similarities with the expression of the Helmholtz free energy ob-

tained within the framework of the so-called DHLL+B2 theory [16,39–41].

−β (Aex)DHLL+B2
=

κ3

12π
+
∑
i,j

ninjBij(κ) (42)

where the second virial coefficient Bij(κ) has the form

Bij(κ) = 2π

∫ ∞
0

[
e−β(u

HS
ij (r)+w0

ij(r)) − E2
(
−βw0

ij(r)
)]

r2 dr (43)

in which uHS
ij (r) is the hard sphere potential and βw0

ij(r) = −h0ij(r). This equation

results from the application to electrolytes of the thermodynamic density expansion due

to Mayer [15]. In Eq. (42), the first term (proportional to κ3), is the contribution to the

free energy obtained in the theory of Debye and Hückel for point ions, namely the Debye

and Hückel limiting law (DHLL). By contrast, it should be noted that in this present

study, the free energy ∆A given by Eq. (40) is an excess term over the contribution

obtained in the Debye and Hückel theory taking into account the excluded volume of the

ions. In Eq. (42), the second term (proportionnal to Bij(κ) is very similar to the free

energy ∆A given by Eq. (40). The excess term given by Eq. (40) can be compared to the

contribution for distances larger than σ deduced from the equation for Bij(κ). For these

distances the two expressions are almost identical except that w0
ij(r) appearing in Eq. (43)
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is replaced by wij(r) in Eq. (40). The thermodynamic cluster expansions deduced from

Mayer’s theory have been used to establish series in increasing power of the concentration

beyond the limiting law of Debye and Hückel [42, 43]. Thermodynamic developments of

the DHLL+B2 type are especially applicable at low concentrations [40, 44]. It has been

shown that in order to better describe the thermodynamics at high concentrations it is

necessary to take into account higher order virial coefficients which are more difficult to

evaluate, beyond the B2 terms [39].

Since our initial goal was to find the specific thermodynamic contribution of asym-

metric electrolytes, the excess free energy β∆A is separated into two parts, namely the

asymmetric contribution β∆A2 and the remainder of the excess free energy β∆ASR, which

is assumed to be a contribution from shorter distances. The part β∆A2 can be deduced

when only the first term of the series expansion of the term between square brackets in

Eq. (40) is retained.

β∆A2 =
π

3

(
β

ε(1 + κσ)

)3(∑
k

nke
3
k

)2

e3κσ E1(3κσ) (44)

with

E1(x) =

∫ ∞
x

dt
e−t

t
(45)

At high dilution, Eq. (44) tends towards the excess free energy term, proportional to

(
∑

k nke
3
k)

2, as presented in [42,43].

The shortest range contribution to the excess free energy β∆ASR is given by

β∆ASR = −2π
∑
i,j

ninj

∫ ∞
σ

[
e−βwij(r) − E3

(
−βwij(r)

)]
r2 dr (46)

Contrary to the previous contribution, this one remains for symmetrical electrolytes. In

particular, the integral involved in this expression can also be evaluated in the limit where

the concentration tends towards zero. In this limit, the potential wij(r) is replaced by

the Coulomb potential Vij(r). Then, at low concentrations, the term β∆ASR becomes

proportional to the square of the concentration. Obviously, by differentiation the excess

pressure can be deduced from the free energy. At low concentrations, the contribution
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to the excess pressure deduced from β∆ASR is also proportional to the square of the

concentration [45]. This attractive electrostatic contribution has been embed in models

considering the formation of anion-cation pairs [45, 46].

5.3 Excess osmotic coefficient

From the Helmholtz free energy, the excess pressure and osmotic coefficient can be deter-

mined by differentiation. The excess osmotic coefficient ∆ϕ can be obtained by using the

relation

∆ϕ =
β∆P

n
=
∑
k

nk
∂

∂nk

(
β∆A

n

)
(47)

where ∆P is the excess pressure deduced from the free energy ∆A and n =
∑

j nj.

