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We present a string realisation of the hybrid inflationary scenario within type IIB effective string theory constructions and a geometric configuration of intersecting D7 branes. A metastable de Sitter minimum is ensured by perturbative logarithmic corrections and D-term contributions from abelian factors associated with the D7 branes. The inflaton is identified with the internal volume modulus whereas possible waterfall fields correspond to excitations of open strings attached to the magnetised D7 branes. Incorporating contributions of these fields in the scalar potential, inflation stops and the metastable vacuum settles to a minimum with the observed tunable value of the cosmological constant.

Introduction

At present, String Theory formulated in ten or eleven dimensions appears to be the only promising candidate for a consistent quantum theory of the four known fundamental forces and their interactions. Compactification of the higher dimensional theory to four spacetime dimensions entails an immense number of string vacua dubbed as the string landscape. Numerous Effective Quantum Field Theories, on the other hand, have been built to describe the low energy physics and make cosmological predictions. Amongst the most important features such a theory should possess, is a positive tiny cosmological constant Λ ≈ 10 -120 M 4 Planck in order to account for the dark energy suggested by cosmological observations. The simplest way to realise the dark energy scenario is to introduce a scalar field φ with a potential V (φ), which displays a minimum value equal to the cosmological constant V min (φ 0 ) = Λ, at some suitable point φ 0 . There is a significant ongoing debate, however, on whether the string landscape contains any de Sitter vacua which comply with the prediction of positive Λ. Recent Swampland conjectures, 1 in particular, suggest that the first and second derivatives of V (φ) must satisfy the inequalities |∇V |/V ≥ c or min(∇ i ∇ j V ) ≤ -c (in Planck units) where c, c are positive constants of order one. If these inequalities are true, some apparently consistent (anomaly free) theories in four dimensions do not have an ultra-violet completion and cannot be derived from string theory. In other words, they belong to the Swampland a . Putting it differently, starting from a successful Effective Field Theory weakly coupled to gravity which describes adequately the known physics phenomena, we cannot always embed it in the string theory landscape.

The above considerations have far reaching consequences both in cosmology and particle physics. 5 Here, we mention a few implications on otherwise very successful cosmological scenarios. For example, it is rather obvious that the Swampland criteria summarised in the aforementioned inequalities contradict the assumption that the cosmological constant can account for the dark energy of the universe. Furthermore, slow roll inflation is inconsistent with these criteria. Instead, there are suggestions 5 that quintessence models where the cosmological constant varies over time satisfy current observational constraints. If this scenario prevails, the present acceleration phase eventually will terminate whereas the expansion of the universe will come to an end in the distant future.

The ensuing years since their formulation, Swampland conjectures have faced increased scrutiny. Most of the criticism focused on the assumed heuristic arguments, and the neglected role of string quantum corrections. Indeed, the latter are anticipated to be essential for the final form of the effective scalar potential in the resulting field theory model after compactification. This presentation will focus on investigations of de Sitter vacua and the realisation of inflation in type IIB superstring theory. These investigations will take place assuming a geometric configuration of intersecting D-brane stacks with magnetic fluxes. 6 At the same time, we will consider the effects of a new four-dimensional Einstein-Hilbert term (localised in the internal space) which is generated from higher derivative terms in the ten-dimensional string effective action. 7,8 This set up induces logarithmic corrections to the scalar potential via loop effects. 9 Minimisation of the whole scalar potential of the theory fixes the internal volume Kähler modulus, V, whereas the a For reviews and further references see Refs. Type IIB moduli stabilisation, inflation and waterfall fields 3 ratios of the worldvolumes along the three D7-brane stacks are fixed by virtue of D-term contributions and their parameters depending on the quantised magnetic fluxes. In addition, slow-roll inflation can be realised considering the (canonically normalised) inflaton field to be proportional to the logarithm of the internal volume V. Furthermore, the open string spectrum associated with the D7 brane stacks plays a significant role. One can fix magnetic fluxes and brane separations so that charged open string states have positive squared-masses, except for one of them which becomes tachyonic when V becomes less than some critical value. It turns out that this state can be identified with a waterfall field which can be used to stop the inflationary phase and deepen the vacuum. A generalisation of this scenario with several waterfall fields shows that the model can accommodate the present dark energy.

Type IIB moduli stabilisation

We briefly introduce the basic geometric set up and the moduli field content. We consider a six-dimensional compactification on a Calabi-Yau (CY) threefold within a type IIB framework in the presence of quantised 3-form fluxes. Deformations of the compactification correspond to massless scalars which do not acquire treelevel potential and do not affect the four-dimensional action. Such scalars are the dilaton field Φ, the Kähler moduli T i , the complex structure (CS) ones z a , moduli corresponding to brane deformations and so on. We further introduce a two index antisymmetric tensor denoted with B µν (the Kalb-Ramond field) and the p-form potentials C p , p = 0, 2, 4. The C 0 potential and the dilaton field, define the usual axion-dilaton combination S = C 0 +i e -Φ → C 0 + i gs where g s is the string coupling. At the effective theory level, there are two basic ingredients: the superpotential of the moduli fields and the Kähler potential.

To construct the superpotential one introduces p-form field strengths F p = d C p-1 , H 3 := d B 2 and defines G 3 := F 3 -S H 3 . In terms of these, the fluxed induced superpotential W 0 is given, at the classical level, by the well-known formula: 10

W 0 = G 3 ∧ Ω(z a ) , (2.1) 
where Ω(z a ) is a holomorphic 3-form. It turns out that the perturbative superpotential W 0 is a holomorphic function which depends on the axion-dilaton modulus S, and the CS moduli z a . Imposing the supersymmetric conditions, the moduli z a , S can be stabilised. On the contrary, the Kähler moduli, do not participate in the perturbative superpotential and thus remain completely undetermined at this stage.

