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Abstract 20 

As part of the innate immune system, the complement system plays a key role in defense against 21 

pathogens and in host cell homeostasis. This enzymatic cascade is rapidly triggered in the presence of 22 

activating surfaces. Physiologically, it is tightly regulated on host cells to avoid uncontrolled activation 23 

and self-damage. In cases of abnormal complement dysregulation/overactivation, the endothelium is 24 

one of the primary targets. 25 

Complement has gained momentum as a research interest in the last decade because its dysregulation 26 

has been implicated in the pathophysiology of many human diseases. Thus, it appears to be a promising 27 

candidate for therapeutic intervention. 28 

However, detecting abnormal complement activation is challenging. In many pathological conditions, 29 

complement activation occurs locally in tissues. Standard routine exploration of the plasma 30 

concentration of the complement components shows values in the normal range. The available tests to 31 
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demonstrate such dysregulation with diagnostic, prognostic, and therapeutic implications are limited. 32 

There is a real need to develop tools to demonstrate the implications of complement in diseases and to 33 

explore the complex interplay between complement activation and regulation on human cells. The 34 

analysis of complement deposits on cultured endothelial cells incubated with pathologic human serum 35 

holds promise as a reference assay. This ex vivo assay most closely resembles the physiological context. 36 

It has been used to explore complement activation from sera of patients with atypical hemolytic uremic 37 

syndrome, malignant hypertension, elevated liver enzymes low platelet syndrome, sickle cell disease, 38 

pre-eclampsia, and others. In some cases, it is used to adjust the therapeutic regimen with a 39 

complement-blocking drug. Nevertheless, an international standard is lacking, and the mechanism by 40 

which complement is activated in this assay is not fully understood. Moreover, primary cell culture 41 

remains difficult to perform, which probably explains why no standardized or commercialized assay 42 

has been proposed. Here, we review the diseases for which endothelial assays have been applied. We 43 

also compare this test with others currently available to explore complement overactivation. Finally, 44 

we discuss the unanswered questions and challenges to overcome for validating the assays as a tool in 45 

routine clinical practice. 46 

  47 



  

 Measuring complement attack on endothelial cells 

 
3 

Introduction 48 

As part of the complex innate immune surveillance system, the complement system plays a key role in 49 

defense against pathogens and in host homeostasis. This enzymatic cascade is rapidly triggered in the 50 

presence of activating surfaces, such as bacteria or apoptotic necrotic cells. However, the cascade is 51 

highly physiologically regulated on host cells to avoid self-aggression. The endothelium is one of the 52 

primary targets of complement dysregulation. There is increasing evidence of complement 53 

implications in the pathophysiology of many human diseases. Many complement-blocking therapeutics 54 

are under development, and some are already available in clinical practice. Nevertheless, detection of 55 

abnormal functioning complement is challenging, because in many pathological conditions C3 and C4 56 

plasma levels, the two main biomarkers of complement activation, remain within normal ranges. The 57 

available tests to demonstrate such overactivation with diagnostic, prognostic, and therapeutic 58 

implications are limited. Methods are poorly standardized, and only a few have functional value. 59 

Therefore, there is a need to develop a robust and standardized tool for identifying infraclinical 60 

complement activation.  61 

The final objective is to allow better pathophysiologically based therapeutic management of patients. 62 

The analysis of complement deposits on cultured endothelial cells (EC) incubated with patient serum 63 

holds promise as a reference assay. This approach has been used to explore complement activation in 64 

the sera of patients with atypical hemolytic uremic syndrome (aHUS), malignant hypertension, 65 

hemolysis, elevated liver enzymes, and low platelet (HELLP) syndrome, sickle cell disease (SCD), and 66 

pre-eclampsia. In some cases, adjusting the complement-blocking drugs has been considered. 67 

Nevertheless, the international standard for this test is lacking, and the mechanism by which 68 

complement is activated in this assay is not fully understood.  69 

After a brief summary of the complement cascade, we present the mechanisms of complement 70 

activation and how they contribute to cell damage in several human diseases. We then provide an 71 

overview of the tests currently available to explore complement overactivation in routine practice. 72 

Finally, through a comparative analysis of the available endothelial assays for complement exploration, 73 

we discuss the unanswered questions and challenges to overcome to validate the study of complement 74 

deposition on cultured EC as a tool in routine clinical practice.  75 

 76 

The complement system in health and disease 77 

The complement system plays a key role in cell homeostasis, inflammation, and defense against 78 

pathogens. It is the first line of defense. The system comprises more than 30 soluble and membrane-79 

bound proteins. Three different pathways lead to complement activation: the classical (CP), lectin (LP), 80 

and alternative (AP) pathways. When activated, these serine protease cascades converge to the 81 

formation of two enzymes, C3 convertase and C5 convertase, allowing the generation of the main 82 

effectors of this system: anaphylatoxins (C3a and C5a), opsonin (C3b/iC3b), and the membrane attack 83 

complex (MAC) (C5b-9). CP and LP are initiated by the recognition of pathogen-associated molecular 84 

patterns or damage-associated molecular patterns by pattern-recognition molecules (C1q and mannose-85 

binding lectin). Conversely, AP is constantly activated at a low level in the fluid phase, generating a 86 

small quantity of C3b. In the presence of an activating surface (apopto-necrotic or bacterial), C3b 87 

covalently binds to the surface, and thus, initiates cell surface C3 convertase formation (C3bBb) and 88 

the AP amplification loop. To avoid self-aggression, AP is highly regulated in the fluid phase and on 89 

the host cell surface by soluble (factor H (FH), factor I (FI)) and membrane-bound regulators 90 
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(membrane cofactor protein (MCP) or CD46, complement receptor 1 (CR1) or CD35, decay 91 

accelerating factor or CD55, and CD59). In humans, deficiencies in complement regulatory proteins 92 

are associated with rare diseases, such as aHUS, C3 glomerulopathy (C3G), and paroxysmal nocturnal 93 

hemoglobinuria (PNH). However, complement activation triggered by different pathophysiological 94 

processes that overwhelm the capacity of regulation has been increasingly described in a wide spectrum 95 

of diseases.  96 

 97 

Complement implication in diseases  98 

While AP overactivation is the central mechanism of cell and tissue injury in complementopathies 99 

