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Abstract: Dense collagen hydrogels are promising biomaterials for several tissue-engineering ap-
plications. They exhibit high mechanical properties, similar to physiological extracellular matrices,
and do not shrink under cellular activity. However, they suffer from several drawbacks, such as
weak nutrient and O2 diffusion, impacting cell survival. Here, we report a novel strategy to create
a perfusion system within dense and thick collagen hydrogels to promote cell viability. The 3D
printing of a thermoplastic filament (high-impact polystyrene, HIPS) with a three-wave shape is used
to produce an appropriate sacrificial matrix. The HIPS thermoplastic polymer allows for good shape
fidelity of the filament and does not collapse under the mechanical load of the collagen solution. After
the collagen gels around the filament and dissolves, a channel is generated, allowing for adequate
and rapid hydrogel perfusion. The dissolution process does not alter the collagen hydrogel’s physical
or chemical properties, and the perfusion is associated with an increased fibroblast survival. Here,
we report the novel utilization of thermoplastics to generate a perfusion network within biomimetic
collagen hydrogels.

Keywords: thermoplastic polymers; HIPS; sacrificial matrix; perfusion; dense collagen hydrogel

1. Introduction

Collagen-based hydrogels have been considered for tissue engineering applications
due to their high biocompatibility and bioactivity, as they allow for cell adhesion [1].
However, current fibrillar hydrogels are characterized by poor mechanical and physical
properties due to their low initial concentration (<5 mg·mL−1) [2]. They contract under
cellular activity and become fibrotic-like tissues with a high collagen concentration. More-
over, in cell culture, this shrinking leads to a reduced diffusion of O2 and nutrients for
the cells, resulting in cell death [3]. When increasing the concentration, collagen hydro-
gels exhibit high mechanical properties and are stable over several weeks when implanted
in vivo [4,5]. In addition, they mimic the physical properties of native extracellular matrices
(ECMs), such as dermal and cardiac properties. Two strategies have primarily been used
to produce dense collagen hydrogels: (1) the compression of low-concentration gels [6,7]
or (2) evaporation [4]. Compression creates high collagen concentrations (>100 mg·mL−1),
but it can be more difficult to obtain precise concentrations using this method compared
with evaporation (<80 mg·mL−1). Just as with contracted hydrogels, high collagen concen-
trations dramatically affect cell survival inside the hydrogel. In both cases, nutrient and O2
availability depend on the collagen density and gel thickness [8,9]. For example, fibrob-
lasts die from apoptosis after a 500 µm migration within dense collagen hydrogels [10].
Hence, strategies to combine a high collagen concentration with cell survival must be
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discovered. In vivo, extracellular matrices are composed of concentrated collagen (around
30 mg·mL−1 in the heart [11]), but the cells survive due to a very developed vascularization
network. For instance, about 2500 capillaries per mm2 can be found in the heart to ensure
cell survival [12]. In vitro, this vascularization network can be mimicked by a perfusion
system that diffuses the culture medium inside the gel. Using molding needles [13,14] or
nylon wires [15,16] within a collagen hydrogel, straight channels with diameters ranging
from 75 to 520 µm can be obtained [17]. This technique creates channels that cross the
gel from one side to the other for active (when the medium is perfused with a pressure
controller) or passive perfusion (when the medium diffuses through the perfusion channel).
Usually, these channels diffuse the culture medium without any external pumping setup.
The geometry of the network is limited, and the space between the two channels must be
below the diffusion limit to ensure cell survival. Nazhat et al. developed a dense collagen
hydrogel with 30 µm-long phosphate-based glass fibers randomly dispersed inside the
construct [6]. Dense collagen gels were obtained using plastic compression. This process
generated a high number of channels at a reduced volume, but which could not be perfused
due to their small diameters. However, the development of 3D printing has permitted the
production of sacrificial matrices. By printing two different inks within the same construct,
one definitive ink dedicated to the walls and one sacrificial ink devoted to the channels,
Lee et al. created on-demand channels for perfusion [18]. They found that the sacrificial
material had to meet several criteria, such as (1) good mechanical properties to ensure
the cohesiveness of the construct, (2) an efficient method of elimination, and (3) a proper
elimination procedure that would not affect the global physicochemical and mechanical
properties of the construct. For instance, collagen-based hydrogels are sensitive to tempera-
tures above 50 ◦C; hence, the sacrificial matrix must be removed without heating. The soft
materials, gelatin [18] and pluronic [19], were removed at 37 and 4 ◦C, respectively, without
any denaturation of the collagen fibrils. However, these materials lack mechanical strength;
hence, the structure may collapse under the collagen weight. Therefore, sacrificial channels
made of soft polymers are crushed by the weight of the upper collagen layers, and the final
shape differs from the designed one. New sacrificial materials with load-bearing properties
must be discovered to create on-demand channels with high printing fidelity.

