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‘We present a string realisation of the hybrid inflationary scenario within type IIB effec-
tive string theory constructions and a geometric configuration of intersecting D7 branes.
A metastable de Sitter minimum is ensured by perturbative logarithmic corrections and
D-term contributions from abelian factors associated with the D7 branes. The inflaton is
identified with the internal volume modulus whereas possible waterfall fields correspond
to excitations of open strings attached to the magnetised D7 branes. Incorporating contri-
butions of these fields in the scalar potential, inflation stops and the metastable vacuum
settles to a minimum with the observed tunable value of the cosmological constant.
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1. Introduction

At present, String Theory formulated in ten or eleven dimensions appears to be
the only promising candidate for a consistent quantum theory of the four known
fundamental forces and their interactions. Compactification of the higher dimen-
sional theory to four spacetime dimensions entails an immense number of string

*Presenter
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vacua dubbed as the string landscape. Numerous Effective Quantum Field Theo-
ries, on the other hand, have been built to describe the low energy physics and
make cosmological predictions. Amongst the most important features such a the-
ory should possess, is a positive tiny cosmological constant A ~ 107120 M3, in
order to account for the dark energy suggested by cosmological observations. The
simplest way to realise the dark energy scenario is to introduce a scalar field ¢
with a potential V' (¢), which displays a minimum value equal to the cosmological
constant Vinin(do) = A, at some suitable point ¢g. There is a significant ongo-
ing debate, however, on whether the string landscape contains any de Sitter vacua
which comply with the prediction of positive A. Recent Swampland conjectures,t
in particular, suggest that the first and second derivatives of V(¢) must satisfy
the inequalities |VV|/V > ¢ or min(V,;V,;V) < —¢ (in Planck units) where ¢, ¢
are positive constants of order one. If these inequalities are true, some apparently
consistent (anomaly free) theories in four dimensions do not have an ultra-violet
completion and cannot be derived from string theory. In other words, they belong
to the Swampland f] Putting it differently, starting from a successful Effective Field
Theory weakly coupled to gravity which describes adequately the known physics
phenomena, we cannot always embed it in the string theory landscape.

The above considerations have far reaching consequences both in cosmology and
particle physics” Here, we mention a few implications on otherwise very successful
cosmological scenarios. For example, it is rather obvious that the Swampland criteria
summarised in the aforementioned inequalities contradict the assumption that the
cosmological constant can account for the dark energy of the universe. Furthermore,
slow roll inflation is inconsistent with these criteria. Instead, there are suggestions®
that quintessence models where the cosmological constant varies over time satisfy
current observational constraints. If this scenario prevails, the present acceleration
phase eventually will terminate whereas the expansion of the universe will come to
an end in the distant future.

The ensuing years since their formulation, Swampland conjectures have faced
increased scrutiny. Most of the criticism focused on the assumed heuristic argu-
ments, and the neglected role of string quantum corrections. Indeed, the latter
are anticipated to be essential for the final form of the effective scalar potential
in the resulting field theory model after compactification. This presentation will
focus on investigations of de Sitter vacua and the realisation of inflation in type
IIB superstring theory. These investigations will take place assuming a geometric
configuration of intersecting D-brane stacks with magnetic fluxes® At the same
time, we will consider the effects of a new four-dimensional Einstein-Hilbert term
(localised in the internal space) which is generated from higher derivative terms in
the ten-dimensional string effective action/® This set up induces logarithmic cor-
rections to the scalar potential via loop effects Minimisation of the whole scalar
potential of the theory fixes the internal volume Kéhler modulus, V, whereas the

aFor reviews and further references see Refs. 214
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ratios of the worldvolumes along the three D7-brane stacks are fixed by virtue of
D-term contributions and their parameters depending on the quantised magnetic
fluxes. In addition, slow-roll inflation can be realised considering the (canonically
normalised) inflaton field to be proportional to the logarithm of the internal vol-
ume V. Furthermore, the open string spectrum associated with the D7 brane stacks
plays a significant role. One can fix magnetic fluxes and brane separations so that
charged open string states have positive squared-masses, except for one of them
which becomes tachyonic when V becomes less than some critical value. It turns
out that this state can be identified with a waterfall field which can be used to stop
the inflationary phase and deepen the vacuum. A generalisation of this scenario
with several waterfall fields shows that the model can accommodate the present
dark energy.