The second ingredient is the Kähler potential which depends logarithmically on the various moduli fields through the expression: where V is the volume of the 6d internal CY manifold X 6 , in string units. The effective potential is computed from (2.2) using the standard supergravity formula

K 0 = -2 ln (V) -ln(-i Ω ∧ Ω), (2.2) 
V eff = e K   I,J D I W 0 K I J D J W 0 -3|W 0 | 2   , (2.3) 
where D I = ∂ I + K I is the Kähler covariant derivative. At the classical level this potential vanishes identically due to its no-scale structure, and appropriate supersymmetric (flatness) conditions for the dilaton and the CS moduli. It is thus impossible to stabilise the Kähler moduli at this level. These moduli can be stabilised when quantum corrections breaking the no-scale structure of the Kähler potential are included. Several ways to fix this problem have appeared over the last two decades. A first approach 11,12 was based on the inclusion of non-perturbative superpotential terms of the form W np ∼ i A i e -aiTi . The coefficients A i may depend on the complex structure moduli, and the exponential factors on the Kähler ones T i . The parameters a i may arise form gaugino condensation on D-brane stacks and for the SU (N ) case, they are of the form 2π N ). The above ingredients can stabilise the Kähler fields, however the potential acquires an anti-de Sitter (AdS) vacuum. 11 A possible solution to this problem 12 is to uplift the vacuum by taking into account contributions from D3 branes. There are two issues regarding this solution. Firstly, in order to obtain an AdS minimum the coefficients W 0 , A i and a i require unnatural fine-tuning. Secondly, these contributions rely on non-perturbative effects which cannot be controlled at the full string level. Some improvements of the original models, however, have appeared using nilpotent chiral multiplets, 13 which lead to a new mechanism for uplifting the vacua in the string landscape. 14 A different way to stabilise the moduli is based on Large Volume Scenario (LVS). 15 This proposal takes advantage of the leading α corrections to the Kähler potential (together with the non-perturbative contributions) which ensure an AdS solution in the Large Volume Limit but avoid tuning W 0 in (2.1) at extremely small values. Uplift to a de Sitter (dS) vacuum can be realised through D-terms.

Perturbative moduli-dependent corrections in weakly coupled string theory, on the other hand, are fully controllable and therefore more reliable. However, not all types of corrections are suitable for moduli stabilisation. Ordinary perturbative expansions, either in α or in powers of the weak string coupling g s , fail to generating a (meta)stable dS minimum in a controllable way. This is the well-known Dine-Seiberg problem which we now describe in brief. When perturbative modulidependent quantum corrections are included in the Kähler potential they induce contributions to the scalar potential, V (τ i ) where τ i are the imaginary parts of the Kähler moduli T i and are associated with the internal volume. The validity of perturbation theory implies that such corrections should vanish for τ i → ∞ implying also the vanishing of the scalar potential V (τ i ) τ→∞ → 0. If the zero at infinity is reached from negative values, then, for non-contrived scalar potentials V (τ i ), this Type IIB moduli stabilisation, inflation and waterfall fields 5 implies an AdS minimum which is not acceptable. Thus, the vanishing of the potential at infinity should be approached from positive values. Again, for reasonable V (τ i ), this implies that there should be somewhere a maximum before a dS minimum is formed. These three shapes are plotted in figure 1. The potential on the 0.5 1.0 1.5 2.0 t right-hand side exhibits local minimum and maximum and its shape suggests that there should be two competing terms of different functional dependence on τ . While previously considered perturbative corrections do not share this property at large volumes, a possible exception known from field theory are logarithmic corrections similar to those in the Coleman-Weinberg mechanism. 16 The above observation shows the way to overcome the difficulties in superstring constructions. We recall that string theory has a reach structure including nonperturbative objects such as D-branes which open up possibilities to construct realistic cosmological models. Another ingredient, of particular interest in the present study, comes from high order curvature terms in the ten dimensional effective action. These elements are sufficient to generate loop corrections which induce new contributions to the Kähler potential K, break its no scale invariance and stabilise the moduli. We will describe in short how perturbative logarithmic corrections are generated with the above constituents.

-2 -1 1 V(t)
The low-energy expansion of the type IIB superstring action contains fourth order terms in the Riemann curvature, R 4 , which do not receive any perturbative corrections beyond one loop. 7,17,18 Upon compactification to our four dimensional spacetime M 4 , these one-loop corrections induce a novel Einstein-Hilbert (EH) term R (4) . Its coefficient is proportional to the Euler characteristic χ, defined on X 6 by

χ = 3 4π 3 X6 R ∧ R ∧ R •
Observing that χ contains three powers of R, we deduce that the effective EH term R (4) (originating from R 4 ) is only possible in four dimensions. Furthermore, such an EH term can be viewed as a vertex localised at certain points in the six-dimensional bulk where χ acquires non-zero values, emitting closed strings (gravitons). We thus study the case of three-graviton scattering involving two massless gravitons and a Kaluza-Klein (KK) excitation propagating towards a D7-brane stack. The sum over the KK modes corresponds to a propagation that takes place in a two-dimensional bulk space transverse to the D7 stack, see Figure 2. Consequently, this process yields logarithmic contributions breaking the no-scale invariance of the Kähler potential. 6,9 Taking these logarithmic contributions into account the final effective action (obtained in the T 6 /Z N orbifold limit) contains 9 S 1 (2π

) 3 M4×X6 e -2Φ R (10) + 4ζ(2)χ (2π) 3 M4   1 - k=1,2,3 e 2Φ T k log R k ⊥ w   R (4) . (2.4)
Here, T k is the brane tension of the k-th stack, R k ⊥ the size of the two-dimensional space transverse to the D7-stack and w an 'effective' localisation width of the graviton vertex, given by w = s / √ N with l s = √ α the fundamental string length. 8 From the correction terms (2.4) in the 4d reduced action we can readily extract the corresponding induced terms in the Kähler potential. For simplicity we assume the same tension for all three brane stacks, so that T k ≡ T = e -Φ T 0 , and for each Kähler modulus T k we denote τ k = ImT k . For D7-brane stacks with orthogonal covolumes, the internal volume is simply V = √ τ 1 τ 2 τ 3 , and the the Kähler potential takes the form

