
HAL Id: hal-03790475
https://hal.sorbonne-universite.fr/hal-03790475

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Low Complexity Shallow Neural Network With
Improved False Negative Rate for Cyber Intrusion

Detection Systems
Jörg Ehmer, Bertrand Granado, Julien Denoulet, Yvon Savaria, Jean-Pierre

David

To cite this version:
Jörg Ehmer, Bertrand Granado, Julien Denoulet, Yvon Savaria, Jean-Pierre David. Low Complexity
Shallow Neural Network With Improved False Negative Rate for Cyber Intrusion Detection Systems.
2022 20th IEEE Interregional NEWCAS Conference (NEWCAS), Jun 2022, Québec, Canada. pp.168-
172, �10.1109/NEWCAS52662.2022.9842204�. �hal-03790475�

https://hal.sorbonne-universite.fr/hal-03790475
https://hal.archives-ouvertes.fr


Low Complexity Shallow Neural Network With
Improved False Negative Rate for Cyber Intrusion

Detection Systems
Jörg Ehmer∗, Bertrand Granado∗, Julien Denoulet∗, Yvon Savaria† and Jean-Pierre David†
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Abstract—Economic value creation increasingly takes place
online or is tightly coupled to some kind of online service. At
the same time, malicious network activities are causing growing
losses in the strongly digitalized economies. Hence, protecting
network communication infrastructure is an important challenge
for companies and public institutions alike. Machine learning
algorithm based network intrusion detection systems (NIDS) are
often used to detect sophisticated attack patterns. However, the
detection quality of those algorithms suffers greatly from the
imbalanced nature of network flow data. Undetected attacks can
cause great damage, so it is essential that a NIDS performs at
its best in order to detect as many attacks as possible. In our
article, we propose an improved loss function in order to reduce
the number of false negatives produced by an artificial neural
network (ANN). Based on the CIC-IDS17 dataset, we show that
our proposed algorithm running on a shallow neural network
(single layer with 110 neurons) successfully classifies a variety of
recent network attacks with a F1-score above 99%.

I. INTRODUCTION

Detecting harmful activities in a network’s flow of packets
is algorithmically and computationally challenging. Traditional
network intrusion detection systems (NIDS) often use known
patterns to identify fraudulent behaviour. Those patterns have
to be carefully crafted in order to achieve acceptable detection
rates. Attackers, however, continuously adapt their strategies
in order to avoid detection. That is why security professionals
and researchers investigate new methods to deal with the ever-
growing number of threats present in current day computer
networks. One of these new emerging methods is the use of
machine learning. Rapid developments in the field of artificial
intelligence and deep learning have led to a wide variety
of algorithms capable of detecting anomalies in the flow of
network traffic and even classify certain attacks present within
those network flows. Proposed algorithms in the literature
include recurrent neural networks (RNNs) [8], convolutional
neural networks (CNNs) [12] [7], support-vector machines
(SVNs) [17] and broad learning systems (BLSs) [13] [9].
An additional challenge, that all of those approaches have in
common, is the fact that network attacks are ordinarily rather
rare events and that undetected attacks can lead to great costs.
The number of those attacks that were misclassified as benign
network traffic is called false negative rate in the context of
deep learning. To improve the security of a communication
network it is thus important to minimize this kind of error.
False positives, which are benign network flows that were

classified as an attack are somewhat less important as they
can be dealt with at a later stage of the intrusion detection
process.

A. Imbalanced learning

Training neural networks to detect rare events is a chal-
lenging task. Strongly imbalanced training data can cause a
network to classify almost all entries as part of the majority
class, the class containing the most samples. In such a case,
the accuracy performance measure might be relatively good,
even if the actual classifications for samples of the minority
classes are in fact quite poor.