(aHUS, C3G, and PNH), complement is crucial to tissue injury in a wide variety of diseases. These 100 

include age-related macular degeneration (AMD), antibody-mediated rejection (ABMR), 101 

cryoglobulinemic vasculitis (CV), IgA nephropathy (IgAN), systemic lupus erythematosus (SLE), anti-102 

phospholipid syndrome (APS), ANCA-associated vasculitis (AAV), rheumatoid arthritis (RA), 103 

HELLP syndrome, pre-eclampsia, myasthenia gravis (MG), neuromyelitis optica spectrum disorder 104 

(NMOSD), SCD, and rhabdomyolysis-induced acute kidney injury (RIAKI). To a lesser extent, 105 

complement seems to be involved in an increasing spectrum of human pathological conditions, such 106 

as inflammatory disorders, ischemia/reperfusion, cancer, degenerative disorders (e.g., Alzheimer’s 107 

disease, atherosclerosis), and more recently, viral infections that include COVID-19 (1,2) (Figure 1). 108 

Complementopathies are characterized by a specific cell target of AP-mediated damage. In aHUS and 109 

PNH, AP dysregulation occurs on the cell membrane, EC surface or platelets (3) and erythrocyte 110 

surface (4). In C3G, overactivation of C3 and C5 convertases may occur in the fluid phase or locally 111 

within the glomeruli, where the targeted surface remains to be determined (suggestions include 112 

glomerular EC and mesangial cells). AP dysregulation is a central pathophysiological mechanism in 113 

these diseases. It can be related to innate or acquired abnormalities in complement components, mainly 114 

regulators (FH, FI, or MCP) or C3 convertase components (C3 or FB) (5–16).  115 

In diseases with major complement contributions, complement activation can be triggered by one or 116 

another pathway. In CV (17) and ABMR (18), activation occurs through CP in the presence of immune 117 

complexes (IC). In cryoglobulinemia (type II), IC are composed of IgM with rheumatoid factor activity 118 

associated with polyclonal IgG. In ABMR, IC are composed of IgG and donor HLA molecules. 119 

Conversely, despite the disease being triggered by the presence of IC, AP appears to be essential for 120 

disease development in mouse models of RA (19,20) and SLE (21–23). This activation can be 121 

enhanced by apoptotic and necrotic cells due to prior damage (24) or by proteins of the extracellular 122 

matrix (ECM) from damaged cartilage in RA (25). In IgAN, AP (26), and LP (27) activation is 123 

mediated by polymeric IgA. In vitro, a correlation was found between C3 cleavage products (iC3b, 124 

C3c, C3dg) and IgA-A-IgG IC levels, suggesting that IC-containing IgA may act as a surface for 125 

soluble AP activation (28). In AAV, AP may be activated by neutrophil extracellular traps, thus 126 

amplifying complement activation and damage of EC (29). Finally, a disease-specific soluble factor 127 

has been implicated in complement activation. Free heme renders EC more sensitive to complement 128 

activation in SCD (30), aHUS (31), and RIAKI (32). In vitro, thrombin induces C5 cleavage in C5a in 129 

APS (33).  130 

Complement activation does not arise from a unique mechanism but can be triggered in several ways 131 

according to the disease pathophysiology. Identification of the precise mechanisms of complement 132 

activation will help determine different potential therapeutic targets within the cascade. 133 
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Complement activation contributes to cell and tissue injuries in different ways. First, it promotes 134 

inflammatory cell recruitment mainly in CV (34), ABMR (35), AMD (36), SLE (37)and RA. C5a and 135 

its receptor C5aR are involved in neutrophil recruitment (38–40) and endothelial activation (41) in 136 

AAV. Complement activation can promote specific disease processes. Thus, MAC can directly affect 137 

collagenase production by synovial fibroblasts in RA (42). In IgAN, mesangial cells exposed to 138 

complement activation and C3 deposition promote phenotypic conversion to a more synthetic and 139 

proliferative state (43). In AMD, C3a and C5a promote choroidal and C5a induces vascular endothelial 140 

growth factor secretion by retinal pigment epithelium (36). In pre-eclampsia, it has been suggested that 141 

the binding of C5a to C5aR expressed on trophoblasts contributes to the acquisition of their anti-142 

angiogenic phenotype (44).  143 

The complement system can also act as an amplifier for other molecules involved in injury. The 144 

C5a/C5aR axis participates in neutrophil recruitment and activation, which in turn can induce 145 

complement activation in AAV (39). C5a induces tissue factor expression by neutrophils, leading to 146 

factor X activation and thrombin generation, which in turn cleaves C5 into C5a in APS (33).  147 

Ultimately, several triggers of complement activation and effectors may contribute to cell and tissue 148 

damage in heterogeneous human diseases. The identification of specific triggers of complement 149 

activation and fine pathophysiological mechanisms resulting in cell and tissue complement-mediated 150 

injury is needed to determine the best therapeutic target within the cascade. Complement inhibitor anti-151 