Starting from β∆A given by Eq. (40), the osmotic pressure can then be deduced:

β∆P = β∆A− πβ

ε (1 + κσ)

∑
i,j

nieinjej

∫ ∞
σ

e−κ(r−σ)
(
κr − κ2σ2

1 + κσ

)
cEij(r) r dr (48)

The asymmetric contribution β∆P2 deduced from β∆A2 is given in Appendix C.3.

Additionally, using Eq. (48), it is found that the shortest range contribution β∆PSR

to the excess pressure, becomes equal to β∆ASR at very low concentrations. In this limit,

the potential wij(r) is replaced by the Coulomb potential Vij(r). Therefore, β∆PSR is

proportional to the square of the concentration at high dilution. This attractive contribu-

tion can be taken into consideration within models involving ionic association. In models

considering ion pairs formation, if we denote by n
P

the concentration of pairs, then the

osmotic excess coefficient contains the additional term: −n
P
/n. In these models, by im-

posing that the concentration of ion pairs is equal to −β∆PSR at high dilution, then this

attractive contribution to the pressure is simply taken into consideration [45, 46]. This

last approach, both takes into account the development deduced from the thermodynamic

cluster expansions, and also describes well the evolution of thermodynamic properties at

high concentrations. The modeling of the phase separation in symmetrical electrolytes

has been performed with this type of model [47–49].
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As an alternative, instead of being determined by free energy differentiation, the con-

tribution to the pressure associated to the functions δhij(r) can be obtained via the virial

theorem:

β∆P v =
2π

3

∑
i,j

ninjσ
3δhij(σ) +

2π

3ε
β
∑
i,j

nieinjej

∫ ∞
σ

δhij(r) r dr (49)

The pressure deduced with Eq. (49) represents a correction to the pressure β∆P v
1 , ob-

tained with this same equation, when hDH
ij (r) is considered instead of δhij(r). Significant

simplifications have been found when summing the three components of δhij(σ) occurring

in the first term of Eq. (49). Then, using the definition (36) of the internal energy, ones

arrive at

β∆P v =
2π

3
σ3
∑
i,j

ninjc
E
ij(σ) +

1

3
β∆E (50)

The contribution β∆P v
2 obtained from Eq. (50), with cEij(r) given by the Eq. (24), is

also given in Appendix C.3. Surprisingly, considering that cEij(σ) is defined by Eq. (24),

the first term gives a non-zero contribution for symmetrical electrolytes. As before in

β∆P2 however, the second term β∆E2/3, deduced from the Eq. (36) is proportional

to (
∑

i nie
3
i )

2. It therefore vanishes for symmetrical electrolytes. When the first term,

dependent on the cEij(σ), in β∆P v
2 is added to the contribution β∆P v

1 , the expression

determined by Pitzer is retrieved [50,51]. Then, the sum of the two terms β(∆P v
1 + ∆P v

2 )

is equal to the corresponding term determined by Pitzer plus β∆E2/3.

When the excess pressure is deduced from the free energy, the DH term that remains

for symmetric electrolytes, is determined independently of the asymmetric term β∆P2.

On the other hand, when the excess pressure is determined from the virial theorem the

various contributions are not separated. Accordingly, the next term in the expansion of

cEij(σ) from Eq. (23) provides also a contribution proportional to (
∑

i nie
3
i )

2. More details

have been presented in Appendix C.3.
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6 Conclusion and prospects

Onsager made corrections to the Poisson-Boltzmann equation, to more properly describe

interactions in asymmetric electrolytes. His attention focused in particular on the symme-

try of correlation functions, such that hij(r) = hji(r). The linearized equation of Debye

and Hückel is indeed symmetric, since hij(r) proportional to the product of the charges

eiei. It is no longer true, when we consider corrective terms deduced from an expansion

in perturbation of the Poisson-Boltzmann equation. To correct this defect, Onsager has

established a system of equations allowing to calculate symmetric correlation functions.