2. Type IIB moduli stabilisation

We briefly introduce the basic geometric set up and the moduli field content. We
consider a six-dimensional compactification on a Calabi-Yau (CY) threefold within
a type IIB framework in the presence of quantised 3-form fluxes. Deformations
of the compactification correspond to massless scalars which do not acquire tree-
level potential and do not affect the four-dimensional action. Such scalars are the
dilaton field ®, the K&hler moduli 7;, the complex structure (CS) ones z,, moduli
corresponding to brane deformations and so on. We further introduce a two index
antisymmetric tensor denoted with B, (the Kalb-Ramond field) and the p-form
potentials C},, p = 0,2,4. The Cj potential and the dilaton field, define the usual
axion-dilaton combination S = Co+ie™® — Cy + g% where g is the string coupling.
At the effective theory level, there are two basic ingredients: the superpotential of
the moduli fields and the K&hler potential.

To construct the superpotential one introduces p-form field strengths F, =
dCp_1,Hs := d By and defines Gg := F3 — S Hs. In terms of these, the fluxed
induced superpotential W, is given, at the classical level, by the well-known for-
mula:10

Wo:/Gg/\Q(za), (2.1)

where Q(z,) is a holomorphic 3-form. It turns out that the perturbative superpo-
tential Wy is a holomorphic function which depends on the axion-dilaton modulus
S, and the CS moduli z,. Imposing the supersymmetric conditions, the moduli
Zq, S can be stabilised. On the contrary, the Kéhler moduli, do not participate in
the perturbative superpotential and thus remain completely undetermined at this
stage.

The second ingredient is the Kahler potential which depends logarithmically on
the various moduli fields through the expression:

Ko = —21In (V) — ln(—i/Q AQ), (2.2)
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where V is the volume of the 6d internal CY manifold Ay, in string units. The
effective potential is computed from (2.2)) using the standard supergravity formula

Ve = € | Y DMK D ;W0 — 3002 | (2.3)
1,J

where Dy = 07 + Ky is the Kahler covariant derivative. At the classical level this
potential vanishes identically due to its no-scale structure, and appropriate super-
symmetric (flatness) conditions for the dilaton and the CS moduli. It is thus im-
possible to stabilise the Kahler moduli at this level. These moduli can be stabilised
when quantum corrections breaking the no-scale structure of the Kéhler potential
are included.

Several ways to fix this problem have appeared over the last two decades. A
first approach™™12 was based on the inclusion of non-perturbative superpotential
terms of the form W,, ~ >, A;e%Ti The coefficients A; may depend on the
complex structure moduli, and the exponential factors on the Kéhler ones 7;. The
parameters a; may arise form gaugino condensation on D-brane stacks and for the
SU(N) case, they are of the form 27). The above ingredients can stabilise the
Kihler fields, however the potential acquires an anti-de Sitter (AdS) vacuum.M A
possible solution to this problem!? is to uplift the vacuum by taking into account
contributions from D3 branes. There are two issues regarding this solution. Firstly,
in order to obtain an AdS minimum the coefficients Wy, A; and a; require unnatural
fine-tuning. Secondly, these contributions rely on non-perturbative effects which
cannot be controlled at the full string level. Some improvements of the original
models, however, have appeared using nilpotent chiral multiplets 13 which lead to
a new mechanism for uplifting the vacua in the string landscape 14

A different way to stabilise the moduli is based on Large Volume Scenario
(LVS)*® This proposal takes advantage of the leading o’ corrections to the Kéhler
potential (together with the non-perturbative contributions) which ensure an AdS
solution in the Large Volume Limit but avoid tuning W in at extremely small
values. Uplift to a de Sitter (dS) vacuum can be realised through D-terms.