K = -2 ln ( √ τ 1 τ 2 τ 3 + ξ + γ ln (τ 1 τ 2 τ 3 )) ≡ -2 ln (V + ξ + γ ln V) . (2.5) 
Computations for the orbifold and smooth CY cases show that the parameters ξ and γ are given by 8,9 γ ≡ -

1 2 g s T 0 ξ , with ξ = - χ 4 ×    π 2 3 g 2 s for orbifolds ζ(3) for smooth CY , (2.6) 
In (2.6) tree-level contributions for the orbifold case have not been included, since the ζ(3)χ correction to the EH term vanishes. 7,8 The identity ζ(2) = π 2 8 has also been used in the orbifold action (2.4). V F = 3γW 2 0 κ 4 2(γ + 2V) + (4γ -V) ln(µV)

(V + 2γ ln(µV)) 2 (6γ 2 + V 2 + 8γV + γ(4γ -V) ln(µV)) , (3.1) 
where κ = √ 8πG N is the reduced Planck length. In the large volume limit, V F takes the simplified form

V F = 3W 2 0 2κ 4 V 3 (ξ + 2γ(ln V -4)) + • • • (3.2)
By virtue of the logarithmic term the potential (3.2) acquires a global minimum, although this is an anti-de Sitter vacuum. Yet, a D-part contribution to the scalar potential comes from the existence of universal U (1) factors associated with the three D7-brane stacks. In the large world-volume limit this contribution takes the form

V D = d 1 κ 4 τ 3 1 + d 2 κ 4 τ 3 2 + d 3 κ 4 τ 3 3 + • • • (3.3)
where the d i for i = 1, 2, 3 are model-dependent constants related to U (1) Fayet-Iliopoulos (FI) terms.

For the subsequent discussion it is useful to replace the dependence of the potential on Kähler moduli with the canonically normalised fields. We identify them with a logarithmic function of the volume and two perpendicular directions defined in terms of τ i ratios. We also recall that we consider a simple setup with "orthogonal" D7-brane stacks, such that V = √ τ 1 τ 2 τ 3 . The new basis then reads:

φ = 2 3 ln(V), (3.4) 
u = 1 2 log τ 1 τ 2 , (3.5) 
v = √ 3 6 log τ 1 τ 3 τ 2 τ 3 . (3.6) 
In terms of these, the total scalar potential V eff = V F + V D in the large volume limit is In the inflationary scenario that we will discuss shortly, the field φ defined in eq. (3.4) will play the role of the inflaton. In order to examine its evolution during the

V eff ≈ 3W 2 0 2κ 4 e -3
1 3 , q ≡ ξ 2γ , σ ≡ 2d 9W 0 2 γ . (3.10) 
A few comments are in order. First, in order to ensure a dS vacuum, the parameter γ must be negative, hence the coefficient C is positive. Moreover, the parameter d, related to the D-term part of the potential, is always positive. Furthermore, increasing of the value of the parameter q shifts the local extrema towards larger volumes. Finally, σ is the only free parameter of the model. It acquires negative values, hence the total coefficient of the last term is positive and is expected to uplift the minimum of the potential to positive values.

To study inflation and compute the slow-roll parameters we need to determine the extrema of the potential with respect to the inflaton field φ. 19 Thus we take the first and second derivatives of the potential with respect to φ and obtain

V (φ) = 3 3 2 C κ 4 e -3 √ 3 2 φ 3 2 φ + q - 13 3 + σe √ 3 2 φ , (3.11) 
V (φ) = - 27 2 C κ 4 e -3 √ 3 2 φ 3 2 φ + q - 14 3 + 2 3 σe √ 3 2 φ . (3.12) 
Requiring the vanishing of the first derivative, V (φ) = 0, we obtain two solutions which are expressed in terms of the two branches W 0 and W -1 of the Lambert W function (product logarithm):

φ -= - 2 3 q - 13 3 + W 0 -e -x-1 , (3.13) 
φ + = - 2 3 q - 13 3 + W -1 -e -x-1 . (3.14)
The new parameter x introduced in the above solutions is defined by

x ≡ q -16 3 log(-σ) ↔ σ = -e q-16 3 -x .

(3.15) while φ -is the local minimum and φ + the local maximum. Large volumes can be achieved at weak coupling for q < 0, implying a negative Euler number χ < 0, see eqs. (2.6) Notably, most of the important quantities are expressed through simple analytical forms in terms of x. For example, the slow-roll parameter η depends only on x through the Lambert W function:

η(φ -/+ ) = V (φ -/+ ) V (φ -/+ ) = -9
1 + W 0/-1 (-e -x-1 ) 2 3 + W 0/-1 (-e -x-1 ) .

(3.16)

Similarly, the distance between the two extrema is

φ + -φ -= 2 3
W 0 -e -x-1 -W -1 -e -x-1 > 0 .

(3.17)

The parameter x thus clearly plays a significant role. For the critical value x c 0.072132 the potential at the minimum vanishes, V (φ -) = 0, which corresponds to a Minkowski minimum. Below this critical value, in the region 0 < x < x c , the potential acquires a dS vacuum whereas for x > x c it displays an AdS minimum. For x < 0 the two branches of the Lambert function join and the potential loses its local extrema. The potential for the three regimes described above is depicted in Figure 3. , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t)

and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV ))
.

(

) 18 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit VD 

for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 
. large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).

It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V

. From ( 25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions 

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 gk ln(tk) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
v = 1 p 6 (t1 + t2 2t3). ( 16 
)
Taking

g1 = g2 = g3 ⌘ g ( 17 
)
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , ( 20 
)
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) 
v = 1 p 6 (t 1 + t 2 2t 3 ). ( 16 
)
Taking

g 1 = g 2 = g 3 ⌘ g ( 17 
)
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d 1 k 4 t 3 1 + d 2 k 4 t 3 2 + d 3 k 4 t 3 3 = e p 6t k 4 ⇣ d 1 e p 3v 3u + d 2 e p 3v+3u + d 3 e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of VD in (19).

Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u 0 , v 0 ) = 3(d 1 d 2 d 3 ) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d 3 ) 1 3 
.