In this work it has been shown that these correlation functions, describing in par-

ticular asymmetric electrolytes, can also be deduced from the OZ integral equations by

considering a nonlinear closure relation of the HNC type. These equations were solved in

perturbation, starting from a linearized solution. It should be noted that the approximate

calculation, used to explicitly evaluate these correlation functions, satisfies the conditions

of electroneutrality. The free energy associated with these correlation functions has been

calculated. Surprisingly, the excess free energy, with respect to that of Debye with vol-

ume excluded, has a mathematical form similar to that deduced from Mayer’s theory. We

found the specific contribution of asymmetric electrolytes. Moreover, the contributions

from shorter distances, responsible for the electrostatic association, are also recovered.

The excess integral equations were solved in perturbation starting with the DH cor-

relation functions chosen as reference. This limits the application of this study to low

concentrations. Other reference functions are possible. In particular, the integral equa-

tions describing the excess, when the reference functions are those of the MSA theory,

have also been established. They could be used for more concentrated solutions.

Furthermore, changes in the electrostatic screening length compared to that of Debye’s

theory have been described previously [37, 38, 52–56]. An accurate description of the

behavior of screening in binary electrolytes has been obtained by applying the dressed

ion theory. The dressed ion theory (DIT) was introduced in particular to extend the field

of application of Debye and Hückel’s theory [52, 53]. This theory has been also applied
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to the description of asymmetric electrolytes [54, 55]. Starting from the excess integral

equations (26), an analysis according to the dressed ion theory has been performed. This

allowed to assess the effect of higher order terms in a power expansion of ĉEik(q) functions.

A description of the summation method used is given in Appendix D. This approach

led to consider effective charges e∗i and an effective screening parameter κ∗, instead of

bare charges ei and the Debye screening parameter κ. To make a comparison with the

expressions obtained previously, only the result obtained at low concentrations is presented

here. In this limit it was found,

ĥij(q) ' ĉEij(q)−
4π

ε
β

e∗i e
∗
j

q2 + κ2∗
(51)

with

e∗i = ei +
∑
k

nkekĉ
E
ik(q) (52)

and the effective screening parameter κ∗ can be defined from these effective charges

κ2∗ =
4π

ε
β
∑
i

nieie
∗
i (53)

In Eq. (51), the second term after ĉEij(q), looks like ĥ0ij(q) as given in (19), but with e∗i e
∗
j

in place of eiej and κ2∗ in place of κ2. For comparison, the next term after ĉEij(q) in Eq.

(51), can be expanded to the first order power of ĉEik(q). Two terms proportional to eiej

are found, which are actually ĥ0ij(q) and δĥ
(3)
ij (q). Then, the function δĥ

(3)
ij (q) represents

at low concentrations the effect of the variation of the screening length on the part of

the correlation function proportional to eiej. When the product e∗i e
∗
j is expanded to first

order power of ĉEik(q) and ĉEjk(q), the function δĥ
(2)
ij (q) is also recovered. Then, the functions

δĥ
(2)
ij (q) account for the difference between the effective charges e∗i and the bare charges

ei, to the first order in power of the ĉElk(q) functions. Therefore, Onsager’s perturbation

method, as adapted in this study, provides an alternative approach to evaluate variations

in screening length and effective charges.

The approximation used to calculate the correlation functions δĥij(q) fullfills the elec-

troneutrality relation (deduced when q → 0). Using the OZ equations, the Stillinger and

Lovett relations [57–59] could also be studied, especially when more accurate references
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will be used. In addition, the correlation functions δhij(r) obtained in this study could

also be used to evaluate the effect of these corrections on transport properties such as

electrical conductivity [60].

Appendices :

A Excess integral equations relative to

other reference total correlation functions

In this appendix, generalizations are presented for the excess integral equations introduced

in section 3.2. Instead of ĥ0ij(q) other total correlation functions have been chosen as

reference.