Perturbative moduli-dependent corrections in weakly coupled string theory, on
the other hand, are fully controllable and therefore more reliable. However, not
all types of corrections are suitable for moduli stabilisation. Ordinary perturbative
expansions, either in o’ or in powers of the weak string coupling g, fail to gen-
erating a (meta)stable dS minimum in a controllable way. This is the well-known
Dine-Seiberg problem which we now describe in brief. When perturbative moduli-
dependent quantum corrections are included in the Kéahler potential they induce
contributions to the scalar potential, V' (7;) where 7; are the imaginary parts of the
Kahler moduli 7; and are associated with the internal volume. The validity of per-
turbation theory implies that such corrections should vanish for ; — oo implying
also the vanishing of the scalar potential V(7;);_ o — 0. If the zero at infinity is
reached from negative values, then, for non-contrived scalar potentials V' (7;), this
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implies an AdS minimum which is not acceptable. Thus, the vanishing of the po-
tential at infinity should be approached from positive values. Again, for reasonable
V(7;), this implies that there should be somewhere a maximum before a dS min-
imum is formed. These three shapes are plotted in figure [I} The potential on the

Verr

Fig. 1. Left figure: Vanishing of V(7) from 0~ happens for potentials with an AdS minimum.
Middle: Large 7 behaviour of V(7) with power law correction ~ % The potential on the right-
hand side exhibits local minimum and maximum.

right-hand side exhibits local minimum and maximum and its shape suggests that
there should be two competing terms of different functional dependence on 7. While
previously considered perturbative corrections do not share this property at large
volumes, a possible exception known from field theory are logarithmic corrections
similar to those in the Coleman-Weinberg mechanism 1°

The above observation shows the way to overcome the difficulties in superstring
constructions. We recall that string theory has a reach structure including non-
perturbative objects such as D-branes which open up possibilities to construct re-
alistic cosmological models. Another ingredient, of particular interest in the present
study, comes from high order curvature terms in the ten dimensional effective ac-
tion. These elements are sufficient to generate loop corrections which induce new
contributions to the Kéahler potential I, break its no scale invariance and stabilise
the moduli. We will describe in short how perturbative logarithmic corrections are
generated with the above constituents.

The low-energy expansion of the type IIB superstring action contains fourth
order terms in the Riemann curvature, R*, which do not receive any perturbative
corrections beyond one loop 118 Upon compactification to our four dimensional
spacetime My, these one-loop corrections induce a novel Einstein-Hilbert (EH) term
R(4)- Its coefficient is proportional to the Euler characteristic x, defined on X by

Y RARAR-

" 4n8
Xg
Observing that x contains three powers of R, we deduce that the effective EH term
R(4) (originating from R*) is only possible in four dimensions. Furthermore, such an
EH term can be viewed as a vertex localised at certain points in the six-dimensional
bulk where x acquires non-zero values, emitting closed strings (gravitons). We thus
study the case of three-graviton scattering involving two massless gravitons and a

Kaluza-Klein (KK) excitation propagating towards a D7-brane stack. The sum over
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the KK modes corresponds to a propagation that takes place in a two-dimensional
bulk space transverse to the D7 stack, see Figure Consequently, this process
yields logarithmic contributions breaking the no-scale invariance of the Kéahler po-
tential #®) Taking these logarithmic contributions into account the final effective
action (obtained in the 7°/Zy orbifold limit) contains”

_ 4¢(2)x RF
e **R10) + (2;))3 / 1— Z emTklog?J‘ Ry (2.4)

(2m)?
My X Xg My k=1,2,3

Here, T}, is the brane tension of the k-th stack, R’i the size of the two-dimensional
space transverse to the D7-stack and w an ‘effective’ localisation width of the gravi-
ton vertex, given by w = £,/v/N with I, = v/o/ the fundamental string length®

From the correction terms in the 4d reduced action we can readily extract
the corresponding induced terms in the Kéahler potential. For simplicity we assume
the same tension for all three brane stacks, so that T, = T = e~ ®T}, and for each
Kahler modulus 7 we denote 7, = Im7Ty. For D7-brane stacks with orthogonal co-
volumes, the internal volume is simply V = /717273, and the the Kéhler potential
takes the form

K==2In(y/nmm+{+yn(nmnmn))=-2IV+{+ynV). (2.5)

Computations for the orbifold and smooth CY cases show that the parameters &
and v are given by

1 X %zgg for orbifolds

v =—=gsTo, with £ =—-= , (2.6)
4 ¢(3) for smooth CY

2

In (2.6)) tree-level contributions for the orbifold case have not been included, since
2

the ((3)x correction to the EH term vanishes™8 The identity ((2) = % has also

been used in the orbifold action (2.4)).

ko

worldsheet =0

=

Fig. 2. Non-zero contribution from 1-loop; 3-graviton scattering amplitude of 2 massless gravitons
and 1 KK mode corresponding to a closed string propagation in 2-dimensions towards a D7 brane.
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3. Inflationary phase