C5 monoclonal antibody (eculizumab, and more recently its long-acting form, ravulizumab) is the gold 152 

standard in two complementopathies, aHUS and PNH, and has obtained Food and Drug Administration 153 

(FDA) approval for MG and NMOSD. Avacopan is a C5aR1 antagonist that has also been approved 154 

by the FDA for patients with AAV, another disease with a major complement contribution. 155 

Understanding the detailed mechanisms of complement activation and complement-mediated damage 156 

is necessary to guide the prescription of new complement inhibitors.  157 

Overview of the tests exploring complement activation 158 

Quantification of complement components 159 

Currently available tests mainly consist in quantification of individual complement components or 160 

activation products.  161 

o For the quantification of individual complement proteins in plasma, various types of immunoassays 162 

are used to determine the concentration of individual complement components. The most common 163 

is nephelometry. Polyclonal antibodies to component are added in excess of the sample and bind 164 

to their target. Quantification is performed by passing a light beam through the sample, which is 165 

distorted by the IC that have formed (45). 166 

o Quantification of complement activation products corresponding to cleavage fragments or 167 

complement protein complexes (C3a, C3dg, C4a, C4d, Ba, Bb, C5a, C3bBbP, MASP2, and sC5b-168 

9) is possible. Several assays have been described, mostly based on the recognition of a neoepitope 169 

of the complement component in an enzyme-linked immunosorbent assay (ELISA) format. Thus, 170 

C4a and C4d reflect CP/LP activation, Ba, Bb, and C3bBbP reflect AP activation, MASP2 is a key 171 

enzyme in LP activation (46) and increasing soluble C5b-9 reflects TP activation (47). C3a and 172 

C5a are common to the three activation pathways.  173 

o Detection of auto-Abs (anti-FH, FB, C3b, C3bBb, and C1q) targeting complement proteins can be 174 

performed using ELISA (15) 175 
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Functional assays 176 

• Quantification of complement function is used to explore the activity of a pathway or the entire 177 

cascade.  178 

o In hemolytic assays, CP activation can be assessed by incubating patient sera with sheep 179 

erythrocytes coated with rabbit anti-sheep red blood cell antibodies (48). In this assay, termed the 180 

CH50 assay, C1q binds to immunoglobulins, initiates the formation of CP C3 convertase, and leads 181 

to MAC assembly and erythrocyte lysis. Hemoglobin release is determined to calculate the number 182 

of hemolytic sites per cell. Activation through AP can be assessed using rabbit or guinea pig 183 

erythrocytes, which are activators of human AP, incubated with patient serum added to ethylene 184 

glycol-bis(β-aminoethyl ether) (EGTA), which chelates Ca2+ and inhibits activation via CP and 185 

LP (49). This hemolytic assay is termed the AP50 assay.  186 

o Liposomes coated with an activator can be used in a similar manner to CH50 assays (50). The main 187 

difference is the readout, which consists of the unquenching of a fluorescent dye and not the lysis 188 

of erythrocytes. 189 

o Assays based on ELISA method can also be used to explore the function of the three pathways. 190 

Microtiter plate wells are coated with recognition structures specific to each pathway (IgM for CP, 191 

mannan or acetylated bovine serum albumin for LP, and LPS for AP). Patient serum is added and 192 

incubated under conditions in which only one pathway is operative at any given time; the other two 193 

pathways are blocked. Finally, activation capacity is detected through the formation of the C5b-9 194 

complex by monoclonal antibodies targeting a neo-epitope in complex-bound C9 (51). 195 

 196 

• Different hemolytic assays have been developed to explore specific steps of the AP. 197 

o Sanchez-Corral et al. (52) developed a hemolytic assay to study FH functional defects in aHUS. 198 

The assay relies on the knowledge that sheep erythrocytes are highly sialylated and favor FH 199 

binding, whereas their membrane complement regulators are incompatible with human 200 

complement proteins. Therefore, they are protected from complement lysis due to the binding of 201 

human FH to their surface. In the assay, sheep erythrocytes are incubated with human plasma in 202 

Mg-EGTA buffer, allowing activation of AP only. Normal plasma does not induce lysis, whereas 203 

aHUS plasma with FH functional defects (mutations or autoantibodies) induces lysis under these 204 

conditions (52).  205 

o Hemolytic assays can also be used to study the stabilization of cell-bound AP convertases (53). 206 

This assay has been used to detect C3Nef in C3G cells. Sheep erythrocytes bearing C3 convertase 207 

C3bBb (generated by exposure of sheep erythrocytes bearing C3b to FB and FD) were incubated 208 

with patient IgG. C3Nef activity correlates with residual C3bBb hemolytic sites, and lysis is 209 

developed by the addition of rat serum. 210 

 211 

• Staining of tissue sections for the deposition of complement activation products can provide 212 

information about local complement activation in tissue. This can be performed by 213 

immunohistochemistry or immunofluorescence (54). For example, this technique has been used 214 

to study C5b-9 deposition in the skin of patients with aHUS (55). 215 

These tests allow only the characterization of a specific molecule or step of the complement cascade. 216 

To reproduce human pathological conditions and their complexity, several authors have proposed the 217 

use of an ex vivo endothelial assay. The assay detects and quantifies complement component deposition 218 



  

 Measuring complement attack on endothelial cells 

 
7 

on the EC surface after incubation with human serum. The EC surface is used as the regulating surface. 219 

The objective is to detect abnormal complement deposition that could result from either complement 220 

overactivation exceeding the capacity of regulation, or from a defect in complement regulation in fluid 221 

or on the EC surface. The ex vivo endothelial assay is presented in Figure 2.  222 