A.1 Debye and Hückel treatment with excluded volume

First the chosen reference correlation function ĥrefij (q) is that of Debye and Hückel with ex-

cluded volume ĥDH
ij (q), instead of ĥ0ij(q). Indeed, for its perturbation calculation, Onsager

used as a starting function the expression of DH, which takes into account a distance of

least approach. The Fourier transform of this function is given by:

ĥDH
ij (q) = − 4πβ

ε(1 + κσ)(q2 + κ2)
eiej

(
cos (qσ) +

κ

q
sin (qσ)

)
(54)

It can be found that this function is the solution of the following integral equation

ĥij(q) = ĉDH
ij (q) +

∑
k

nk ĉ
0
ik(q) ĥkj(q) (55)
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with ĉ 0ik(q) given by Eq. (18) and

ĉDH
ij (q) = − 4πβ

ε(1 + κσ)q2
eiej

(
cos (qσ) +

κ

q
sin (qσ)

)
(56)

or equivalently

cDH
ij (r) =


−β

ε
κ

1+κσ
eiej if r < σ

− β
εr
eiej if r > σ

(57)

It is observed in Eq. (55) that the effect of the excluded volume is taken into account

only for the direct correlation function ĉDH
ij (q). The indirect correlations with the ions

k around the ion i remain described with the functions ĉ 0ik(q) as for point ions. As is

has been noted before, in the DH theory the screening of the surrounding ions does not

depend on their size. Next, the introduction of the functions ĉEik(q) into Eq. (55) leads to

ĥij(q) = ĉDH
ij (q) + ĉEij(q) +

∑
k

nk

(
ĉ 0ik(q) + ĉEik(q)

)
ĥkj(q) (58)

By performing the same transformation used for the point ions it is found

ĥij(q) = ĥDH
ij (q) + ĉEij(q) +

∑
k

nk

[
ĉEik(q) ĥkj(q)

+ĥ0ik(q)

(
ĉEkj(q) +

∑
l

nl ĉ
E
kl(q) ĥlj(q)

)]
(59)

which is similar to Eq. (26) but with the function ĥ0ij(q) after equality, replaced by the

function ĥDH
ij (q).

A.2 The mean spherical approximation

Next, to extend this approach to higher concentrations, the chosen reference correlation

function ĥrefij (q) could be the one given by the MSA theory. For ions of the same size, in

the MSA approximation, the direct correlation functions are given by eq. (17) for r > σ.

There is also an additional contribution for r < σ. For ions of the same size σ, the Fourier

transform of cMSA
ij (r) can be separated into two terms as follows

ĉMSA
ij (q) = ĉHS

00 (q) + ĉ11(q) eiej (60)
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such that ĉHS
00 (q) and ĉ11(q) are two functions which are independent of i and j. Then,

using this relation and the Eq. (21) for cij(r), starting from the OZ’s equations we find

ĥij(q) = ĥMSA
ij (q) + ĉEij(q) +

∑
k

nk

[
ĉEik(q) ĥkj(q)

+ ĥMSA
ik (q)

(
ĉEkj(q) +

∑
l

nl ĉ
E
kl(q) ĥlj(q)

)]
(61)

which is similar to Eq. (26) but with all the functions ĥ0(q) replaced by the corresponding

functions ĥMSA(q).

B Integration of the functions δhij(r)

In this appendix, the boundary conditions at r = σ introduced by Onsager are recovered.

This allows to integrate the differential equations (32) and (34) and thus determine the

functions δh
(2)
ij (r) and δh

(3)
ij (r).

Starting from the previously determined Eqs. (29b) and (29c), the limit when the

variable q → 0 of each of the contributions to δĥij(q) leads to the following relations:∫ ∞
σ

r2 Φj(r) dr = −4πβ

εκ2

∑
k

nkek

∫ ∞
σ

r2 cEjk(r) dr (62)

∫ ∞
σ

r2 δh
(3)
ij (r) dr = −4πβ

εκ2
eiej

∑
k

nkek

∫ ∞
σ

r2 Φk(r) dr (63)

Furthermore, the differential equations (32) and (34) can be written more explicitly as

∂

∂r

(
r2
∂Φj(r)

∂r

)
− κ2 r2Φj(r) =

4π

ε
β
∑
k

nkek r
2cEjk(r) (64)

