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Editorial on the Research Topic

Computational models of a�ordance for robotics

Started and developed by Gibson, the affordance theory offered an alternative view

to the fields of psychology and philosophy on the question of perception (Gibson, 1979).

Gibson considered that we do not perceive our environment as a collection of objects

described by their physical properties, but rather through the affordances it offers, i.e., the

action possibilities of an agent to interact with its environment. For instance, a coffeemug

affords humans the possibility to pour water into it, and then seize it by the handle and

bring it to the mouth to drink. In contrast, the same mug affords rodents the possibility

to hide behind it, or to climb on it to drink. Finally, the same mug affords insects the

possibility to land on it. Thus the same object offers different affordances to different

agents depending on their body properties, their sensorimotor abilities, and their cultural

knowledge and habits.

The concept of affordance was subsequently refined by Gibson himself, as well as

other researchers, in order to provide a common definition (Turvey, 1992; Greeno, 1994;

Sanders, 1997; Steedman, 2002; Wells, 2002; Chemero, 2003; Michaels, 2003; Stoffregen,

2003). Such a definition had to cope with questions later raised within the community,

such as whether affordances are attached to the environment only (Turvey, 1992) or to

the agent-environment system (Steedman, 2002; Chemero, 2003; Stoffregen, 2003).

In parallel, the affordance theory fueled research in robot perception, which in return

provided psychology with insights from some of the problems to which roboticists have

been confronted. As pointed by Horton et al. (2012), the ecological view of perception

had already influenced robotics, giving birth to the Reactive control paradigm which

popularized the works of Brooks (1986) andArkin (1990). Nevertheless, affordances were

not explicitly mentioned in this paradigm. Later on, the formalization proposed by Sahin

et al. (2007) targeted the explicit use of the concept of affordance for robot control. Sahin

and colleagues reviewed the evolution of the concept, and defined affordances from an

agent’s perspective as acquired relationships between two equivalence classes: an effect

equivalence class and an (environment entity, agent behavior) equivalence class. These
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relationships model “generally true knowledge” (but exceptions

are possible) that allow the agent to predict the effects of its

actions in novel situations. Affordances may thus play a pivotal

role in generalization.

Later on, at the interface between computational

neuroscience and robotics, researchers have emphasized

the possibilities in terms of affordances offered by the mirror

system in the primate brain (Thill et al., 2013). This neural

system, organized around the premotor cortex, includes

so-called mirror neurons, i.e., neurons which respond when

a specific action is performed (e.g., grasping an object),

independently from the agent that performs it (i.e., the same

neuron responds both when the animal grasps an object and

when it observes another agent performing the same action),

and independently from the precise motor plan used to execute

this action (i.e., the same neuron responds when the animal

closes its hand to grasp the object, when it uses a tool such as

pinch to grasp the object, and even when it uses an inverted

pinch which tightens around the object when the animal opens

its hand) (Rizzolatti et al., 2001). The mirror system thus

appears to contribute to abstract representations of actions at a

high level of a hierarchical cognitive architecture, in terms of the

goal it offers (affords) to the agent (in the example, grasping an

object) (Thill et al., 2013). Such representations would moreover

be critical for the understanding of other agents’ behavior, and

could thus contribute to imitation and other social skills.

In our view, using affordances in robotics has two main

advantages. First, when perceiving a scene, recognizing classes

of objects is a difficult problem. Many objects that we classify

together have very different appearances (e.g., “chair” or “table”).

However, within a class, objects are designed to provide a

specific set of functions, or potential interactions. Objects of

the class “chair” offer a stable support for a human body,

providing mainly a “sit-ability” affordance, even if two chairs

may visually look very different. Objects of the class “cup”

can hold liquids or small objects, providing a “contain-ability”

affordance. These classes can gather several affordances (e.g.,

Objects of the class “table” provide “support-ability” for objects

of smaller size, but also “sit-ability” for beings). Reasoning

at the affordance level rather than at the visual features level

allows for a more intuitive and consistent description of the

environment. Second, such a high-level description is more

easily interpretable, thus more easily communicable to other

agents, but also more useful to the robot itself: by analyzing the

environment, it directly knows which actions are possible, and

where, without further processing, potentially simplifying the

decision-making process.

In the past 20 years, this new approach to perception in

robotics has gained attention, leading to an important amount

of work and multiple surveys trying to give a structured

understanding of the topic of Affordances in Robotics (Sahin

et al., 2007; Zech et al., 2017; Jamone et al., 2018; Ardón et al.,

2021).

Zech et al. (2017) give an extensive view of the modern

research landscape on computational models of affordance in

robotics. They point out that the field is both quite young and

very active, and highlight the general trends that can be found in

the published models: They usually adopt the agent’s perspective

as suggested by Sahin et al. (2007) and are evaluated on real

robots; Exploration of the environment (e.g., interaction of the

robot with an object) is the favoredmethod to acquire affordance

relations; These practices lead to good generalization capabilities

of the models. Affordances are studied in a variety of tasks that

covers well robot’s required skills (manipulation, locomotion).

On the other hand, models mostly use visual features as inputs,

whereas other information about the environment would be

useful (texture, weight, etc.). Offline learning is still present

whereas online learning would allow more autonomous robots

(but is difficult). Finally, models are aimed at robotic utility and

rarely try to be biologically plausible.

In addition, Ardón et al. (2021) explicitly analyze the

literature from the perspective of robot autonomy. They

find that most works focus on supervised offline learning of

probabilistic affordances with visual input features and primitive

actions, quite consistently with Zech et al. (2017)’s findings.

Their conclusion points to several research directions: Exploring

more complex design choices (e.g., considering actions at

the motion level); Using richer inputs, including context

information as well as other physical properties of objects; Going

toward more integrated affordance learning-and-using systems

rather than systems that only detect affordances.