From we can readily compute the F-part of the scalar potential Vr. To this
end, we assume that all complex structure moduli are stabilised and the fluxed
induced superpotential W, can be taken as a constant, while for convenience we
introduce the new parameter p = e%. The exact expression for Vpx can thus be
written as

33 2(y +2V) + (4y — V) In(uV) (3.1)

KL (V4 2y In(uV))? (672 + V2 + 89V 4 y(4y — V) In(uV))’ '
where k = /87 is the reduced Planck length. In the large volume limit, Vp takes
the simplified form

Vi

32
2k4V3
By virtue of the logarithmic term the potential acquires a global minimum,
although this is an anti-de Sitter vacuum. Yet, a D-part contribution to the scalar

Vi = (€4 2y(InV — 4)) + - -- (3.2)

potential comes from the existence of universal U(1) factors associated with the
three D7-brane stacks. In the large world-volume limit this contribution takes the
form

dl dg d3

+ - +oe
3 3 ,{47-?1”)

Vp =
kAP RATS

(3.3)

where the d; for i = 1,2,3 are model-dependent constants related to U(1) Fayet-
Tliopoulos (FI) terms.

For the subsequent discussion it is useful to replace the dependence of the poten-
tial on Kéahler moduli with the canonically normalised fields. We identify them with
a logarithmic function of the volume and two perpendicular directions defined in
terms of 7; ratios. We also recall that we consider a simple setup with “orthogonal”
D7-brane stacks, such that V = /717273. The new basis then reads:

2
b= \@ In(V), (3.4)
1 T1
= —1 — .
u=g og<T2>, (3.5)
3
v = ilog (7—17—2) . (3.6)
6 T3 T3
In terms of these, the total scalar potential Vog = Ve + Vp in the large volume limit
is
3IW3
Vr = 5 0e VI (1(VBo - 4) +¢)

—V6¢ )
€ l<;4 (dlei\/gvigu + d267\/§v+3u + d362\/§v> . (37)

In the inflationary scenario that we will discuss shortly, the field ¢ defined in eq. (3.4))
will play the role of the inflaton. In order to examine its evolution during the

+
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inflation era, we need first to stabilise the three moduli u, v,V = e\/%s and derive
the constraints in order to ensure a dS vacuum. We first minimise V¢ with respect
to the two transverse fields u, v, and find their values at the minimum:

1 dy 1 dyds
=1 — =—1 — ] . .
" 6n<d2>’ 0 6\/§n(d§ ) (3:8)

Substituting back into (3.7]) we obtain the simple expression

V(¢) ~ —%e—?’\/%’ <\/§¢—4+q+ gae\/g¢> , (3.9)

K

where we have defined

£ 2d
-, o= 3 -
2y INo ™y
A few comments are in order. First, in order to ensure a dS vacuum, the parameter
~v must be negative, hence the coefficient C' is positive. Moreover, the parameter
d, related to the D-term part of the potential, is always positive. Furthermore,

C=-3W2y>0, d=3(didads)?, q= (3.10)

increasing of the value of the parameter ¢ shifts the local extrema towards larger
volumes. Finally, ¢ is the only free parameter of the model. It acquires negative
values, hence the total coefficient of the last term is positive and is expected to
uplift the minimum of the potential to positive values.

To study inflation and compute the slow-roll parameters we need to determine
the extrema of the potential with respect to the inflaton field ¢.1? Thus we take the
first and second derivatives of the potential with respect to ¢ and obtain

3C _3./34 3 13 34
V() :3\/gﬁ46 Vi (\/gdw-q— 3 +oeVE , (3.11)
21C 5 /34 3 14 2 £
V”((b) = —?Ee \/; <\/;¢+q— §+§ae\/; . (312)
Requiring the vanishing of the first derivative, V’'(¢) = 0, we obtain two solutions

which are expressed in terms of the two branches Wy and W_; of the Lambert W
function (product logarithm):

o- =2 (1= B e mo (), (3.13)
T e T

The new parameter = introduced in the above solutions is defined by
rT=q— ? —log(—0)  o=—ei"F 7 (3.15)

while ¢_ is the local minimum and ¢, the local maximum. Large volumes can be
achieved at weak coupling for ¢ < 0, implying a negative Euler number y < 0, see

eqs. and .
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Notably, most of the important quantities are expressed through simple analyt-
ical forms in terms of x. For example, the slow-roll parameter n depends only on z
through the Lambert W function:

VI(9_ss) 1t Woa(—e )

n(o—s4) = V6 ) —9% N — (3.16)

Similarly, the distance between the two extrema is

¢y — - = \/g (Wo (—e ™) =W_y (—e* 1] >0. (3.17)

The parameter x thus clearly plays a significant role. For the critical value x. ~
0.072132 the potential at the minimum vanishes, V(¢_) = 0, which corresponds
to a Minkowski minimum. Below this critical value, in the region 0 < = < ., the
potential acquires a dS vacuum whereas for x > z. it displays an AdS minimum.
For & < 0 the two branches of the Lambert function join and the potential loses its
local extrema. The potential for the three regimes described above is depicted in

Figure [3
20 — - 2 5 T T T
— V() x=10 — V(9) x=0072132 — V() x=1.0x10"*
10 4
0
3 o s
< -10 =1 =
2
—20F I
_30F 1 1
- s ‘
403 ) 5 6 0t— B A 7 0

Fig. 3. Scalar potential V' (¢) for different values of x giving an AdS, Minkowski or dS vacuum.

Having determined the region of the parameter x which is consistent with dS
minima, we are now ready to study cosmological implications and in particular
inflationary observables. We first find that some well-known inflationary scenarios
such as slow-roll inflation hilltop, cannot be realised in our restricted model. We
can easily adjust the value of the slow-roll parameter 7 (which depends only on x)
by varying = € (0, z.), so that inflation starts near the maximum, and the modes
exit horizon with the required value of the spectral index. It is found, however,
that the slow-roll parameters €,n remain much less that unity all the way down the
slope, hence inflation does not stop, and as a result an unacceptably large number
of e-folds is generated.

As we describe below, in order to study more general inflationary scenarios, we
will scan the x parameter space. For each value of x, we can solve the evolution
equation for the Hubble parameter and derive the relevant parameters to study
the eventual inflationary stage. Before entering the details of such a procedure, we
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thus recall a few basic equations regarding the evolution of the expansion of the
Universe and the inflationary epoch assuming a single scalar field ¢ in the stan-
dard Friedmann-Lemaitre-Robertson-Walker (FLRW) background. The Friedmann
equations for an expanding Universe are

%ﬂ:%&+ﬁvw% (3.18)
2H = —¢?, (3.19)

where, as usual H(t) = %, represents the Hubble parameter. The equation of motion
for the scalar field reads

G+3H+r2V'(¢)=0. (3.20)
Changing variable H = %q}), equation ([3.19) yields
dH 1.

—— =H'(¢p)=—-20¢. 21

T~ H(©) =59 (321)

Using (3.18) and expressing qb as a function of H and V, we obtain the Hubble
parameter evolution equation:

H'(9) = ¢\%\/3H2(¢) —RV(9) - (3.22)

The exact forms of the slow-roll parameters 7, € are<"

H"(¢) _H _(H(9))
we) . 9= H2‘2(H<¢>> ’

while in the slow-roll limit they acquire the usual forms 7(¢) = V(@) and (o) ~

Vi(e)
, 2
% (“//(((f))) . From the first expression of ¢ in ([3.23)), we obtain

n(¢) =2

(3.23)

P

aH?

so that € < 1 is the natural criterium characterising inflation, a phase with d > 0.
Finally, the number of e-folds N is given by

tend 1 ¢ do

N ) Hdt N ARG

As mentioned above, one can investigate inflationary possibilities through a scan

of the x parameter in the following way. The value of x determines the shape of

the inflaton scalar potential V(¢), which enters the evolution equation for

the Hubble parameter. For a given value of z, solving this equation thus allows

—1—¢ (3.24)

(3.25)

to compute the slow-roll parameters and number of e-folds, through egs. (3.23))
and , and study the inflationary phase.

The above scan gave rise to a novel scenario where most of the e-folds are
obtained near the minimum. In this scenario, the inflaton starts rolling down from
a point close to the maximum towards the minimum of its potential with zero initial
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speed. If n(¢4) < —0.02, because at the inflection point the second derivative V" ()
changes sign, the inflaton will pass through the point where 7(¢.) = —0.02 before
it crosses the inflection point. We can then choose the parameter z so that 60 e-
folds are obtained from this point to minimum. Thus, in order to reproduce the
observational data, the initial position of the inflaton has to be higher than the
inflection point, where 7 is negative, so that n = —0.02 is taken at the horizon exit.