∂

∂r

(
r2
∂δh

(3)
ij (r)

∂r

)
− κ2 r2δh(3)ij (r) =

4π

ε
βeiej

∑
k

nkek r
2Φk(r) (65)

By using relations (62) and (63), it is found by integration of the differential equation

(64) and (65) that(
∂Φj

∂r

)
r=σ

= 0 (66)

26



and (
∂δh

(3)
ij

∂r

)
r=σ

= 0 (67)

This allows to integrate the differential equations (32) and thus determine the functions

δh
(2)
ij (r). The relation (31) is used to express δh

(2)
ij (r) with the Φj(r) functions, for which

it is found

Φj(r) = −4π

ε
β
∑
k

nkekΨjk(r) (68)

with

Ψjk(r) =
e−κr

2κr

∫ r

σ

s eκs cEjk(s) ds +
eκr

2κr

∫ ∞
r

s e−κs cEjk(s) ds + Cjk
e−κr

2κr
(69)

and

Cjk = −1− κσ
1 + κσ

e2κσ
∫ ∞
σ

s e−κs cEjk(s) ds (70)

Similarly, Eq. (34) can be integrated, leading to the following expression for δh
(3)
ij (r)

δh
(3)
ij (r) =

(
4π

ε
β

)2

eiej
∑
k,l

nkek nlel Xkl(r) (71)

with

Xkl(r) =
e−κr

4κ2

∫ r

σ

s eκs cEkl(s) ds −
eκr

4κ2

∫ ∞
r

s e−κs cEkl(s) ds

− e−κr

4κ2r

∫ r

σ

s2 eκs cEkl(s) ds +
eκr

4κ2r

∫ ∞
r

s2 e−κs cEkl(s) ds

+ Ckl
e−κr

4κ2
+

1

2κ2
Ψkl(r) +Dkl

e−κr

4κr
(72)

and

Dkl = −

[
2κσ3

(1 + κσ)2

∫ ∞
σ

s e−κscEkl(s) ds

+
1− κσ

κ(1 + κσ)

∫ ∞
σ

s2 e−κscEkl(s) ds

]
e2κσ (73)
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C Thermodynamic integrations

In this appendix, more details are given on the simplifications used to perform the integrals

involved in the thermodynamic quantities.

C.1 The internal energy

In order to facilitate the calculation of the various integrals encountered in ∆E, the bound-

ary conditions introduced previously have been used. First, the differential equations (32)

and (34) have been written more explicitly as

∂2 (rΦj(r))

∂r2
− κ2 rΦj(r) =

4π

ε
β
∑
k

nkek r c
E
jk(r) (74)

∂2
(
r δh

(3)
ij (r)

)
∂r2

− κ2 r δh(3)ij (r) =
4π

ε
βeiej

∑
k

nkek rΦk(r) (75)

After integration between σ and∞, and taking into account the boundary conditions (66)

and (67), it is obtained∫ ∞
σ

rΦj(r) dr = − 1

κ2

[
Φj(σ) +

4π

ε
β
∑
k

nkek

∫ ∞
σ

r cEjk(r) dr

]
(76)

∫ ∞
σ

r δh
(3)
ij (r) dr = − 1

κ2

[
δh

(3)
ij (σ) +

4π

ε
βeiej

∑
k

nkek

∫ ∞
σ

rΦk(r) dr

]
(77)

These relations as been used to simplify the expression of ∆E. It has been found

∆E = − 1

2β

∑
j

njejΦj(σ)− 2π

εκ2

∑
i

niei
∑
j

njej δh
(3)
ij (σ) (78)

and using eq. (65) and (71), the eq. (37) for ∆E was obtained.

C.2 The Helmholtz free energy

The equation (39) used to calculate ∆A requires performing an integration according to

λ of the function Fij(λ, r). This function is given by

Fij(λ, r) =
exp

[
−λ1/2κ (r − σ)

]
1 + λ1/2κσ

(
1− λ1/2

2
κr +

λκ2σ2

2 (1 + λ1/2κσ)

)
cEij(λ, r) (79)
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If the excess direct correlation function cEij(r) is defined by Eq. (23), then

cEij(λ, r) =
∞∑
n=2

1

n!