B. Strategies to deal with imbalanced datasets

Guo Haixiang et al. [6] provide in their article a compre-
hensive overview of several possible strategies that deal with
imbalanced data. One such strategy is to change the training
dataset via resampling into one that is more balanced. This
is mainly achieved by oversampling [4] or undersampling [2].
Oversampling means that samples of the minority class are
copied to increase the number of such data points. However
the repeated use of the same data points can cause the network
to overfit. A way to prevent overfitting is to generate new
data points from the minority classes as it is proposed in the
Synthetic Minority Oversampling Technique (SMOTE) and
its variants [1] [11]. Another technique is to use generative
adversary networks (GANs) to generate additional samples
for the minority class as proposed in [14]. Leaving out
some of the majority classes data samples constitutes the
undersampling strategy. This procedure effectively shrinks the
majority sample set and leads to a more balanced training
dataset. However, this can lead to inferior classification results
of the majority class due to a less diverse training set. The
Difficult Set Sampling Technique (DSSTE) proposed by Liu et
al. [16] is an algorithm that combines over and undersampling
in order to decrease the number of majority data points, while
increasing the number of minority samples. Ensemble methods
and cost-sensitive learning represent other strategies that deal
with imbalanced data. Cost-sensitive learning incorporates the
imbalance of the training data into the training process by
associating an additional cost to the imbalance of the training
data. Such methods often require a deep understanding of the
impact of the class imbalance in order to properly calculate



its associated cost. Guo Haixiang et al. [6] mention in their
article that the difficulty to acquire sufficient knowledge about
the cost in relation to the class imbalance greatly inhibits
the widespread use of cost-sensitive learning. Recent devel-
opments in machine learning, however, have shown that it is
possible to achieve cost-sensitive learning without the need for
specially crafted cost matrices by using loss functions such as
the attack-sharing loss proposed by Dong et al. [15].
C. Imbalanced data classification domains

Imbalanced learning is a problem present in major fields of
research or engineering. A variety of application domains can
be found in [6]. The focus of this article lies in the information
technology domain and particularly in its network security
aspects. The steadily growing spread of IoT devices and the
ongoing shift towards a more digital economy emphasize the
need to secure our communication networks. Most of the
network’s traffic is of benign origin, attacks, on the other
hand, are normally rare events. It is this biased distribution of
benign versus malicious traffic that places the task of securing
a computer network in the domain of imbalanced learning.
D. Aim and organization of the paper

In this article we propose an improved attack-sharing loss
function capable of reducing the false negative rate for the
task of network attack classification. Furthermore we propose
a neural architecture that achieves good detection results while
being sufficiently lean in order to be deployed in an embedded
environment. In Section II we will describe the training dataset
used. Section III will deal with the changes we propose to
further improve the loss function. Our implementation will be
described in Section IV. In Section V we will present our
results, followed by a comparison of the two loss functions
in Section VI which will be succeeded in Section VII by our
conclusion.

II. ANALYSIS OF THE PROBLEM AND PRIOR WORK

In the context of this article, we used the publicly avail-
able dataset CIC-IDS17 [18] from the Canadian Institute for
Cybersecurity to train a neural network capable of detecting
attacks within a computer network. The 2.83 million samples
containing data set comprises 78 network flow features and a
class label describing whether the flow belongs to one of 14
network attacks or a benign user interaction. A full description
of the data set can be found in [10]. Since the provided data
was heavily skewed towards the benign class, we decided
to combine attacks of a common family and excluded those
with insufficient data points as it was proposed by [15]. The

TABLE I: Distribution of classes in the simplified dataset

Class Percentage Count

BENIGN 80.42 2 273 097

DoS 8.94 252 661

Infiltration 5.62 158 966

DDoS 4.53 128 027

Brute-Force 0.49 13 835

resulting simplified sample set provided in Table I remains
obviously quite imbalanced. To address this problem, Dong
et al. [15] proposed an adaptation of the cross-entropy loss
function, which they called attack-sharing loss that can be
quantified with equation 1.

JAS = JCE − 1

N

[
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λ
(
I(y(i), 1)log p
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(i)
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JCE is the vanilla cross-entropy loss function, N is the
number of training samples in the batches, c represents the
number of classes in the training dataset. The factor λ scales
the effect of the regularizing term. A small value of λ makes
the loss function behave almost like the vanilla cross-entropy
function. y(i) is the i-th label and p

(i)
1 the i-th predicted

probability for the first class (the majority class). The function
I(a, b) is the indicator function which is defined by equation 2.