Here, we report a novel method to construct a perfusion system within highly dense
collagen hydrogels (30 mg·mL−1). For this purpose, a sacrificial matrix consisting of
thermoplastic polymers was produced by 3D printing and set within a dense collagen
hydrogel. Fibroblasts were cultivated within hydrogels to assess the impact of the perfusion
system on cell viability.

2. Materials and Methods
2.1. Collagen Extraction and Purification

Type I collagen was extracted and purified from rat tail tendons as previously de-
scribed [20]. The rat tails were briefly rinsed with 70% ethanol and cut into small 1 cm-long
pieces to extract the tendons. The tendons were solubilized in 500 mM acetic acid. After
precipitation with 0.7 M NaCl, centrifugation, and dialysis, collagen purity was observed
with SDS-PAGE electrophoresis, and its concentration was estimated with hydroxyproline
titration. After evaporation in a safety cabinet for several days at room temperature, a colla-
gen solution with a concentration of 30 mg·mL−1 was obtained. The collagen concentration
was assessed every day using the following equation:

[Collagen]t =
weightt
weight0

× [Collagen]0

once the [Collagen]t = 30 mg·mL−1 collagen solution was stored at 4 ◦C before utilization.
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2.2. Design of the Sacrificial Matrix

The different shapes of the sacrificial matrix were designed using AutoDesk Fusion
360 software (San Rafael, CA, USA) to obtain a 3D model (Figure 1). The 3D object file
(.stl) was then sliced using Z-suite software (Zortrax SA, Olsztyn, Poland) with a layer
thickness of 0.09 mm to obtain high-fidelity printing. First, the grid model was printed
with different thermoplastic polymers. Z-PLA, Z-ABS, and Z-HIPS were tested. The test
conditions are presented in the following Table 1. These materials were chosen because they
withstand the ammonia vapors required for collagen fibrillogenesis and can be eliminated
without heating.
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Figure 1. Design of sacrificial shapes and molds used. (A) A basic 0.8 mm grid placed in the dedicated
mold. (B) Two different perfusion channels with their molds. The extremities of the channels were
placed in the large notches, whereas the needles were placed inside the three small incisions. The
needles were localized 500 µm above the perfusion channel.

Table 1. Sacrificial material tested and their associated solvents.

Sacrificial Material Full Name Dissolution

Z-PLA PolyLacticAcid NH3
Dichloromethane

Z-ABS Acrylonitrile butadiene styrene Acetone
Dichloromethane

Z-HIPS High impact polystyrene Dichloromethane

2.3. Preparation of the Constructs

A plastic mold was designed and printed to place the sacrificial channel in a repro-
ducible manner. Once the sacrificial matrix was set, the concentrated collagen (30 mg·mL−1)
solution was poured to fill the plastic mold (Figure 2). The collagen gel dimensions were
12 × 12 × 5 mm in the inside compartment. A control construct was obtained by setting
three needles (with a 23G-external diameter of 600 µm) into three specific holes to create
straight channels, and then the collagen solution was added. The constructs were gelled
under ammonia vapors. After several washes in PBS 1X to reach a neutral pH, the plastic
molds were removed to place the gel in the appropriate solvent to eliminate the sacrificial
ink. The gels were then extensively washed in PBS 1X to remove the solvent. For the
control samples, the 3 needles were removed, and the gels were rinsed with PBS prior
to utilization.
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Three needle-molded (23 G) channels were added at 500 µm above the perfusion
channel for cellularized constructs. These channels were then filled with cells.

2.4. Differential Scanning Calorimetry

Ten to twenty milligrams of collagen hydrogel was placed into an aluminum pan.
Measurements were acquired with NanoScan differential scanning calorimetry. A tempera-
ture scan from 20 to 100 ◦C with a 10 ◦C·min−1 ramp was performed to detect the collagen
fibril denaturation peak.