(
−λeiejβ

ε (1 + λ1/2κσ) r

)n
exp

[
−nλ1/2κ(r − σ)

]
(80)

To make easier the integration, we used in place of λ the variable u = λ1/2 and we

expressed ∆A as a sum:

∆A =
∞∑
n=2

∆An (81)

with

∆An =
4π

εn!

∑
i,j

nie
n+1
i nje

n+1
j

(
−β
ε

)n ∫ ∞
σ

dr

rn−1
·

∫ 1

0

du
u2n+1

(1 + κσu)n+1

(
1− κru

2
+

κ2σ2u2

2 (1 + κσu)

)
e−(n+1)κ(r−σ)u (82)

Now using the relation:

∂

∂u

[
u2n+2

2(n+ 1)

e−(n+1)uκ(r−σ)

(1 + κσu)n+1

]
= u2n+1

[
1− κru

2
+

κ2σ2u2

2(1 + κσu)

]
e−(n+1)uκ(r−σ)

(1 + κσu)n+1 (83)

The integration on the variable u can be performed analytically to give:

∆An = − 2π

β(n+ 1)!

∑
i,j

ninj

∫ ∞
σ

(
−βwij(r)

)n+1

r2 dr (84)

Finally, by noting the similarity with the terms of the series expansion of exp [−βwij(r)],

the expression (40) of ∆A was obtained.

C.3 The excess pressure

In this subsection, explicit expressions for the excess pressure asymmetry contribution

are detailed. To facilitate the numerical evaluation of the various expressions obtained,

the sums (
∑

k nke
3)2 have been expressed as functions of κ2 and of the parameter η1

introduced by Onsager (see Eq. (10)). This allowed to rewrite the prefactor found in Eq.

(44) and in the equations for the excess pressure, according to

π

3

(
β

ε(1 + κσ)

)3(∑
k

nke
3
k

)2

=
1

48π

κ4

(1 + κσ)3
β

ε
η21 (85)
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It is noted that the ratio βη21/ε has the dimension of a length.

First, from the equation (44) for the free energy β∆A2, by differentiation according

to the Eq. (47), the excess pressure β∆P2 was obtained

βP2 =
1

48π

κ4

(1 + κσ)3
β

ε
η21

[
e3κσ E1(3κσ)

(
1 + c

A

κ2σ2

(1 + κσ)

)
− 1

2

]
(86)

with the coefficient c
A

= 3/2. The results of calculations carried out according to Eq. (86)

are displayed in Fig. 1, for 2-1 or 3-1 electrolytes in water-like solvent at 25oC (εr = 78.3).

All the ions have the same diameter of 0.4 nm. For each type of salt, the contribution

to the osmotic coefficient deduced by Debye and Hückel with volume excluded alone is

compared with the sum of this contribution and the term βP2/n. We observe for both salts

that the additional contribution βP2/n induces an upward deviation at low concentrations

and a downward deviation at high concentrations, compared to the contribution given by

Debye and Hückel.

Alternatively, the excess pressure can be evaluated from the virial using the Eq. (50).

Before evaluating the contribution of asymmetry it should be recalled that already for the

term of reference deduced from the DH functions hDH
ij (r), the differentiation of the free

energy and the use of the virial formula do not lead to the same result. If in Eq. (49),

δhij(r) is replaced by hDH
ij (r), the excess pressure β∆P v

1 can be evaluated.