We next discuss the advantages and limits of this functional approach. 223 

Study of complement deposition on cultured EC  224 

Heterogeneity of endothelial cells populations and their complement regulation 225 

EC line blood vessels and constitute an active regulatory organ that has been implicated in vascular 226 

homeostasis, permeability regulation, vasomotor tone, angiogenesis, and diapedesis of immune cells 227 

(56). As first barrier between the blood and interstitium it is in constant equilibrium with the 228 

environment. Thus, heterogeneity in the structure and function of EC is a core property of the 229 

endothelium, allowing diverse vascular functions and regional specificity (57,58). This diversity can 230 

be partially explained by a distinct transcriptional profile (59) in relation to neighboring cells (60). 231 

Hence, EC from different blood vessels have distinct and dynamic expression profiles of complement 232 

components and regulators, which may explain the different susceptibility and specific organ tropism 233 

observed in some complement-mediated diseases (61).  234 

At a steady state, EC can produce most complement components and express high levels of 235 

complement regulators on their membranes (Table S1). Under inflammatory conditions, complement 236 

component production and regulatory protein expression are modified (Table 1). In addition to the 237 

steady state, the modulation of complement protein expression under inflammatory conditions differs 238 

according to the EC type and probably contributes to a specific damage mediated by AP and the 239 

different organ tropisms observed in complement-mediated diseases. Sartain et al. demonstrated that 240 

resting or tumor necrosis factor (TNF)-stimulated brain microvascular EC expressed higher levels of 241 

regulatory molecules (FH, FI, CD46, CD55, and THBD), generated lower levels of C3a and C4a, and 242 

enhanced lower degree AP activation (measured by lower Ba generation) than human renal glomerular 243 

EC (HRGEC) (62). The authors also demonstrated a slight increase in CD46 expression, decrease in 244 

thrombomoduline (TM), and increase in C3 and FB transcription in HRGEC exposed to TNF (63). 245 

These results agree with the prior demonstrations of an increase in C3 and FB production by human 246 

umbilical vein EC (HUVEC) exposed to TNF (64), increased FH transcription and production by 247 

HUVEC exposed to interferon (INF) gamma (65), increased C2, FH, FB, and C1inh transcription, and 248 

decreased C3 production by HUVEC exposed to INF gamma (66). May et al. compared the properties 249 

of four EC types (HRGEC, glomerular EC (GEnC), human microvascular EC (HMEC), and HUVEC) 250 

in the resting state and after overnight exposure to heme (67). While there was no difference in 251 

expression of regulatory factors (MCP, CD55, TM) at resting state, after overnight heme exposure, C3 252 

deposits on glomerular EC were greater than on other EC. This was associated with, and possibly 253 

explained by, weaker FH binding and TM upregulation and lower upregulation of heme-oxygenase 1 254 

(cytoprotective heme-degrading enzyme) compared to HUVEC. Moreover, HUVEC, but not EC, of 255 

glomerular origin were protected from complement deposition after re-challenge with heme (Table 256 

S2). 257 

EC used for ex vivo experiments comprise two types: conditionally immortalized EC (CI-EC) and 258 

primary EC (Table 2). Primary EC can be difficult to isolate and maintain in culture, and have 259 

a limited lifespan. Moreover, differences in the genetic background of individual donors can 260 

lead to interexperimental variability. In particular, inter-individual heterogeneity in 261 
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complement regulator expression at the EC surface cannot be excluded. CI-EC has been 262 

developed to overcome these difficulties. HMEC-1 and CI-GEnC are HMEC and GEnCs, 263 

respectively, that have been transfected with SV40 large T antigen (68,69). EA.hy926 cells 264 

were obtained by fusing HUVEC with A549 cells obtained from human lung carcinoma (70). 265 

The EA.hy926 cells were used to generate glycosylphosphatidylinositol-anchored complement 266 

regulatory protein-deficient cells when treated with phosphatidylinositol-specific 267 

phospholipase C. These cells have been used along with the PIGA-mutant TF-1 to study 268 

complement deposits by confocal microscopy and flow cytometry after incubation with serum 269 

from patients with thrombotic microangiopathy (TMA), this test was called the modified Ham 270 

test (71). After incubation with serum from aHUS patients, cell surface C5b-9 deposits were 271 

reportedly higher than after incubation with thrombotic thrombocytopenic purpura (TTP) 272 

serum. Therefore, this test has been considered a tool to distinguish aHUS from TTP. It is 273 

important to note that sC5b-9, reflecting terminal pathway activation and regulation, is elevated 274 

under both aHUS and TTP plasma conditions (72,73). One possibility is that both conditions 275 

are associated with complement activation. However, in aHUS, complement overactivation 276 

exceeds alternative and terminal pathway regulation, leading to C5b-9 deposits. In contrast, in 277 

TTP, complement activation is counterbalanced by complement regulation, leading to sC5b-9 278 

release, but not C5b-9 deposits in the modified Ham test. 279 

Micro- or macrovascular origin of the EC tissue lineages also needs to be considered. Complement-280 

mediated EC injury demonstrates specific cell tropism according to pathophysiological processes. In 281 

HUS and TTP, microvascular EC of dermal, renal, and cerebral origin are more sensitive to apoptosis, 282 

whereas microvascular EC of pulmonary and hepatic origin and macrovascular EC are resistant (74). 283 

Distinct sensitivity of EC to complement attack has also been explored in aHUS and heme exposure. 284 

The demonstration of a distinct EC response in terms of complement regulator expression after a trigger 285 

(here heme) was proposed to partially explain the kidney tropism in this disease (67). 286 