2.5. Rheological Measurements

Shear oscillatory measurements were performed on collagen disks cast in 24-well
plates with an Anton Paar rheometer. An 8 mm plan geometry was fitted with a rough
surface to avoid gel slipping. All measurements were performed at 37 ◦C. Storage modulus
G′ and loss modulus G′′ were recorded during a frequency sweep from 0.1 to 10 Hz with an
imposed strain of 1%. This strain corresponded to non-destructive conditions as previously
checked (data not shown). The gap between the gel and the geometry was set to have a
minimal normal force of 0.01 N. Three samples of each matrix were tested.

2.6. Scanning Electron Microscopy

The collagen constructs were cross-linked overnight at 4 ◦C using a 4% paraformalde-
hyde (PFA) solution (w/v) in PBS. This step was followed by a 1 h fixation at 4 ◦C in a 2.5%
glutaraldehyde solution diluted in cacodylate buffer. The samples were then dehydrated
using ethanol baths with increasing concentrations and then supercritically dried. The
samples were coated with a 10 nm gold layer before their observation under a Hitachi
S-3400N Scanning Electron Microscope (operating at 5 kV).

2.7. MicroCT Imaging

The gels were loaded with a Micropaque contrast agent (Guerbet) before they were
observed and scanned using a high-resolution X-ray micro-CT system (Quantum FX Caliper,
Life Sciences, Perkin Elmer, Waltham, MA, USA) hosted by a PIV platform (UR2496,
Montrouge, France). Standard acquisition settings were applied (voltage: 90 kV, intensity:
160 mA), and the scans were performed with a field of view of 1 cm2. The micro-CT datasets
were analyzed using a built-in multiplanar reconstruction tool, Osirix Lite (Pixmeo, Geneva,
Switzerland), to obtain time-series images and 3D reconstruction.
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2.8. Diffusion Study

The gels were perfused with blue-colored DMEM (Gibco) at 0.05 mL·min−1. The gels
were fixed inside a petri dish using agarose 5% wt to maintain the gel and the perfusion
needles (Figure S1). The perfusion was ensured with a syringe controller. A 20 mL syringe
was loaded with brilliant-blue-colored DMEM (E133). Images were taken every 20 min.

2.9. Cell Cultivation

Normal human dermal fibroblasts (NHDFs) were cultured in a complete cell culture
medium. Dulbecco’s modified eagle medium (DMEM) was supplemented with a 10% fetal
bovine serum, 100 U·mL−1 penicillin, 100 µg·mL−1 streptomycin, 0.25 µg·mL−1 Fungizone,
and GlutaMAX. Tissue culture flasks (75 cm2) were kept at 37 ◦C in a 5% CO2 atmosphere.
Before confluence, the cells were removed from the culture flasks with 0.1% trypsin and
0.02% EDTA treatment. The cells were rinsed and suspended in a complete culture medium
before use. Then, after centrifugation, the cell pellet was mixed with pure Matrigel® (Sigma,
Bioreagent, Saint-Louis, MO, USA) at 1.106 cells·mL−1, and 3 µL was seeded into each large
channel made by needles (500 µm). The fibroblasts were cultivated inside the channels for
over a month.

2.10. Live/Dead Assay

A live/dead assay (Thermofisher, Waltham, MA, USA) was performed to assess cell
survival. Two reagents, calcein-AM and ethidium bromide, were added to the culture
medium of cellularized dense hydrogels. Cell viability was observed by producing a
green, fluorescent molecule created by the metabolization of calcein-AM in the living cells.
Ethidium bromide stained the nuclear DNA of dead cells. The gels were incubated in these
reagents for 30 min at 37 ◦C. Subsequently, they were embedded in agarose and cut into
200 µm slices to be observed with fluorescence microscopy.

2.11. Statistical Analysis

All experiments were conducted at least twice, and the data are expressed as mean
values ± standard deviation (SD). The differences were analyzed using Mann–Whitney
tests (when n > 4); p < 0.05 was considered significant.