β∆P v
1 = − 1

24π

κ3

1 + κσ

This relation is known to give poorer results than that deduced from the free energy by

differentiation. This comes from approximations used to obtain the Debye and Hückel

correlation functions hDH
ij (r). then, for the corrective term δhij(r) the comparison between

the two paths to determine the excess pressure can also inform us about the robustness of

the results obtained. From the Eq. (50), with cEij(r) given by the relation (24), the excess

pressure β∆P v
2 has been deducted

β∆P v
2 =

1

48π

κ4σ

(1 + κσ)2
+

1

3
β∆E2 (87)

where β∆E2/3 was determined from the equation (36)

1

3
β∆E2 =

1

48π

κ4

(1 + κσ)3
β

ε
η21

[
e3κσ E1(3κσ)

(
1 +

κ2σ2

2(1 + κσ)

)
− 1

6

]
(88)
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Figure 1: Electrostatic contributions βP el/n to the osmotic coefficient as a function of

the square root of the ionic strength. Cations and anions have the same diameter σ = 0.4

nm. The two upper curves relate to a 2-1 electrolyte. The lower curves relate to a

3-1 electrolyte. Continuous red curve with triangles: DH contribution with excluded

volume for a 2-1 electrolyte. Green curve in dashes and dots: Same contribution + βP2/n

determined from Eq. (86). Blue curve with squares: DH contribution with excluded

volume for a 3-1 electrolyte. Dashed and dotted purple curve: Same contribution + βP2/n

determined from Eq. (86). Black dotted line: DH limiting law for a 3-1 electrolyte.
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The first term in β∆P v
2 gives a nonzero contribution for symmetric electrolytes. On the

other hand, the second term β∆E2/3, proportional to η21 is specific to asymmetric elec-

trolytes. When the first term in β∆P v
2 is added to β∆P v

1 , the excess pressure calculated

by Pitzer is obtained [50, 51]. The relation deduced by Pitzer is known to be a good

correction of the expression β∆P v
1 .

If δ∆P v
2 contains a corrective term compared to β∆P v

1 , then it is possible that the fol-

lowing contribution β∆P v
3 brings a correction to the asymmetric part deduced from β∆P v

2 .

Indeed, the next term in the expansion of cEij(σ) from Eq. (23), (namely: (−βwij(r))3/6),

allows to determine with the first term of Eq. (50) a correction proportional to η21. In or-

der to make comparisons with the asymmetric part β∆P2, we can separate the expression

of the excess pressure deduced from the virial into a symmetric contribution β∆P v
s and

an asymmetric contribution β∆P v
a . Shorter range terms are neglected here. The symmet-

rical contribution is that corresponding to the excess pressure calculated by Pitzer. The

asymmetrical contribution is that deduced from the addition of second term of β∆P v
2 and

of the first term in β∆P v
3 .

βP v
a =

1

48π

κ4

(1 + κσ)3
β

ε
η21

[
e3κσ E1(3κσ)

(
1 + cv

κ2σ2

(1 + κσ)

)
− 1

2

]
(89)

with the coefficient cv = 1/2. The comparison between β∆P2 and β∆P v
a indicates that

these two equations differ only by the coefficient c
A

in (86), replaced by cv in (89).

D Analysis according to the dressed ion theory

In this section, starting from the functions ĥij(q) deduced from the integral equations,

a representation of the type of that of the DIT is obtained. This analysis brings an

additional interpretation on the corrective terms, introduced by Onsager and recovered

using the integral equations.

The approximation (23) was used to define the direct correlation functions cEij(r).

This allowed to evaluate the corrective terms δhij(r) from a first-order expansion of the

excess integral equation (26). Implicitly, resolution limited to the first-order assumes

that the corrective terms are small compared to the reference term. Since the corrective
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terms are proportional to concentration, they are smaller at lower concentrations. If the

corrective terms become too important the convergence of a calculation in perturbation

is not ensured. To better describe the functions at the highest concentrations, it seems

necessary to also study the higher order terms and to carry out a resummation of the

expressions obtained.