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f+ = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get
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V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . (27) 
Solving V 0 (f ) = 0 leads to the two solutions

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
v = 1 p 6 (t1 + t2 2t3). ( 16 
)
Taking

g1 = g2 = g3 ⌘ g ( 17 
)
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . (18) 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , ( 20 
)
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)
for which the VD potential becomes
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Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to
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)
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with
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)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads
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)
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)
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x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
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Contrary to the F-part V F , the D-part V D depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of V D in (19). Their minimal values read
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In the large volume limit we obtain the simpler expression
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)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1
◆ , (29) Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) u = 1 p 2 (t 1 t 2 ), (15) v = 1 p 6 (t 1 + t 2 2t 3 ). ( 16 
)
Taking

g 1 = g 2 = g 3 ⌘ g (17)
for simplicity and defining

µ = e x 2g
, one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t)

and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV ))
.

(

) 18 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , ( 20 
)
for which the V D potential becomes

V D (t, u 0 , v 0 ) = 3(d 1 d 2 d
3 )

1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d
3 )

1 3
.

⌘ C k 4 log V 4 + q V 3 3r 2V 2 , ( 23 
) with q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0.
(

) 24 
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).

It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V

. From ( 25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 gk ln(tk) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
v = 1 p 6 (t1 + t2 2t3). ( 16 
)
Taking

g1 = g2 = g3 ⌘ g ( 17 
)
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2

C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t 1 t 2 t 3 ) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts t i of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

t i = 1 p 2 ln(t i ). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) 
v = 1 p 6 (t 1 + t 2 2t 3 ). (16) 
Taking

g 1 = g 2 = g 3 ⌘ g (17) 
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

V D ⇡ d 1 k 4 t 3 1 + d 2 k 4 t 3 2 + d 3 k 4 t 3 3 = e p 6t k 4 ⇣ d 1 e p 3v 3u + d 2 e p 3v+3u + d 3 e 2 p 3v ⌘ . (19) 
Contrary to the F-part V F , the D-part V D depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of V D in (19). Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , ( 20 
)
for which the V D potential becomes

V D (t, u 0 , v 0 ) = 3(d 1 d 2 d 3 ) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d 3 ) 1 3 .
Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = V F +V D ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , ( 29 
) u = p 2 (t 1 t 2 ), ( 
) v = 1 p 6 (t 1 + t 2 2t 3 ). ( 15 
) 16 
Taking

g 1 = g 2 = g 3 ⌘ g ( 17 
)
for simplicity and defining

µ = e x 2g
, one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t)

and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV ))
.

(

) 18 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , ( 20 
)
for which the V D potential becomes

V D (t, u 0 , v 0 ) = 3(d 1 d 2 d
3 )

1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d
3 )

1 3 . 2g 9W 0 g
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).

It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V

. From ( 25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t 1 t 2 t 3 ) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) 
v = 1 p 6 (t 1 + t 2 2t 3 ). ( 16 
)
Taking

g 1 = g 2 = g 3 ⌘ g ( 17 
)
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit 

VD ⇡ d 1 k 4 t 3 1 + d 2 k 4 t 3 2 + d 3 k 4 t 3
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of VD in (19).

Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u 0 , v 0 ) = 3(d 1 d 2 d 3 ) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d 3 ) 1 3 
.

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2

C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f+ = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t 1 t 2 t 3 ) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts t i of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

t i = 1 p 2 ln(t i ). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) 
v = 1 p 6 (t 1 + t 2 2t 3 ). (16) 
Taking

g 1 = g 2 = g 3 ⌘ g (17) 
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV )
(V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) .

(

) 18 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

V D ⇡ d 1 k 4 t 3 1 + d 2 k 4 t 3 2 + d 3 k 4 t 3 3 = e p 6t k 4 ⇣ d 1 e p 3v 3u + d 2 e p 3v+3u + d 3 e 2 p 3v ⌘ . (19) 
Contrary to the F-part V F , the D-part V D depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of V D in (19). Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , ( 20 
)
for which the V D potential becomes

V D (t, u 0 , v 0 ) = 3(d 1 d 2 d 3 ) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d 3 ) 1 3 
.

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = V F +V D ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , ( 29 
) t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) v = 1 p 6 (t 1 + t 2 2t 3 ). ( 16 
)
Taking

g 1 = g 2 = g 3 ⌘ g (17)
for simplicity and defining

µ = e x 2g
, one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t)

and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV ))
.

(

) 18 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , ( 20 
)
for which the V D potential becomes

V D (t, u 0 , v 0 ) = 3(d 1 d 2 d
3 )

1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d 3 ) 1 3 
.

k V 2V with q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0.
(

) 24 
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).

It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V

. From ( 25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 gk ln(tk) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
v = 1 p 6 (t1 + t2 2t3). ( 16 
)
Taking

g1 = g2 = g3 ⌘ g ( 17 
)
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19).

Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , (20) 
for which the VD potential becomes
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In the large volume limit we obtain the simpler expression
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)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads
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V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions
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) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
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t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) 
v = 1 p 6 (t 1 + t 2 2t 3 ). (16) 
Taking
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for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads
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The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

V D ⇡ d 1 k 4 t 3 1 + d 2 k 4 t 3 2 + d 3 k 4 t 3 3 = e p 6t k 4 ⇣ d 1 e p 3v 3u + d 2 e p 3v+3u + d 3 e 2 p 3v ⌘ . (19) 
Contrary to the F-part V F , the D-part V D depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of V D in (19).
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)
Solving V 0 (f ) = 0 leads to the two solutions

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
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The Kähler potential of the model is [3]
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)
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v = 1 p 6 (t1 + t2 2t3). ( 16 
)
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)
for simplicity and defining µ = e
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Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression
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with
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)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
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f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
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t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
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for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to
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)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get
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The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).