3. Results and Discussion
3.1. Thermoplastics Screening

Different thermoplastics were tested to obtain well-defined channels with easy re-
moval. The main advantage of thermoplastic materials is their high mechanical property;
they retain their shape even when surrounded by dense collagens. They can be eliminated
by solvents, but they may affect the collagen fibril structure and hydrogel properties. Thus,
we first selected the appropriate polymer and optimized the sacrificial perfusion network
inside a dense collagen hydrogel. The first polymer tested was ABS (acrylonitrile butadiene
styrene), widely used to make light and robust objects. It can be dissolved by acetone. PLA
(polylactic acid) was used due to its ability to be easily shaped with 3D printing and its fast
dissolution using dichloromethane. Lastly, HIPS (high-impact polystyrene) was used due
to its high solubility in dichloromethane. After a 48-h incubation in their dedicated solvents
under stirring to remove sacrificial matrices, a micro-computed tomography analysis was
performed (Figure 3, right panels). The needle molding, used as a control, revealed open
and well-defined channels without post-treatment (Figure 3A). The ABS matrix solved in
acetone was partially removed (after 48 h), as some polymer fragments remained in the
channel. In addition, the hydrogel shrank and whitened (Figure 1B), suggesting that there
was an alteration of the collagen hydrogel properties.
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Figure 3. Screening of the different thermoplastics used as a sacrificial matrix. (A) Needles, (B) ABS,
(C) PLA, HIPS without (D) and with (E) dichloromethane injection. Scale bar: 2 mm.

No shrinkage or whitening was observed with the dichloromethane baths used to
dissolve the PLA (Figure 3C). However, PLA is known to degrade into lactic acid [21].
Due to its acidic pH, this product can degrade the collagen gel. It was replaced by a HIPS
sacrificial matrix to avoid such a phenomenon. After a 48-h dichloromethane bath, some
residues were observed inside the channels with a microCT scan (Figure 3D). Because
these residues were liquid, an additional injection of dichloromethane inside the channels
was implemented to empty the channels (Figure 3E). Hence, the HIPS matrix was the
best candidate to create open and well-defined channels by sacrificial matrix 3D printing.
Therefore, this system was used in further experiments.

3.2. Dichloromethane Treatment and Collagen Physico-Chemical Properties

Additional experiments were conducted to determine the impact of dichloromethane
on the collagen hydrogel structure and its physical properties. For this purpose, different
techniques were used to assess the collagen fibril integrity. First, rheology measurements
were performed and revealed a 1 kPa decrease in the storage modulus between non-treated
gels (G′ = 4, 6 ± 0, 4 kPa) and those treated with dichloromethane (G′ = 3, 6 ± 0, 6 kPa)
(Figure 4A). The dichloromethane bath did not significantly affect the loss modulus (non-
treated: G′′ = 558 ± 77 Pa, treated: G′′ = 504 ± 88 Pa) (Figure 4B). Differential scanning
calorimetry did not reveal any difference in the temperature denaturation of the fibrils
after dichloromethane treatment (Figure 4C,D). Lastly, scanning electron microscopy (SEM)
observation revealed similar fibrillar networks with or without dichloromethane treatment
(Figure 4E). These methods confirmed that the dichloromethane treatment significantly
altered neither collagen fibrils nor hydrogel mechanical properties.
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Figure 4. Mechanical and structural characterization of collagen gels before and after dichloromethane
treatment. (A) Storage modulus and (B) loss modulus measured by rheology. (C) Denaturation
curve for the sample treated with dichloromethane. The blue curve represents the thermal exchange
during the temperature rise, whereas the red curve corresponds to the decrease in temperature. Only
one denaturation peak is visible at 55 ◦C. (D) Temperature of denaturation peak of collagen fibrils
measured by differential scanning calorimetry (DSC). (E) SEM images of collagen fibrils without (−)
and with (+) a dichloromethane bath. Scale bar: 5 µm. * corresponds to p < 0.05, ns p > 0.05.

3.3. Sacrificial Matrix Design Optimization

Unlike needles, which can only generate straight channels, sacrificial matrices can
be produced with different shapes to optimize O2 and nutrient diffusion under specific
conditions. In this study, the aim was to bring nutrients and O2 to the center of the gel
to promote cell survival. To do so, matrices were designed with a one- or three-wave
shape (Figure 5A) to increase the area covered by the culture medium compared with that
of the needles. Perfusion efficacy was related to the hydrogel area exposed to medium
diffusion. The 3D matrix models were drawn with a computer with wider extremities
to facilitate future perfusion. They were printed with high fidelity and retained their
shape throughout the process. After collagen molding and sacrificial matrix removal,
micro-computed tomography showed the different geometries obtained (Figure 5B). All
the channels were entirely emptied and filled with the contrast agent. The printed matrices
covered a larger area on the collagen gel than the needles and were perfused with a single
input. Once perfused with a blue-colored solution at 0.5 mL·min−1, as described in the
literature [14], the solution diffusion inside the gel was observed for over 120 min. The
needles revealed a lower diffusion efficiency compared with those of the printed matrices.
After two hours of perfusion using the needles, a small fraction of hydrogel was colored
(Figure 5, right panel). An image analysis revealed a diffusion speed of around 4 µm·min−1