In order to realise this scenario, we have solved numerically the evolution equa-
tion for various values of z, starting near the maximum with vanishing initial
speed for the inflaton. The required number of e-folds, IV, ~ 60 are achieved for
x ~ 3.3 10~* while the two extrema of the potential are found at ¢_ = 4.334 and
¢+ = 4.376. The e-folds are computed from the horizon exit ¢, =~ 4.354 at which
n(¢«) = —0.02, down to the minimum ¢_. Is it worth observing that the corre-
sponding inflaton field displacement A¢ =~ 0.02, is much less than one in Planck
units. Hence it corresponds to small field inflation, and as such is compatible with
the validity of the effective field theory. Finally, this model predicts an inflation
scale H, ~ 5 x 10'? GeV and a ratio of tensor to scalar perturbations r ~ 4 x 10~

4. Waterfall fields and hybrid inflation

Up to this point, we have explained how in the simple geometric set up of three
D7-brane stacks we can ensure Kéahler moduli stabilisation in a dS vacuum and
investigated the conditions to realise inflation. We found that logarithmic radiative
corrections and brane magnetisations generate a scalar potential with a very shallow
dS minimum, which can realise inflation with the required 60 e-folds collected near
the minimum (as opposed -for example- to the case of hilltop scenario). However, the
tight constraints imposed by the various requirements entail a metastable minimum
with a cosmological constant much larger than the one observed today. A detailed
consideration shows that this false vacuum of the so-obtained scalar potential is
suggestive for a solution through hybrid inflation?! where a waterfall field ends the
inflation phase and settles to a lower (true) vacuum with the anticipated value of
the cosmological constant. Such a waterfall field is realised by a scalar field with
effective mass depending on the value of the inflaton. If this field becomes tachyonic
under a certain critical value for the inflaton, it generates the waterfall direction of
the scalar potential.

Within the present geometric configuration, potential waterfall field candidates
are the various states associated with the excitations of open strings with endpoints
attached to D7 brane stacks. The scalar components of these states may receive
supersymmetric positive square masses from brane separation or Wilson lines, and
non-supersymmetric contributions due to the presence of the worldvolume magnetic
fields generating the D-terms required for moduli stabilisation.

In the following, we briefly describe how these fields contribute to the material-
isation of this scenario in the context of a Zy x Zy orbifold. We assume a factorised
6-torus into three 2-tori 76 = T2 x T2 x T? spanning the internal dimensions (45),
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(67) and (89) respectively. The model under consideration consists of three D7 brane
stacks, which we denote with D7,,D7; and D73. Each of them spans four internal
dimensions and is localised in the remaining two. This setup can be considered as
dual to the configuration of the D9 and D5 branes as in the toroidal orbifold model
described in the literature 2223 This is shown schematically in the following table
where we impose T-duality along (45) dimensions.

| (45) (67) (89) | (45) (67) (89)
D, . X X . D9, X X X
D7y X X . Db5s . X
D73 X . X D53 . . X

We use a cross x to represent the D7 world-volume spanning the corresponding
torus, and a dot - to indicate the transverse directions where the D7 brane is lo-
calised.

As motivated above, we can introduce magnetic fields H{”, on the a-th stack
D7, and in the i-th torus T7. They are subject to the Dirac quantization condition
m$) [H = 27n{, leading to the magnetic field quantisation 2rH{" A, = &k,
where 472 A; is the T? area. Here m{’, n{ are the winding numbers and the flux
quanta and we defined the ratio k{? = n{’/m{? € Q. The magnetic fields modify
the world-sheet action by introducing boundary terms2#2°% and shift the modes of
the charged oscillators by

. 1 )
¢ = =Arctan(2ma/q, H"). (4.1)
m

where g, = +1,0 are the U(1) charges of the open string endpoints.

The mass spectrum can be extracted, either from the field theory mass formula
or from vacuum amplitudes, and one sees that when magnetic fields are introduced
into the D7-brane configuration, tachyonic states may appear in the spectrum 2226
In general, one can eliminate them by introducing appropriate brane separations or
Wilson lines.