It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V

. From (25) we get
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V 00 (f ) = 
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ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
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)
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The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , ( 20 
)
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).
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u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0. (24) 
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t 1 t 2 t 3 ) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts t i of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

t i = 1 p 2 ln(t i ). (13) 
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) 
v = 1 p 6 (t 1 + t 2 2t 3 ). (16) 
Taking

g 1 = g 2 = g 3 ⌘ g (17) 
for simplicity and defining µ = e x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
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V D ⇡ d 1 k 4 t 3 1 + d 2 k 4 t 3 2 + d 3 k 4 t 3 3 = e p 6t k 4 ⇣ d 1 e p 3v 3u + d 2 e p 3v+3u + d 3 e 2 p 3v ⌘ . (19) 
Contrary to the F-part V F , the D-part V D depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of V D in (19). Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , (20) 
for which the V D potential becomes

V D (t, u 0 , v 0 ) = 3(d 1 d 2 d 3 ) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d 3 ) 1 3 .
Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = V F +V D ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . (27) 
Solving V 0 (f ) = 0 leads to the two solutions , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t)

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV ))
.

(

) 18 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit VD 

for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 
. Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . (22) 
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) with q 
⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0.
(

) 24 
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).

It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V

. From ( 25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions 

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 gk ln(tk) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
v = 1 p 6 (t1 + t2 2t3). (16) 
Taking

g1 = g2 = g3 ⌘ g (17) 
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . (18) 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .
Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0. (24) 
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions 

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 gk ln(tk) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
v = 1 p 6 (t1 + t2 2t3). ( 16 
)
Taking

g1 = g2 = g3 ⌘ g (17) 
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . (18) 
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2

C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions 3 Scalar potential from D7-branes moduli stabilisation

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
The Kähler potential of the model is [3]

K = 2 k 2 ln (t1t2t3) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t1 + t2 + t3) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t1 t2), (15) 
v = 1 p 6 (t1 + t2 2t3). (16) 
Taking

g1 = g2 = g3 ⌘ g (17) 
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads VF = (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) .
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The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit

VD ⇡ d1 k 4 t 3 1 + d2 k 4 t 3 2 + d3 k 4 t 3 3 = e p 6t k 4 ⇣ d1e p 3v 3u + d2e p 3v+3u + d3e 2 p 3v ⌘ . (19) 
Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u0 and v0 dictated by the minimisation of VD in (19). Their minimal values read

u0 = 1 6 ln ✓ d1 d2 ◆ , v0 = 1 6 p 3 ln ✓ d1d2 d 2 3 ◆ , ( 20 
)
for which the VD potential becomes

VD(t, u0, v0) = 3(d1d2d3) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d1d2d3) 1 3 .

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W0 2 g < 0, C ⌘ 3W0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.

Potential minimum, maximum and slow-roll parameters

In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2

C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f+ = r 2 3 ✓ q 13 3 +W0 e x 1 ◆ , ( 28 
) f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 
Starting from the real parts t i of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

t i = 1 p 2 ln(t i ). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) v = 1 p 6 (t 1 + t 2 2t 3 ). ( 16 
)
Taking

g 1 = g 2 = g 3 ⌘ g (17)
for simplicity and defining

µ = e x 2g
, one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t)

and reads

V F = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV ))
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The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit 

for which the V D potential becomes
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with q

⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0.
(

) 24 
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t).

It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 25 
)
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V

. From ( 25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 
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)
Starting from the real parts ti of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

ti = 1 p 2 ln(ti). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base

t = 1 p 3 (t 1 + t 2 + t 3 ) = p 6 3 ln(V ), (14) 
u = 1 p 2 (t 1 t 2 ), (15) 
v = 1 p 6 (t 1 + t 2 2t 3 ). ( 16 
)
Taking

g 1 = g 2 = g 3 ⌘ g ( 17 
)
for simplicity and defining µ = e

x 2g , one can extract the Fpart of the scalar potential from (12). It depends only of the volume V (or equivalently the modulus t) and reads

VF = 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) . ( 18 
)
The D-part of the scalar potential coming from the D7 fluxed branes reads in the large volume limit 

Contrary to the F-part VF , the D-part VD depends on the three moduli t, u and v. When considering the volume as the possible inflaton, we place the two other moduli at their minimal values u 0 and v 0 dictated by the minimisation of VD in (19).

Their minimal values read

u 0 = 1 6 ln ✓ d 1 d 2 ◆ , v 0 = 1 6 p 3 ln ✓ d 1 d 2 d 2 3 ◆ , (20) 
for which the VD potential becomes

VD(t, u 0 , v 0 ) = 3(d 1 d 2 d 3 ) 1 3 k 4 V 2 = d k 4 V 2 = d k 4 e p 6t , (21) 
with d ⌘ 3(d 1 d 2 d 3 ) 1 3 
.

Hence after stabilisation of the two transverse moduli, the total scalar potential reduces to

V = VF +VD ⇡ 3gW 2 0 k 4 2(g+2V )+(4g V ) ln(µV ) (V +2g ln(µV )) 2 (6g 2 +V 2 +8gV +g(4g V ) ln(µV )) + d k 4 V 2 . ( 22 
)
In the large volume limit we obtain the simpler expression

V (V ) ⇡ 3W 2 0 2k 4 V 3 (2g(log V 4) + x ) + d k 4 V 2 ⌘ C k 4 ✓ log V 4 + q V 3 3r 2V 2 ◆ , (23) 
with

q ⌘ x 2g , r ⌘ 2d 9W 0 2 g < 0, C ⌘ 3W 0 2 g > 0. ( 24 
)
The q parameter essentially shifts the local extrema towars large volumes. C is an overall constant which plays no role in the model but is given by the amplitude spectrum obervation.
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In the following sections we will study the inflationary possibilities from the above model. The inflaton will be identified to the canonically normalised modulus t, which we denote f from now on. Hence we can express (23) in terms of the inflaton f (which again, is the total volume modulus t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . (25) 
In order to minimize and study the slow-roll parameters we compute the first two derivatives of V . From (25) we get

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , (26) 
V 00 (f ) = 27 2

C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! . ( 27 
)
Solving V 0 (f ) = 0 leads to the two solutions

f+ = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , (28) 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , (29) 2 
3 Scalar potential from D7-branes moduli stabilisation