HUVEC are primary macrovascular EC isolated from human umbilical cords. These are the most 287 

frequently used cells for ex vivo assays (75). If tissue specificity is required, HRGEC (76) or GEnCs 288 

(77), which are both isolated from human glomeruli, can be used. More recently, the use of blood 289 

outgrowth EC obtained from the differentiation of circulating marrow-derived endothelial progenitor 290 

cells isolated from peripheral blood has been proposed (78). 291 

Comparative analysis of the available endothelial assays  292 

These tests consist of the quantification of complement activation products (C3 activation fragments 293 

and C5b-9) deposits on EC by immunofluorescence (IF) measured by confocal microscopy or flow 294 

cytometry (fluorescence-activated cell sorting, FACS) after incubation with a serum sample of interest. 295 

Different protocols have been proposed to study complement activation on the EC surface in several 296 

pathological conditions, including aHUS (31,79–89), TMA of other etiologies (90,91), HELLP 297 

syndrome and pre-eclampsia (92), C3G (15,93), lupus nephritis (LN) (94,95), APS (96,97), SCD (30), 298 

hemolytic anemia (98) and hyperhemolytic transfusion reaction without hemoglobinopathy (99).  299 

The general procedure of the ex vivo assay and the different protocols are presented in Figure 3.  300 

To pre-activate or not pre-activate EC? 301 

Resting EC or EC pre-activated by cytokines, ADP, or heme can be used (Table S3) to provide 302 

additional information.  303 
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When resting HUVEC were incubated with aHUS FB mutants added to FB-depleted normal human 304 

serum (NHS), enhanced C3b/iC3b-fragment deposition as measured by an anti-C3c-reacting antibody 305 

was observed (79). The same result was obtained for some cases when aHUS patient serum was 306 

incubated with resting HUVEC (31,80). Nevertheless, incubation with NHS depleted in FB and 307 

reconstituted with other aHUS FB variants (81) or incubation with aHUS serum from patients carrying 308 

some C3 or FH variants (31,80) may be insufficient to induce C3 or C5b-9 deposits. When quiescent 309 

HMEC-1 were incubated with aHUS serum from patients carrying mutations in FH, FI, C3, or 310 

FH/CFHR1 hybrid, enhanced C3c or C5b-9 deposition was reported only if serum was collected during 311 

the acute phases of the disease and not after reaching remission (83,90). Furthermore, deposits on 312 

quiescent HMEC-1 are better correlated with relapse risk during the tapering or discontinuation of 313 

eculizumab (86).  314 

To increase test sensitivity, the authors proposed pre-activating EC. Modifications in surface-bound 315 

protein expression enable complement activation. This was achieved in the case of P-selectin 316 

expression on HMEC-1 pre-activated with ADP, LPS, or thrombin (83) or P-selectin expression on 317 

HUVEC or GEnC pre-activated with heme (31,81,100), which could allow C3b binding and C3 318 

convertase formation. Enhanced formation of C3 fragments by TNF/IFN pre-activation and C5b-9 319 

deposition by ADP pre-activation on HUVEC or HMEC-1 cells was described after incubation of these 320 

cells with serum from asymptomatic carriers of mutations in AP regulatory proteins or C3 (80,83). The 321 

normal range was established when pre-activated EC were incubated with sera from healthy donors. 322 

In addition, serum from healthy family members without the mutation was within the normal range in 323 

this assay (80).  324 

What kind of blood samples might be incubated with EC? 325 

Serum has been used as the source of complement proteins in the vast majority of the tests described 326 

above. One limitation of these tests, particularly when deposits are detected by IF, is the variation in 327 

the results, reportedly from 30% to 52% when activated HMEC-1 were incubated with serum collected 328 

at the acute phase of aHUS (92). To reduce this variation, Palomo et al. proposed the use of activated 329 

plasma, which refers to citrated plasma mixed 1:1 with a control serum pool. Using this approach, the 330 

authors derived a coefficient of variation of 9% to 18% (92). C3 consumption by the patient or loss of 331 

C3 activity during the pre-analytical phase are also potential factors responsible for this variation (101). 332 

Finally, for all complement assays and to avoid in vitro complement activation, proper blood collection 333 

and processing must be achieved (102). Processing of plasma or serum sample must be performed 334 

within a few hours of collection, with storage at –80°C and defrosting immediately before use to avoid 335 

repeated freezing and thawing. 336 

To explore the functional consequences of autoantibodies against C3 and properdin in SLE, Vasilev et 337 

al. and Radanova et al. incubated HUVEC with NHS supplemented with purified IgG from patients 338 

positive for such autoantibodies (94,95). Using this strategy, complement deposition on EC can be 339 

directly ascribed to the addition of autoantibodies to NHS. The same approach was applied for anti-340 

C3b/FB autoantibodies in patients with C3G (15). To understand the mechanism behind complement 341 

deposits on EC from patients with SCD, microvesicles from normal or patient-derived erythrocytes 342 

were added to normal serum to model the disease condition. Enhanced binding of the C3 activation 343 

products was demonstrated (30,103).  344 

Which controls are relevant? 345 
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Most often, NHS is used as a negative control (15,30,31,79–84) (Table S4). An important aspect to 346 

consider is the inter-individual variability in deposits induced by normal sera. FACS analysis has 347 

revealed that this variability was relatively low when sera from 50 healthy donors were tested (80). 348 