To be concrete, we consider magnetic fields on each D7 stack, denoted by a
circled cross ® as the following table.

| (45) (67) (89)
D71 . &® X
D72 X . ®
D73 X X

Three different kinds of states appear. The first two describe strings with both
endpoints on the “same” stack D7;-D7,; which are either neutral (attached to the
same brane, hence with opposite endpoints charges) or doubly charged (stretching
between the brane and its orientifold image). The last ones are mixed states D7;-
D7;, with i # j. Due to the presence of magnetic fields, the massless states of the
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original orbifold model are modified. The masses of the D7;-D7; doubly charged
states read a/m? = —2|Ci(j)\2 whereas those of the D7,-D7; states are of the form
(165”1 = 167D, (168”1 = 1657 1) and (16571 = 1657

Observing the above mass formulae, it can be deduced that tachyonic states
indeed appear in the spectrum 2228 The only way to eliminate all three potential
tachyons along the D7-brane intersections (D7,-D7; mixed states) is to choose
17 = [¢57] = |¢5”]. On the other hand, in order to uplift the tachyons on the
D7,-D7; sectors, we can introduce distance separations between branes and their
images in the direction orthogonal to their worldvolume, or Wilson lines i.e. constant
background gauge fields on unmagnetised worldvolume tori. In the Table below we
present a configuration keeping only one potential tachyonic state that can play the
role of the waterfall field{’]

| (45) (67) (89) | (45) (67) (89)
D71 . ® X D71 : by XAy
D72 X . ® - D72 X C tzo &
D73 | ® X . D73 | ® X Ay

We introduce discrete Wilson lines along the third torus 75 for the D7, stack and
along the second torus T2 for the D73 stack, while we separate the D75 stack from
its orientifold image in its transverse directions. Next, we denote the A; tori areas
(i = 1,2,3) as power fractions of the total volume A; = o/r; VY3, with rirers = 1
and U; the corresponding complex structure moduli. Then, the masses for the doubly
charged states in the three brane stacks are found to bel?

2|k a?

Ion2 1 1

amn V13 g P1/37 (42)
2[5

"2~ — 2 1/3

& m22 7_[_713]/1/3 + y2r2V bl (43)
9L 2

B P L Mg (4.4)

V13 P13’

where a1, az and ys are functions of the complex structure moduli U; defined in foot-
note [b] By choosing appropriately a;, as with respect to the values of the magnetic
fluxes |k{®| and |k$”|, one can eliminate the D7:-D7; and D73-DT75 tachyons. For
a; = 1/2, typical for Zs orbifolds, this requires flux numbers smaller than wrapping
numbers. On the other hand, the D75-D75 state becomes tachyonic at and below a
critical value of the volume that can be chosen to be in the vicinity of the minimum
of the potential, as required for the waterfall field, denoted by ¢_ in the following.

bThe following definitions are introduced: the discrete Wilson lines in the dual lattice are expressed
as Ap = ap R} + akyRZy, with  agg,ary € Q. The D7y brane position zy as xp = zf Ry, +

4| —iUzY|?
{L‘Z Ry, with mi,xz € Q, while R -R;fl = 62. For later use, we also define yi(U) = %
_ |aky+ankz|2

and ag(U) Re(D)
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We turn now to the scalar potential. The magnetic fields contribute through a
D-term of the form

2 2
gU a n n
o= 300 (64 )
2 2
g g
= Y e T (G 2P -2 P ) e (49)
a=1,3

where in the second line contributions only from the tachyonic field and its charge
conjugate are taken into account.

We have also explained that the tachyonic scalar, coming from strings stretching
between the D75 brane stack and its image, may receive a positive mass contribution
due to the brane position. In the effective field theory, this contribution is described
by a trilinear superpotential obtained by an appropriate N = 1 truncation ofan N =
4 supersymmetric theory. The physical mass for the canonically normalised fields
can be computed from the physical Yukawa couplings, derived from the supergravity
action, and can be expressed as?? Wigen = Yijk pipjpr, where Yy, are Yukawa
coeflicients expressed in terms of the Kéhler metrics of related matter fields. Their
volume dependence can be worked out and the final form of the coupling is

As
Weaen = 9°K°\| =55 020160, (4.6)

which induces a scalar potential F-part of the form Vi 3 m2, (|4 | + |¢—|?) with
m2, = y2(92/Kk*V)Az/c’. In addition to this mass-squared terms, the F-term scalar
potential also contains quartic terms. They can be worked out and the leading
term in the scalar potential for the tachyonic scalar is found to be of the form
Vi 3 k2m2 |p_|*.