The Kähler potential of the model is [3]

K = 2 k 2 ln (t 1 t 2 t 3 ) 1 2 + x + 3 Â k=1 g k ln(t k ) ! . ( 12 
)
Starting from the real parts t i of the Kähler moduli for the three magnetised D7 branes, we can define the normalised fields

t i = 1 p 2 ln(t i ). ( 13 
)
Isolating the volume from the two other perpendicular directions we obtain the following base
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In the following sections we will study the inflationary p sibilities from the above model. The inflaton will be id tified to the canonically normalised modulus t, which denote f from now on. Hence we can express (23) in ter of the inflaton f (which again, is the total volume modu t). It reads

V (f ) ⇡ C k 4 e 3 q 3 2 f r 3 2 f 4 + q + 3 2 re q 3 2 f ! . ( 2 
In order to minimize and study the slow-roll paramet we compute the first two derivatives of V . From (25) we

V 0 (f ) = 3 r 3 2 C k 4 e 3 q 3 2 f r 3 2 f + q 13 3 + re q 3 2 f ! , ( 2 
V 00 (f ) = 27 2 C k 4 e 3 q 3 2 f r 3 2 f + q 14 3 + 2 3 re q 3 2 f ! ( 2 
Solving V 0 (f ) = 0 leads to the two solutions Having determined the region of the parameter x which is consistent with dS minima, we are now ready to study cosmological implications and in particular inflationary observables. We first find that some well-known inflationary scenarios such as slow-roll inflation hilltop, cannot be realised in our restricted model. We can easily adjust the value of the slow-roll parameter η (which depends only on x) by varying x ∈ (0, x c ), so that inflation starts near the maximum, and the modes exit horizon with the required value of the spectral index. It is found, however, that the slow-roll parameters , η remain much less that unity all the way down the slope, hence inflation does not stop, and as a result an unacceptably large number of e-folds is generated.

f + = r 2 3 ✓ q 13 3 +W 0 e x 1 ◆ , ( 2 
f = r 2 3 ✓ q 13 3 +W 1 e x 1 ◆ , ( 2 
As we describe below, in order to study more general inflationary scenarios, we will scan the x parameter space. For each value of x, we can solve the evolution equation for the Hubble parameter and derive the relevant parameters to study the eventual inflationary stage. Before entering the details of such a procedure, we 

Using (3.18) and expressing φ as a function of H and V , we obtain the Hubble parameter evolution equation:

H (φ) = ∓ 1 √ 2 3H 2 (φ) -κ 2 V (φ) . (3.22) 
The exact forms of the slow-roll parameters η, are 20 

so that < 1 is the natural criterium characterising inflation, a phase with ä > 0.

Finally, the number of e-folds N is given by

N = t end t Hdt = 1 √ 2 φ φ end dφ √ . (3.25) 
As mentioned above, one can investigate inflationary possibilities through a scan of the x parameter in the following way. The value of x determines the shape of the inflaton scalar potential V (φ), which enters the evolution equation (3.22) for the Hubble parameter. For a given value of x, solving this equation thus allows to compute the slow-roll parameters and number of e-folds, through eqs. (3.23) and (3.25), and study the inflationary phase.

The above scan gave rise to a novel scenario where most of the e-folds are obtained near the minimum. In this scenario, the inflaton starts rolling down from a point close to the maximum towards the minimum of its potential with zero initial speed. If η(φ + ) < -0.02, because at the inflection point the second derivative V (φ) changes sign, the inflaton will pass through the point where η(φ * ) = -0.02 before it crosses the inflection point. We can then choose the parameter x so that 60 efolds are obtained from this point to minimum. Thus, in order to reproduce the observational data, the initial position of the inflaton has to be higher than the inflection point, where η is negative, so that η = -0.02 is taken at the horizon exit.

In order to realise this scenario, we have solved numerically the evolution equation (3.22) for various values of x, starting near the maximum with vanishing initial speed for the inflaton. The required number of e-folds, N * 60 are achieved for x 3.3 10 -4 while the two extrema of the potential are found at φ -= 4.334 and φ + = 4.376. The e-folds are computed from the horizon exit φ * 4.354 at which η(φ * ) = -0.02, down to the minimum φ -. Is it worth observing that the corresponding inflaton field displacement ∆φ 0.02, is much less than one in Planck units. Hence it corresponds to small field inflation, and as such is compatible with the validity of the effective field theory. Finally, this model predicts an inflation scale H * 5 × 10 12 GeV and a ratio of tensor to scalar perturbations r 4 × 10 -4 .

Waterfall fields and hybrid inflation

Up to this point, we have explained how in the simple geometric set up of three D7-brane stacks we can ensure Kähler moduli stabilisation in a dS vacuum and investigated the conditions to realise inflation. We found that logarithmic radiative corrections and brane magnetisations generate a scalar potential with a very shallow dS minimum, which can realise inflation with the required 60 e-folds collected near the minimum (as opposed -for example-to the case of hilltop scenario). However, the tight constraints imposed by the various requirements entail a metastable minimum with a cosmological constant much larger than the one observed today. A detailed consideration shows that this false vacuum of the so-obtained scalar potential is suggestive for a solution through hybrid inflation [START_REF] Linde | [END_REF] where a waterfall field ends the inflation phase and settles to a lower (true) vacuum with the anticipated value of the cosmological constant. Such a waterfall field is realised by a scalar field with effective mass depending on the value of the inflaton. If this field becomes tachyonic under a certain critical value for the inflaton, it generates the waterfall direction of the scalar potential.

Within the present geometric configuration, potential waterfall field candidates are the various states associated with the excitations of open strings with endpoints attached to D7 brane stacks. The scalar components of these states may receive supersymmetric positive square masses from brane separation or Wilson lines, and non-supersymmetric contributions due to the presence of the worldvolume magnetic fields generating the D-terms required for moduli stabilisation.