I(a, b) =

{
1 if a = b

0 otherwise
(2)

III. PROPOSED SOLUTION

In order to further tune the regularization term of the
original attack-sharing loss function, we introduce two new
parameters α and β. Our aim with this new loss function (3)
is to reduce the false negative rate even more by increasing
the regularization penalty contribution in the case where the
current sample belongs to the minority class.
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The factor α scales the penalty contribution for the case
where the current training sample belongs to the majority
class. The second parameter β is multiplied by the inverse
frequency of the current samples minority class, resulting in
the scaling factor sj as shown in (4).

sj = β ∗ (1− nj

Nmc
) (4)

In equation (4) nj represents the number of samples in the
current batch belonging to the minority class j, Nmc represents
the total number of minority samples in the batch. The scaling
factor sj thus reflects the distribution of the minority classes
in the current batch. Rare samples in the batch cause therefore
a higher regularization penalty which in turn causes a stronger
displacement of the decision boundary towards the attack
classes. The two factors α and β are hyperparameters which
allow a more nuanced tuning of the training process. In our
tests for which detailed results are reported later, we achieved
good results with an empirical value of 5 for α and 20 for β.



TABLE II: Recall (Rec) and precision (Pre) metrics for the individual classes, (a) reference results for a 10 layer neural network
published in [15], (b) original and (c) improved loss functions used with our proposed single layer neural network

BENIGN Brute-Force DDoS DoS Infiltration

Pre Rec Pre Rec Pre Rec Pre Rec Pre Rec

Original JAS [15] (a) 0.8850 0.9406 0.8290 0.4100 0.7631 0.8319 0.8877 0.6297 0.2646 0.6453

Original JAS (b) 0.9976 0.9986 0.9884 0.9826 0.9995 0.9994 0.9915 0.9797 0.9931 0.9989

Improved JAS (c) 0.9996 0.9978 0.9784 0.9848 0.9995 0.9991 0.9851 0.9976 0.9933 0.9984

TABLE III: F1-scores per class, (a) reference results obtained from [15], (b) original loss function with a single hidden layer
network, (c) improved attack-sharing loss function used with a single hidden layer network

BENIGN Brute-Force DDoS DoS Infiltration

Original JAS (a) 0.9120 0.5487 0.7960 0.7368 0.3753

Original JAS (b) 0.9981 0.9855 0.9994 0.9856 0.9960

Improved JAS (c) 0.9987 0.9816 0.9993 0.9913 0.9958

IV. IMPLEMENTATION AND NEURAL ARCHITECTURE
SEARCH

Our implementation of the attack-sharing loss relies on the
Tensorflow and Scikit-learn Python libraries. In a first step,
we prepared the training data by replacing missing values
with the corresponding features median value and normalized
the input by applying the Scikit-learn StandardScaler. Infinite
values were replaced by the maximum value of its feature
column. We then split the sample set of about 2.83 million
entries with Scikit-learns StratifiedShuffleSplit class into a
training set (81 %), a validation set (9 %) and a test set
(10 %). The improved attack-sharing loss was implemented as
a custom loss function in Tensorflow and it was successfully
used in combination with the Nadam [5] optimizer for which
we used Tensorflow’s default parameters (η = 10−3, β1 = 0.9,
β2 = 0.999, ϵ = 10−7). Weight initialization was achieved by
the Tensorflow built-in HeNormal algorithm [3]. The batch
size was fixed at 512 samples in all our experiments. In order
to prevent overfitting, we used a custom early stopping class
that was monitoring the validation loss as well as the validation
F1-score.
Targeting for the smallest neural network possible in order to
deploy it ultimately in an embedded environment, we were
experimenting with architectures of different width and depth.
We empirically found that a network consisting of a single
layer with 110 ReLu activated hidden neurons and 5 Softmax
activated output neurons was able to achieve good results.
Adding layers however, did not result in a significant increase
in performance.

V. RESULTS

To compare our results with previously reported results,
we use the F1-score (equation 5) which is less sensitive to
imbalanced data than the accuracy measure [6].

F1-score = 2 ∗ Precision ∗Recall

Precision+Recall
(5)

Recall and precision are defined in terms of the values true
positive (TP) which is the number of test samples that were
correctly classified, the false positive (FP) which is the number
of negative samples that were falsely classified as positive,
the false negatives (FN) which are positive cases that were
wrongly classified as negatives. The corresponding equations
for recall and precision are shown in 6 and 7.