However, this is a concern, particularly when deposits are detected by IF. This has not been directly 349 

reported, but has been suggested by the use of pooled sera in more recent papers (86,92) and our own 350 

experience. Aiello et al. reported that C3 and C5b-9 deposits obtained after a single healthy subject 351 

serum (N=12) incubation range from 0.5 to 1.5 fold increase of stained surface area compared to pooled 352 

serum (from 10 healthy donors) run in parallel (88). 353 

Several authors did not use any positive controls for their experiments (83,84,86,91,92). The 354 

comparison was only made with the deposits obtained with negative controls. It might be interesting 355 

to position the results on a scale. Positive controls with published data are FH or FI depleted NHS 356 

(15,80,82) or normal serum supplemented with blocking anti-FH antibodies targeting the N-terminus 357 

or C-terminus (31,81) or with FH19-20, corresponding to the two last domains of FH, able to compete 358 

with the full FH protein for cell surface binding (98). 359 

The main issues with this type of assay are the lack of validated international standards as well as 360 

standardized positive and negative controls. The variability of the results in samples from healthy 361 

donors needs to be studied extensively to determine the appropriate cutoff. In addition, the impact of 362 

C3 or other complement protein consumption in the patient and the influence of the pre-analytical 363 

phase must be determined to avoid false positive and false negative results.  364 

Which deposits should be measured? 365 

The objective of these tests is to demonstrate and explore complement overactivation or dysregulation 366 

on the EC surface after incubation with blood samples of interest. This is enabled by quantification of 367 

the deposition of complement component products resulting from activation or regulation. C3c (a 368 

common epitope to C3, C3(H2O), C3b, and iC3b) (which reflects C3 convertase activity and the early 369 

phase of the complement cascade) can be detected by polyclonal anti-C3c antibody. Antibody targeting 370 

C5b-9 reveals the final step of the cascade. When a signal is detected on the cell membrane, it can be 371 

assumed that the detected fragment is C3b or iC3b covalently attached to the surface. Nevertheless, 372 

heme-activated EC and likely ADP-activated EC (104,105) express P-selectin, which recruits C3b, 373 

C3(H2O), and a C3(H2O)-like form of C3 generated after contact with heme (31,100). Properdin also 374 

binds to heme-exposed or stressed EC, promoting complement activation in a similar manner without 375 

covalent C3b binding (98). This is an additional mechanism for amplification of complement activation 376 

on the EC surface. C5b-9 deposits may be more relevant in identifying dysregulation at any step. 377 

Nevertheless, early dysregulation can induce C3 activation fragment deposits without C5b-9 formation 378 

because of TP regulation. C5b-9 is readily detectable by IF but is much more difficult to detect by 379 

FACS because of the weak shifts of the peaks. To test for CP participation, the presence of C4d-positive 380 

deposits was also investigated (83,90). Staining can also be performed under the same conditions for 381 

von Willebrand Factor, C5aR1, P-selectin, and others (88).  382 

Evaluation of activated pathways  383 

The test can be modified to assess which complement pathway is activated in given pathological 384 

settings. The test can be performed under different conditions to avoid CP and LP contributions, which 385 

include C2 (31) or C1q (106) depleted NHS, addition of SCR1 (88) or Mg-EGTA buffer (31,79,94,95). 386 

EGTA chelates Ca2+, which is crucial for CP and LP activation, whereas AP depends on Mg2+. If AP 387 

has to be inhibited, FB-depleted NHS can be used. These reagents are applicable for test conditions, 388 
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where the activating factor is added externally to the serum (i.e., IgG, heme, microvesicles, etc.). When 389 

patient samples are used directly, the same effect can be achieved by inhibiting C1q, C4, FB, or 390 

properdin with blocking antibodies, protein constructs, or small molecules, if available (98). 391 

Quantification of complement activation products (split fragments generated by cleavage of 392 

complement components or protein complexes when activated components bind their target (i.e., C3a, 393 

C4a, Ba, Bb, C5a, and sC5b-9) in the supernatant might be an additional element to study complement 394 

cascade activation.  395 

Which techniques are used for detection and quantification? 396 

The two main detection techniques commonly used are FACS and IF. HUVEC pre-activated with heme 397 

and then incubated with NHS or aHUS serum showed results similar by FACS or IF detection(31). IF 398 

directly analyzes deposits on EC grown on slides. FACS requires a cell detachment step before 399 

staining, with the potential risk of losing a part of the deposit signal. In contrast, as mentioned by 400 

Gavriilaki et al., obtaining quantitative data by IF requires confocal microscopy and further analysis 401 

using specialized software (71). When IF is used, the area occupied by fluorescent staining in fields 402 

systematically digitized along the surface is quantified. The quantified results expressed as the mean 403 

of the square number of pixels per field are compared with the negative control (83,84,86,90,92). 404 

Considering the number of EC on which fluorescence has been measured and the staining intensity 405 

might appear relevant. In contrast, FACS allows the rapid and objective quantification of deposits. 406 

What are the functional consequences of such deposits? 407 

If enhancement of complement fragment deposits on EC is interpreted as pathogenic, the functional 408 

consequences of such deposits must be questioned. Lactate dehydrogenase release from EC reflects 409 

cell damage. This release can be measured in the cell culture supernatant (106). Analysis of 410 

complement deposits can also be associated with a cell viability assay, corresponding to a colorimetric 411 

assay based on cleavage of the WST-1 tetrazolium salt by mitochondrial dehydrogenases in viable cells 412 