Starting from the order zero for which ĥij ' ĥ0ij, it was found that the additional terms

to the first order are proportional to ĉEij. Later, the second-order supplementary terms are

proportional to (ĉE)2 and so on. All these corrections are products of functions ĥ0 and

functions ĉE. Moreover, it is observed in the set of corrective terms that any number of

ĉE functions can succeed each other. This last characteristic can easily be deduced from

Eq. (26). If we assume that all the functions ĥ0ik = 0, in the equation (26) we obtain an

OZ-like equation

ĥij = ĉEij +
∑
k

nkĉ
E
ik · ĥkj (90)

The functions which are solutions of these particular equations were denoted ĥEij. Evaluat-

ing in perturbation the solution of this equation we recover a sum of product of functions

ĉEij

ĥEij ' ĉEij +
∑
k

nk ĉ
E
ik

[
ĉEkj +

∑
l

nl ĉ
E
kl

(
ĉElj + . . .

)]

In the perturbation expansion of (26), when this sum of products of functions ĉEij was

found, it has been subsequently denoted ĥEij. On the other hand, in all of these corrective

terms, it is observed within each series that two functions ĉE can only be separated by

a single function ĥ0. Then, after considering all possible products of function ĉE, it

is observed within each series that two functions ĥE can only be separated by a single

function ĥ0.

Some corrections are series that start with a function ĥ0ik and end with a function ĥ0lj.

For example, we find ĥ0ij at zero order and at first order the product nkĥ
0
iknlĉ

E
klĥ

0
lj, which

led to the term δĥ
(3)
ij . The set of corrective terms presenting this characteristic has been
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denoted ĥ00ij . The series of terms corresponding to ĥ00ij (q) can be summed according to

ĥ00ij (q) = ĥ0ij(q) +
∑
k

nkĥ
0
ik(q)

∑
l

nlĥ
E
kl(q) · ĥ00lj (q) (91)

Using the functions ĥEij(q) and ĥ00ij (q), it was found that ĥij(q) can be separated into five

terms according to

ĥij(q) = ĥEij(q) + ĥ00ij (q) +
∑
k

nk

[
ĥ00ik (q) ĥEkj(q)

+ĥEik(q)

(
ĥ00kj(q) +

∑
l

nlĥ
00
kl (q) ĥ

E
lj(q)

)]
(92)

Using Eq. (19) for the functions ĥ0ij(q), from Eq. (91), it was found that ĥ00ij (q) can be

rewritten as

ĥ00ij (q) = −4π

ε
β

eiej
q2 + κ2∗

(93)

with

κ2∗ = κ2 +
4π

ε
β
∑
k

nkek
∑
l

nlelĥ
E
kl(q) (94)

Similarly, from Eq. (92), it was found that ĥij(q) can be rewritten as

ĥij(q) = ĥEij(q)−
4π

ε
β

e∗i e
∗
j

q2 + κ2∗
(95)

with

e∗i = ei +
∑
k

nkekĥ
E
ik(q) (96)

Equivalently, the effective screening parameter κ∗ can be defined from these effective

charges

κ2∗ =
4π

ε
β
∑
k

nkeke
∗
k (97)

Considering the expansion at low concentrations of ĥ00ij (q) from Eq. (91), by replacing

ĥ00ij (q) in the right side by ĥ0ij(q), we recover that ĥ00ij (q) looks like ĥ0ij(q) +δĥ
(3)
ij (q) as

established in section 4, but with ĉE replaced by ĥE in this latter term. Since at low
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concentrations ĥE tends towards ĉE, the expression of δĥ
(3)
ij (q) presented before is recovered

in this limit. Equivalently, the expansion at low concentrations of ĥ00ij (q) can be performed

from Eq. (93). In the denominator, q2+κ2∗ is replaced by q2+κ2+δκ2. Here, δκ2 represents

the difference between κ2∗ and κ2, given by Eq. (94). Expanding to first order in δκ2, at

low concentrations we recover again the terms ĥ0ij(q) and δĥ
(3)
ij (q). Therefore, the term

δĥ
(3)
ij (q) represents the effect of the variation of the screening parameter coming from the

first-order consideration of the functions ĉEij(q). Similarly, the terms included in δĥ
(2)
ij (q)

represent corrections coming from the difference between the effective charges e∗i and bare

charges ei.

Finally, if at low concentrations, it is assumed that ĥEij(q) ' ĉEij(q), then Eqs. (51-53)

can be deduced from Eqs. (95-97).
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