Recall =
TP

TP + FN
(6) Precision =

TP

TP + FP
(7)

To calculate recall and precision for individual classes,
equations 6 and 7 are used with TP defined as in equation 8,
FP defined by equation 9 and FN defined by equation 10. The
term ŷ(j) is the j-th prediction, while the variable y(j) is the j-
th label. Thus I(ŷ(j), i) equals 1 if the j-th prediction is equal
to the i-th class.

TPi =

N∑
j

I(ŷ(j), i)I(y(j), i) (8)

FPi =

N∑
j

I(ŷ(j), i)(1− I(y(j), i)) (9)

FNi =

N∑
j

(1− I(ŷ(j), i))I(y(j), i) (10)

Table II shows the recall and precision values for the
individual classes. The first row contains the results for a
neural network consisting of 10 layers with 100 neurons each
published in [15], the second row shows the values obtained by
using the attack-sharing loss for the training of our proposed
single layer neural network with just 110 neurons, but with
a much longer training of 133 epochs compared to the 10
epochs reported in [15]. The last row of Table II shows the
results of the same architecture but trained with our improved
attack-sharing loss function. Table III shows the F1-scores for
each class. The first row contains the F1-scores calculated
from results reported in [15]. The other two rows show our



Fig. 1: Confusion matrix attack-sharing loss (a), improved attack-sharing loss (b)

experimental results. Table IV compares the improved attack-
sharing loss function and the loss function proposed by Dong
et al. [15].

TABLE IV: Comparison of the attack-sharing loss function
and improved attack-sharing loss function for a single layer
neural network

F1 Recall Precision

Original JAS 0.9929 0.9930 0.9940

Improved JAS 0.9933 0.9955 0.9912

The two confusion matrices in Figure 1 give a detailed
characterization of the performance obtained with the two
loss functions on the same single hidden layer architecture.
These results show that the proposed solutions allow to reduce
the number of false negatives produced by an artificial neural
network (ANN) on the considered network intrusion detection
problem.

VI. DISCUSSION

A. Model performance

The comparison of the first two lines of Tables II and III
shows that our proposed architecture, in combination with
the chosen Nadam optimizer, and a much longer training
period, was able to greatly improve the model performance.
Comparing the last two rows of the same tables shows that
both versions of the attack sharing loss function perform
comparably well while using about 9 times fewer resources
than the architecture proposed by [15]. Thus, our proposed
network used in combination with the improved JAS loss
function and well-chosen hyperparameters is better suited to
detect harmful activities in a network’s flow.

B. Reduction of false negatives

The third row of Tables II and III shows the results of
our proposed improved attack-sharing loss function applied
to the shallow neural architecture described in Section IV.

Comparing these results shows that we were able to achieve
a further improvement of the recall value for the attack types
Brute-Force and DoS. For the remaining classes, we achieved
comparable results. Table IV shows that the improved attack-
sharing loss function globally achieved an increased recall and
F1-score compared to the original version. Figure 1 shows
the confusion matrices for the two loss functions. Every entry
of the first column (except the first one) represents an attack
that was falsely classified as benign. Ever entry of the first
row (except the first one) represents a benign event that was
falsely classified as an attack. Comparing the values for the
DoS attack shows that we were able to reduce the number
false negative classifications from 513 (original JAS) to 56
(improved JAS), which is almost a 10-fold decrease. The
corresponding false positive rate was at the same time almost
doubled, from 197 (original JAS) to 367 (improved JAS).
However, a false positive can be detected downstream, a false
negative, on the other hand, passes undetected. Therefore we
judge a low false negative rate more important than a low false
positive rate.

VII. CONCLUSIONS

This paper proposed a shallow neural network capable of
successfully detecting computer network attacks with a F1-
score above 99%. Shallow networks are computational less
demanding and thus better suited for applications in the
embedded domain. Furthermore, we proposed an improved
version of the attack-sharing loss function. The extension of
the parameter λ from the original attack-sharing loss into two
separate scaling factors α and β yields the possibility to further
tune the training process and hence decrease the false negative
rate for certain attack types. It is remarkable that the reported
results were obtained with an empirical approach to determine
effective hyperparameter values, but it is evident that common
hyperparameter optimization methods like for instance grid
search are also applicable. The use of a custom loss function
to deal with imbalanced multi-class classification problems is
quite promising.
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