In the following, we briefly describe how these fields contribute to the materialisation of this scenario in the context of a Z 2 × Z 2 orbifold. We assume a factorised 6-torus into three 2-tori T 6 = T 2 × T 2 × T 2 spanning the internal dimensions (45), 89) respectively. The model under consideration consists of three D7 brane stacks, which we denote with D7 1 ,D7 2 and D7 3 . Each of them spans four internal dimensions and is localised in the remaining two. This setup can be considered as dual to the configuration of the D9 and D5 branes as in the toroidal orbifold model described in the literature. 22,[START_REF] Aldazabal | WSPC/INSTRUCTION FILE proceedingsIIBcosmo˙ws-ijmpa˙OL2 Type IIB moduli stabilisation, inflation and waterfall fields 17[END_REF] This is shown schematically in the following table where we impose T-duality along (45) dimensions.

(45) (67) (89)

D7 1 • × × D7 2 × × • D7 3 × • × -→ (45) (67) (89) D9 1 × × × D5 2 • × • D5 3 • • ×
We use a cross × to represent the D7 world-volume spanning the corresponding torus, and a dot • to indicate the transverse directions where the D7 brane is localised.

As motivated above, we can introduce magnetic fields H (i) a , on the a-th stack D7 a and in the i-th torus T 2 i . They are subject to the Dirac quantization condition m (i) a H (i) a = 2πn (i) a , leading to the magnetic field quantisation 2πH (i) a A i = k (i) a , where 4π 2 A i is the T 2 i area. Here m (i) a , n (i) a are the winding numbers and the flux quanta and we defined the ratio k (i) a = n (i) a /m (i) a ∈ Q. The magnetic fields modify the world-sheet action by introducing boundary terms [START_REF] Abouelsaood | [END_REF]25 and shift the modes of the charged oscillators by

ζ (i) a = 1 π
Arctan(2πα q a H (i) a ). (4.1)

where q a = ±1, 0 are the U (1) charges of the open string endpoints.

The mass spectrum can be extracted, either from the field theory mass formula or from vacuum amplitudes, and one sees that when magnetic fields are introduced into the D7-brane configuration, tachyonic states may appear in the spectrum. 25,26 In general, one can eliminate them by introducing appropriate brane separations or Wilson lines.

To be concrete, we consider magnetic fields on each D7 stack, denoted by a circled cross ⊗ as the following table.

(45) (67) (89)

D7 1 • ⊗ × D7 2 × • ⊗ D7 3 ⊗ × •
Three different kinds of states appear. The first two describe strings with both endpoints on the "same" stack D7 i -D7 i which are either neutral (attached to the same brane, hence with opposite endpoints charges) or doubly charged (stretching between the brane and its orientifold image). The last ones are mixed states D7 i -D7 j , with i = j. Due to the presence of magnetic fields, the massless states of the Observing the above mass formulae, it can be deduced that tachyonic states indeed appear in the spectrum. 25,26 The only way to eliminate all three potential tachyons along the D7-brane intersections (D7 i -D7 j mixed states) is to choose |ζ (2) 1 | = |ζ (3) 2 | = |ζ (1) 3 |. On the other hand, in order to uplift the tachyons on the D7 i -D7 i sectors, we can introduce distance separations between branes and their images in the direction orthogonal to their worldvolume, or Wilson lines i.e. constant background gauge fields on unmagnetised worldvolume tori. In the Table below we present a configuration keeping only one potential tachyonic state that can play the role of the waterfall field: b (45) (67) (89)

D7 1 • ⊗ × D7 2 × • ⊗ D7 3 ⊗ × • -→ (45) (67) (89) D7 1 • ⊗ × A1 D7 2 × • ±x2 ⊗ D7 3 ⊗ × A3 •
We introduce discrete Wilson lines along the third torus T 2 3 for the D7 1 stack and along the second torus T 2 2 for the D7 3 stack, while we separate the D7 2 stack from its orientifold image in its transverse directions. Next, we denote the A i tori areas (i = 1, 2, 3) as power fractions of the total volume A i ≡ α r i V 1/3 , with r 1 r 2 r 3 = 1 and U i the corresponding complex structure moduli. Then, the masses for the doubly charged states in the three brane stacks are found to be 19 α m 2 11 ≈ -

2|k (2) 1 | πr 2 V 1/3 + a 2 1 r 3 V 1/3 , (4.2) 
α m 2 22 ≈ -

2|k (3) 2 | πr 3 V 1/3 + y 2 r 2 V 1/3 , (4.3) 
α m 2 33 ≈ -

2|k (1) 3 | πr 1 V 1/3 + a 2 3 r 2 V 1/3 , (4.4) 
where a 1 , a 3 and y 2 are functions of the complex structure moduli U i defined in footnote b. By choosing appropriately a 1 , a 3 with respect to the values of the magnetic fluxes |k (2) 1 | and |k (1) 3 |, one can eliminate the D7 1 -D7 1 and D7 3 -D7 3 tachyons. For a i = 1/2, typical for Z 2 orbifolds, this requires flux numbers smaller than wrapping numbers. On the other hand, the D7 2 -D7 2 state becomes tachyonic at and below a critical value of the volume that can be chosen to be in the vicinity of the minimum of the potential, as required for the waterfall field, denoted by ϕ -in the following.

b The following definitions are introduced: the discrete Wilson lines in the dual lattice are expressed as A k = a kx R * x k + a ky R * y k , with a kx , a ky ∈ Q . The D7 k brane position x k as x k ≡ x x k R kx + x y k R ky with x x k , x y k ∈ Q, while R ik • R * l i = δ l k . For later use, we also define y k (U ) = We turn now to the scalar potential. The magnetic fields contribute through a D-term of the form

V D = a g 2 U (1)a 2 ξ a + n q n a |ϕ n a | 2 2 + • • • = a=1,3 g 2 U (1)a 2 ξ 2 a + g 2 U (1)2 2 ξ 2 + 2|ϕ + | 2 -2|ϕ -| 2 + • • • 2 + • • • , (4.5) 
where in the second line contributions only from the tachyonic field and its charge conjugate are taken into account.