(71). Cellular integrity can be verified by May-Grunwald Giemsa staining (89). Direct cell death rarely 413 

occurs under these experimental conditions. Experiments testing cell activation status by complement 414 

overactivation have not been reported in the literature and are needed to further understand the impact 415 

of complement on endothelial injury. Analysis of transcriptomic modifications in EC exposed to 416 

complement deposits under several conditions could also be of interest. 417 

 418 

Clinical and therapeutic relevance of the obtained results  419 

The ex vivo EC assay, consisting in the quantification of complement activation products (C3 activation 420 

fragments or C5b-9) deposits on EC (by IF measured on confocal microscopy or FACS), after 421 

incubation with a serum sample of interest,  was first used for specific characterization of complement 422 

component abnormalities (79–82,84) or exploration of mechanisms implicated in EC injury (31) in the 423 

main complementopathy, aHUS. The assay was then used to demonstrate and explore complement 424 

activation and participation in the pathophysiology of several diseases, including C3G (15,93), HELLP 425 

syndrome and pre-eclampsia (92,107), TMA associated with severe hypertension (90,108), drug-426 

induced TMA (109), SCD (30), hemolytic anemia (98,99), SLE (94,95), and APS (97). Demonstration 427 

of increasing complement deposits on EC incubated with pathological sera is not sufficient to 428 

determine what is responsible for complement activation at the EC surface. Modulation of the test 429 



 Measuring complement attack on endothelial cells 

 
12 

This is a provisional file, not the final typeset article 

conditions can help in detailing complement activation. This was the case when complement activation 430 

was inhibited by the addition of hemopexin to the sera of patients with SCD (30).  431 

Noris et al. and Galbusera et al. also proposed the use of this ex vivo EC test to monitor eculizumab 432 

therapy in patients with aHUS (83,86). During eculizumab tapering or discontinuation, disease relapse 433 

preceded or was associated with an increase in C5b-9 deposits on resting HMEC-1 in all patients. In 434 

contrast, only one patient without relapse showed increased deposits (86). In clinical practice, CH50 is 435 

the only routine test used to monitor eculizumab therapy. CH50 is reportedly strongly suppressed in 436 

patients receiving eculizumab according to the standard protocol. However, CH50 does not allow 437 

monitoring of eculizumab dosage tapering or discontinuation, as it is not well correlated with relapse 438 

risk (83,86). Eculizumab therapy monitoring using the Wieslab® complement system screen (110) or 439 

the modified Ham test (111) has also been proposed. Thus, the ex vivo EC assay could represent a test 440 

of interest to a better personalized complement-blocking therapy, but first needs to be more 441 

standardized.  442 

This test can also be used to better classify and assess the prognosis of specific diseases. This is the 443 

case for hypertensive TMA, as Timmermans et al. demonstrated in a cohort of hypertension 444 

emergencies associated with TMA(108). The authors demonstrated a statistical association between 445 

increased C5b-9 deposition in the EC ex vivo test and kidney survival. Moreover, they reported an 446 

improvement in renal function for those with increased deposits treated with eculizumab. The authors 447 

proposed a classification of TMA-hypertensive emergency based on the EC ex vivo test (108). 448 

Finally, many new anti-complement drugs targeting specific steps of the cascade have been under 449 

development in recent years (112). A standardized and validated assay to study complement activation 450 

could be a useful tool in their development. 451 

 452 

Discussion and Conclusion 453 

The increasing demonstration of complement involvement in the pathophysiology of many human 454 

diseases has mandated the development of tools to finely explore complement activation. Complement 455 

is a complex enzymatic cascade that is highly regulated in constant interplay with its environment. The 456 

current arsenal for complement exploration does not provide functional characterization and does not 457 

report on the complex interplay between complement and its environment, particularly the cell surface. 458 

The development of tests with these capabilities could allow for a deeper exploration of the 459 

mechanisms of complement activation in several diseases. This information could inform the 460 

development of a complement blocking therapeutic strategy based on pathophysiological mechanisms. 461 

Ex vivo complement activation on EC represents a promising tool for demonstrating and exploring 462 

complement activation. It not only recapitulates complex complement cascade regulation in vivo, but 463 

also allows modification of several steps of the experimental procedure to characterize complement 464 

activation mechanisms. 465 

However, there are still unanswered questions hindering broad used. The first is the variability in the 466 

results and the inter-individual variability in deposits induced by normal sera. Comprehension of the 467 

precise mechanism responsible for complement deposition in this assay would improve its better use. 468 

The second issue is to standardize the main steps of the procedure to improve the interexperimental 469 

comparison.  470 
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The use of such a test could be multiple, including molecular functional characterization, disease 471 

pathophysiology exploration, prognosis classification, complement targeting drug development, and 472 

complement therapeutic monitoring. The use of standardized conditions will expand the field of this 473 

promising tool.  474 
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Tables 860 

Table 1: Production of distinct complement components and expression of regulators according 861 

to endothelial cell type after stimulation 862 

    TNF  INF gamma  IL1 beta  Heme  

HRGEC C3 ↑ ↑ →*   

  C4 →* ↑ →*   

  C5 →*  →*   

  FB ↑  →*   

  FD →*  →*   

  Properdin ↓*  →*   

  FH →  →*   

  FI   →*   

  TM ↓  ↑   

  CD46 ↑  → ↓ 

  CD55 →  → ↓ 

  CD59 →  →   

  E-selectine ↑ →    

  C3aR ↑     

  C5aR 0       

BMVEC C3 ↑       

  C4 →*     

  C5 →*     

  FB ↑     

  FD →*     

  Properdin ↓*     

  FH →     

  CD46 ↑     

  CD55 →     

  C3aR ↑     

  C5aR 0       

HMEC E-selectine ↑ →     

  C3  →    

  C4  ↑    

  CD46    ↓ 

  CD55       → 

HUVEC C2  ↑    

  C3 ↑  →/↓ ↑   

  C4   →*   

  C5   →*   

  FB ↑ ↑ ↑*   

  FD   →*   

  Properdin   →*   

  FH  ↑ ↓   

  FI   →*   

  TM ↓  →   

  CD46 ↑  → ↓ 

  CD55 ↑  ↑ ↓ 

  CD59 →  → → 

  E-selectin ↑ →    

  P-selectin    ↑ 

  C1-inh   ↑     
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The data presented here are mainly concerned with protein expression. * denotes transcriptomic data. For details, please 863 
refer to Table S2. Abbreviations: BMVEC, brain microvascular endothelial cells; HMEC, human microvascular endothelial 864 
cells; HRGEC, human renal glomerular endothelial cells; HUVEC, human umbilical vein endothelial cells  865 