The effective scalar potential includes the D-term and F-term contributions and
its final form is achieved after the minimisation procedure whose details can be
found in Ref.[19. Neglecting, in particular, the massive ¢ field, the scalar potential
receives the simplified form

C [ mV—-4+q 30\ 1 , . AV, L
( s 2])2>+2my(12)|<p| +T|<Pf|
2

where the explicit forms of the volume dependent mass myj and quartic coupling

V(IV,p_) = , 4

K4

A are given in terms of integers representing magnetic fluxes!” and other string
parameters. The final dependence of V(V,¢_) on the two fields has been written
in the form of the hybrid scenario®! scalar potential. In this form it is even clearer
that the role of the waterfall field is played by the scalar field ¢_ associated with
the state stretching between the D7y brane and its orientifold image. Its mass
squared m?2. depends on the internal volume V), directly related to the inflaton,
and turns negative when the internal volume acquires a critical value. A waterfall
direction is thus generated, as in the hybrid scenario. This mechanism leads to a new
lower minimum. It has been found' that when only a single tachyon is involved,
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the amount of reduction falls short to explain the observed value of dark energy
of our Universe. This situation can be remedied within our model by introducing
more tachyons, coming from the two other D7-brane stacks and from a fourth
magnetised stack, parallel to one of the initial stacks. These additional tachyons
contribute negatively to the scalar potential and are sufficient to achieve the present
value of the cosmological constant. Apart from (or instead of) these contributions,
one should of course expect new physics at low energies, leading to other phase
transitions that affect the scalar potential. Hence, the precise tuning of the vacuum
energy within our high energy model should be regarded as a proof of principle.

5. Conclusions

In this presentation we have discussed aspects of perturbative corrections in the
weak string coupling regime and large volume compactifications within the frame-
work of type IIB string theory. We have considered a geometric configuration of
intersecting D7-brane stacks and investigated the role of logarithmic corrections
which are present by virtue of local tadpoles induced by localised gravity kinetic
terms. Such terms are generated from the dimensional reduction of the R* terms
in the effective ten dimensional action and arise only in four spacetime dimensions.
We have shown that in this string theory context, metastable de Sitter vacua can
be ensured together with Kahler moduli stabilisation.

Subsequently, we have examined the possibility of realising the mechanism of
cosmological inflation. We have shown that the inflationary scenario can be naturally
implemented when the internal volume modulus is considered to be the inflaton field.
The effective scalar potential contains only a single free parameter, whose value is
fixed in order to meet the inflationary conditions and in particular the requirement
of 60 e-folds which, in our construction, are collected near the minimum. These
requirements, however, lead to a very shallow potential with its minimum much
larger than the known value of the cosmological constant.

To resolve this discrepancy, we have suggested that a string version of the hybrid
inflationary scenario could be realised where possible waterfall fields could be iden-
tified with some of the charged string states stretching between the branes and their
orientifold images. In the effective theory, the (volumed dependent) masses squared
of such excitations consist of positive contributions from brane separations and pos-
sible negative ones when worldvolume magnetic fields are turned on. With suitable
conditions on various quantities such as magnetic fluxes and geometric character-
istics, tachyonic states may appear. For illustrative purposes, we have presented a
simple scenario where a tachyonic field arises, with its mass squared turning nega-
tive as soon as the internal volume acquires a critical value. This is exactly what is
required for a waterfall field. More specifically, in the effective field theory, states of
the kind described above induce specific contributions to the F- and D-terms of the
effective potential. When these contributions are included in the total scalar poten-
tial 1 the tachyonic field can indeed play the role of the waterfall field, providing



LDNovember

11, 2021 11:13 WSPC/INSTRUCTION FILE

roceedingsIIBcosmo ws-ijmpa’ OL2

16

1. Antoniadis, O. Lacombe, G.K. Leontaris

in this way an explicit string realisation of the hybrid inflationary scenario. Finally,
we have discussed the role of multiple tachyonic fields in order to obtain the present
value of the cosmological constant. Remarkably, the present construction offers an

explicit counter-example to de Sitter Swampland conjecture.
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