(data not shown). Twenty needle channels should have been set to perfuse the whole
hydrogel within 60 min, but this was infeasible. The results were different when the
sacrificial matrices were used. After two hours, the entire gel was colored when a single- or
three-wave geometry was used (Figure 5). The most promising results were obtained with
a three-wave geometry as the diffusion area rapidly increased to perfuse the whole volume
within 20 min (Figure 5).
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Figure 5. Medium diffusion perfusion channels made with three different geometries. (A) Perfu-
sion channel design. (B) MicroCT imaging. (C) Medium diffusion over time when perfused at
0.05 mL·min−1. First line: 3 needles (23 G 600 µm external diameter). Second line: 1 wave geometry
made with a sacrificial matrix of HIPS. Third line: three-waves geometry made with a sacrificial
matrix of HIPS. All gels were perfused at 0.05 mL·min−1 and followed every 20 min for 2 h. Scale
bar: 5 mm.

3.4. Cell Colonization

First, the cytotoxicity of the channel generation process was assessed by cultivat-
ing normal human dermal fibroblasts on top of collagen gels, whether treated with
dichloromethane or not. After 48 h, no significant difference in cell survival was ob-
served (Figure S2). Multiple rinsing baths after the dichloromethane incubation efficiently
removed any trace of the solvents. The next step was to colonize the hydrogel with cells.
Due to the use of chemical solvents, acid collagen, and ammonia vapors, the cells were
added after the completed process. Hence, it was required to design a specific strategy
to seed the cells. In this study, needle molding created three large channels filled with
cells to form cylindrical microtissues (Figure 2 with the optional step). Human dermal
fibroblasts, used as a cell model, were then seeded inside these channels with Matrigel®

to ensure a 3D colonization (Figure 6, pink channels). Cell seeding within preformed
hydrogels is currently used in tissue engineering, and this system could be used to cultivate
cardiac or muscle cells to form fibers in a biomimetic extracellular matrix. After 7 days
in culture, live/dead staining was performed, and the gel slices were observed (Figure 6).
This experiment was conducted on hydrogels with or without perfusion channels (Figure 6,
red channels). The fibroblasts underwent proliferation until they reached confluency inside
the channel. The number of live fibroblasts (in green) sharply increased when the porosity
dedicated to perfusion was present (Figure 6). Cell viability was similar irrespective of the
location of the three cellularized channels (Figure S3). These results show that the perfusion
channel improved the nutrient diffusion inside the collagen hydrogel, thereby reducing
cell death. We found in our study that with such a channel, dense collagen hydrogels
(30 mg·mL−1) could be colonized in the whole volume, and they did not lead to cell death,
as was previously reported in the literature [10].
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Figure 6. Live (green)/dead (red) staining after 7 days of cultivation inside collagen hydrogel without
(A) or with (B) a passive perfusion channel. Slices were obtained in the middle of each construct. The
white circle represents the channel walls from a side view. Scale bar: 250 and 50 µm.

4. Conclusions

We have developed a novel method to create an on-demand perfusion channel in
dense collagen hydrogels. Our process involved the design of a stiff 3D-printed sacrificial
matrix, and its embedment inside a dense collagen hydrogel possessing high mechanical
and physical properties. Due to the porosity, the whole hydrogel volume was perfused
within 20 min, increasing cell survival. Our findings offer a simple and versatile method to
generate a perfusion network inside collagen and can be used for several tissue-engineering
applications, such as vascularized dermis or cardiac tissue modeling.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering9070313/s1, Figure S1: Perfusion setup. Gels
were glued inside a petri dish using Agarose 5% wt. Flat bottom needles (15G) were inserted in the
gel extremities and were connected to the syringe controller. Gels were perfused at 0.05 mL·min−1;
Figure S2: NHDFs were cultivated on top of collagen gels for 24h and colored with a Live (green)/Dead
(red) staining. (Scale bar 250 µm); Figure S3: Cell survival in the middle of the gel for the three
channels. NHDFs were cultivated for one month before being analyzed with a Live/Dead staining.
Scale bar 250 µm.
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