 866 

 867 

Table 2: Endothelial cells used for ex vivo experiments 868 

 Conditionally immortalized Primary 

Macrovascular  HUVEC 

Microvascular CI-GEnC 

HMEC-1 

BMVEC 

HRGEC 

BOEC 

Abbreviations: BMVEC, brain microvascular endothelial cells; BOEC, blood outgrowth endothelial cells; CI-GEnC, 869 
conditionally immortalized human glomerular endothelial cells; HMEC, human microvascular endothelial cells; HRGEC, 870 
human renal glomerular endothelial cells; HUVEC, human umbilical vein endothelial cells 871 

 872 



  

 

Figures Legends  873 

Figure 1: Complement implication in human diseases 874 

Complement dysregulation has been implicated in the pathophysiology of several human diseases. 875 

Complementopathies in which alternative pathway dysregulation is the central mechanism of cell and 876 

tissue injury are represented in red. Conditions in which the complement system has been demonstrated 877 

to contribute significantly to tissue injury are represented in pink. Other diseases in which complement 878 

plays an accessory role are represented in gray.  879 

Figure 2: Concept of ex vivo complement deposition on endothelial cells 880 

An ex vivo endothelial assay was developed to reproduce human pathological conditions and their 881 

complexity. The assay consists of the detection and quantification of complement component 882 

deposition on the cultured endothelial cells (EC) surface after incubation with human serum. The EC 883 

surface was used as the regulatory surface. (A): In serum from healthy individuals, the alternative 884 

pathway is active at low levels but tightly regulated in the fluid phase by regulators, resulting in a very 885 

low level of complement activation product deposition on the EC surface. The detection of an increased 886 

complement deposition when incubation is performed with pathological serum (B) could result in 887 

either i) complement overactivation that overwhelms EC capacity of regulation (orange) or ii) defect 888 

in complement regulation in fluid or solid phase. Both are induced by tested human serum incubated 889 

with EC. Orange arrows represent some mechanisms involved in complement overactivation in serum: 890 

(1) the participation of a coactivation of classical/alternative pathway due to pathological 891 

immunoglobins, immune complexes, or lectin pathway activation by polymeric IgA in IgA 892 

nephropathy, (2) an increase in the formation of fluid phase C3 convertases in the presence of heme or 893 

fluid phase activating surface, and the stabilization of C3 (3) or C5 (4) convertases by pathological 894 

immunoglobulins, such as C3 and C5 nephritic factors. Red crosses represent potential defects in 895 

alternative complement pathway regulation in the fluid phase (1) and on the cell surface (2, 3). These 896 

defects in complement regulation could be the consequence of inhibition of the main alternative 897 

pathway regulator FH due to anti-factor H antibodies (such as in aHUS), a lack of function, or a 898 

quantitative deficiency of FH and FI due to pathological genetic variants. *CR1: weak expression of 899 

CR1 on endothelial cells Abbreviations: CR1: complement receptor 1 (CD35), FB: factor B, FD: factor 900 

D, FH: factor H, FI: factor I, FP: properdin, MCP: membrane cofactor protein.  901 

Figure 3: Comparative analysis of different protocols used for the ex vivo complement 902 

activation test with endothelial cells 903 

1: The ex vivo test for measuring complement attack on endothelial cells can be performed on different 904 

endothelial cells, including human dermal microvascular endothelial cells (HMEC-1), human 905 

umbilical vein endothelial cells (HUVEC), blood outgrowth endothelial cells (BOEC), and glomerular 906 

endothelial cells (GEnC). 2: Cultured EC are then used at their resting state or after an activation by 907 

either ADP, heme, LPS, TNF/INF gamma, or apoptonecrotic cells. 3: EC are incubated with sample of 908 

interest. Either serum or activated plasma (consisting of patient citrated plasma mixed 1:1 with control 909 

serum pool) or normal human serum with addition of the protein of interest (e.g., IgG). Complement 910 

activation can be modulated in by addition of sCR1, anti-C5 antibody, anti-FH antibody, anti-properdin 911 

antibody, or EGTA-Mg buffer. 4: Complement activation products are then revealed by fluorescent 912 

tagged antibody. Antibody directed again C3c or C5b9 can be used. According to the context, staining 913 

for other molecules have been proposed and include IgG, P-selectin, vWF, and CD31. 5: Quantification 914 
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is then performed using immunofluorescence scanning, flow cytometry, or ELISA. 6: Controls are 915 

required and vary according to the protocols.  916 

Figure 4: Current and future application fields of the ex vivo complement activation test on 917 

endothelial cells 918 

There is a wide range of potential applications of ex vivo complement activation tests in endothelial 919 

cells. Currently used to decipher in vitro complement pathophysiology in research, a standardized test 920 

would represent a promising tool in clinical and therapeutic fields, paving the way for tailored medicine 921 

in complementopathies. 922 

 923 
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