The papers published in this special issue contribute to the

field on several fronts:

In “Automatic Generation of Object Shapes With Desired

Affordances Using Voxelgrid Representation”, Andries et al.

introduce an algorithm for generating object shapes with

specified affordances. In particular, they use a variational

autoencoder to learn a “function-to-form-mapping” for objects

with particular affordances, where the encoder is responsible

for transforming a 3D voxel grid representation of an object

into latent variables that capture the shape-related functional

properties of the input object which provides the affordances; the

decoder then is responsible for transforming the latent variables

into 3D voxel grid representations that can be used as a basis for

detecting affordances in objects. The main goal of this article is

to take a step toward automation of an object’s design process.

The use of affordances in this area shows significant potential.

In “Sensorimotor Contingencies as a Key Drive of

Development: From Babies to Robots”, Jacquey et al. review

the developmental psychology literature on sensorimotor

contingency learning in human infants, and extract

principles for cognitive robotics. For an autonomous

agent, sensorimotor contingencies represent the link

between its actions and the consequences of its actions.

Typical psychology experiments involve babies wearing

bracelets that produce sound when shaken, and investigate
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at which age human babies are able to discriminate which

specific part of their bodies (e.g., left arm or right leg)

shall be moved to produce sound, and which other parts

shall not.

In human infants, sensorimotor contingency learning

could facilitate the acquisition of reaching, develop manual

exploration, and even lead them to explore task-specific

(unusual) actions. More generally, this provides infants with

progressively more accurate internal models of the actions’

effects, permitting finer interactions with the surrounding

world. Importantly, sensitivity to sensorimotor contingency

appears to be one of the drives of development, contributing

to the acquisition of four fundamental motor and cognitive

abilities that the authors emphasize: body knowledge, memory,

generalization and goal-directedness.

The authors then relate these principles to research on

affordance learning and open-ended learning in robotics.

They argue that sensitivity to sensorimotor contingencies is

particularly important in developmental robotics because it

provides a simple way to equip an agent with the ability to learn

to interact with the world using self-organized exploration of

its environment. They finally present a blueprint architecture

demonstrating how exploitation of sensitivity to sensorimotor

contingencies, combined with the notion of “goal”, could allow

autonomous robots to further develop new sensorimotor skills.

This architecture can serve as a guide for both the design of

new computational models and the design of new empirical

experiments aiming at testing model predictions.

In “Examples of Gibsonian affordances in legged robotics

research using an empirical, generative framework”, Roberts

et al. revisit through the use of Miracchi’s generative framework

how roboticists have already implicitly integrated affordances

in the design of controllers. They analyse six recent works

on legged locomotion in robotics to highlight how the

controllers are designed to exploit the agent-environment

interaction in order to take advantage of available affordances.

In opposition to the tendency of having complex predictors

for affordances, they promote the use of a combination of

affordance-based reactive controllers with little to no internal

representation, and focus the representational capabilities

of the robot where the task requires it. This approach

on affordances in robotics thus stand closer to Gibson’s

original definition.

In “Geometric affordance perception: leveraging deep 3D

saliency with the Interaction Tensor”, Ruiz and Mayol-Cuevas

present a real-time approach that predict multiple affordances

simultaneously based on the geometry of the scene. For

each desired type of affordance, they compute an Interaction

Tensor between two objects based on a demonstration of the

interaction. These single-affordance tensors are then merged

and clustered into a multi-affordance descriptor, which is a

pointcloud whose origin corresponds to one of the object of

the demonstration scene. Detecting affordances in a new scene

thus corresponds to re-align the pointcloud at each desired

location. The authors then use the pointcloud to generate data

in order to train an adapted version of the deep learning

network PointNet++. They obtain in this way a predictor

of affordances based on the scene saliency. Their approach

balances the use of the geometrical properties of the scene with

efficient learning.

In “Building an Affordances Map with Interactive

Perception”, Le Goff et al. introduce an online method

to learn affordance representation through autonomous

exploration of the environment at the local level (object or

environment parts) rather than themeso level (complete object)

as most of the literature do. Their approach focus on building

one relevance map per affordance as a probability of effect

based on a supervoxel discretization of the environment.

Each supervoxel describes an local area of the environment

using a color histogram and a geometric histogram. They

then train a classifier online to predict the occurrence or

absence of the effect after applying an action on this area.

Their algorithm selects one supervoxel to interact with

based on the current relevance map, records the effects of

the action (or their absence), then updates the relevance

map, before selecting a new area to interact with. All

the relevance maps are aggregated to produce the final

affordance map and predict the affordances at the local level.

Such online approaches are important in order to improve

robot’s autonomy.

Conclusions

The concept of affordance has gained an increased

interest by the robotics community in the last years. It

provides (affords) roboticists with a theoretical framework

that can both help design efficient solutions for robots’

internal representations of the possible interactions with

their environment, and help relate their models with the

developmental psychology literature. The later can bring a vast

source of inspiration from the way human infants progressively

acquire more and more complex sensorimotor abilities and

related internal representations of their surrounding world.

It also helps draw bridges with the sensorimotor theory

(O’Regan and Noë, 2001), which has contributed to a better

understanding within the neuroscience community of how

the human brain builds abstract internal representations

from low-level sensorimotor regularities. We think that this

line of research at the interface between cognitive robotics,

developmental psychology and neuroscience paves the way

toward more and more robust and efficient robot cognitive

architectures, helping to progressively expand robots’ cognitive

(Thill et al., 2013; Renaudo et al., 2014; Santucci et al.,

2016; Krichmar, 2018) and metacognitive (Verschure, 2016;

Chatila et al., 2018) abilities.
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