We have also explained that the tachyonic scalar, coming from strings stretching between the D7 2 brane stack and its image, may receive a positive mass contribution due to the brane position. In the effective field theory, this contribution is described by a trilinear superpotential obtained by an appropriate N = 1 truncation of an N = 4 supersymmetric theory. The physical mass for the canonically normalised fields can be computed from the physical Yukawa couplings, derived from the supergravity action, and can be expressed as 27 W tach = Y ijk ϕ i ϕ j ϕ k , where Y ijk are Yukawa coefficients expressed in terms of the Kähler metrics of related matter fields. Their volume dependence can be worked out and the final form of the coupling is

W tach = g 1/2 s κ 3 A 2 α V ϕ 2 ϕ + ϕ -, (4.6) 
which induces a scalar potential F-part of the form V F m 2 x2 |ϕ + | 2 + |ϕ -| 2 with m 2 x2 = y 2 (g 2 s /κ 2 V)A 2 /α . In addition to this mass-squared terms, the F-term scalar potential also contains quartic terms. They can be worked out and the leading term in the scalar potential for the tachyonic scalar is found to be of the form V F κ 2 m 2 x2 |ϕ -| 4 . The effective scalar potential includes the D-term and F-term contributions and its final form is achieved after the minimisation procedure whose details can be found in Ref. 19 . Neglecting, in particular, the massive ϕ + field, the scalar potential receives the simplified form

V (V, ϕ -) = C κ 4 - ln V -4 + q V 3 - 3σ 2V 2 + 1 2 m 2 Y (V)|ϕ -| 2 + λ(V) 4 |ϕ -| 4 , (4.7) 
where the explicit forms of the volume dependent mass m 2 Y and quartic coupling λ are given in terms of integers representing magnetic fluxes 19 and other string parameters. The final dependence of V (V, ϕ -) on the two fields has been written in the form of the hybrid scenario 21 scalar potential. In this form it is even clearer that the role of the waterfall field is played by the scalar field ϕ -associated with the state stretching between the D7 2 brane and its orientifold image. Its mass squared m 2 Y depends on the internal volume V, directly related to the inflaton, and turns negative when the internal volume acquires a critical value. A waterfall direction is thus generated, as in the hybrid scenario. This mechanism leads to a new lower minimum. It has been found 19 the amount of reduction falls short to explain the observed value of dark energy of our Universe. This situation can be remedied within our model by introducing more tachyons, coming from the two other D7-brane stacks and from a fourth magnetised stack, parallel to one of the initial stacks. These additional tachyons contribute negatively to the scalar potential and are sufficient to achieve the present value of the cosmological constant. Apart from (or instead of) these contributions, one should of course expect new physics at low energies, leading to other phase transitions that affect the scalar potential. Hence, the precise tuning of the vacuum energy within our high energy model should be regarded as a proof of principle.

Conclusions

In this presentation we have discussed aspects of perturbative corrections in the weak string coupling regime and large volume compactifications within the framework of type IIB string theory. We have considered a geometric configuration of intersecting D7-brane stacks and investigated the role of logarithmic corrections which are present by virtue of local tadpoles induced by localised gravity kinetic terms. Such terms are generated from the dimensional reduction of the R 4 terms in the effective ten dimensional action and arise only in four spacetime dimensions. We have shown that in this string theory context, metastable de Sitter vacua can be ensured together with Kähler moduli stabilisation.

Subsequently, we have examined the possibility of realising the mechanism of cosmological inflation. We have shown that the inflationary scenario can be naturally implemented when the internal volume modulus is considered to be the inflaton field. The effective scalar potential contains only a single free parameter, whose value is fixed in order to meet the inflationary conditions and in particular the requirement of 60 e-folds which, in our construction, are collected near the minimum. These requirements, however, lead to a very shallow potential with its minimum much larger than the known value of the cosmological constant.

To resolve this discrepancy, we have suggested that a string version of the hybrid inflationary scenario could be realised where possible waterfall fields could be identified with some of the charged string states stretching between the branes and their orientifold images. In the effective theory, the (volumed dependent) masses squared of such excitations consist of positive contributions from brane separations and possible negative ones when worldvolume magnetic fields are turned on. With suitable conditions on various quantities such as magnetic fluxes and geometric characteristics, tachyonic states may appear. For illustrative purposes, we have presented a simple scenario where a tachyonic field arises, with its mass squared turning negative as soon as the internal volume acquires a critical value. This is exactly what is required for a waterfall field. More specifically, in the effective field theory, states of the kind described above induce specific contributions to the F-and D-terms of the effective potential. When these contributions are included in the total scalar potential, 19 the tachyonic field can indeed play the role of the waterfall field, providing in this way an explicit string realisation of the hybrid inflationary scenario. Finally, we have discussed the role of multiple tachyonic fields in order to obtain the present value of the cosmological constant. Remarkably, the present construction offers an explicit counter-example to de Sitter Swampland conjecture.
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 1 Fig. 1. Left figure: Vanishing of V (τ ) from 0 -happens for potentials with an AdS minimum. Middle: Large τ behaviour of V (τ ) with power law correction ∼ 1 τ n . The potential on the righthand side exhibits local minimum and maximum.
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 2 Fig.2. Non-zero contribution from 1-loop; 3-graviton scattering amplitude of 2 massless gravitons and 1 KK mode corresponding to a closed string propagation in 2-dimensions towards a D7 brane.
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 3 Fig. 3. Scalar potential V (φ) for different values of x giving an AdS, Minkowski or dS vacuum.
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 2 Antoniadis, O. Lacombe, G.K. Leontaris thus recall a few basic equations regarding the evolution of the expansion of the Universe and the inflationary epoch assuming a single scalar field φ in the standard Friedmann-Lemaître-Robertson-Walker (FLRW) background. The Friedmann equations for an expanding Universe are 3H usual H(t) = ȧ a , represents the Hubble parameter. The equation of motion for the scalar field reads φ + 3H φ + κ 2 V (φ) = 0 . (3.20) Changing variable Ḣ = dH dφ φ, equation (3.19) yields dH dφ = H (φ) = -1 2 φ .
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