N
N

N

HAL

open science

An efficient FPGA overlay for MPI-2 RMA parallel
applications

Mathieu Leonel Mba, Roland Christian Gamom Ngounou Ewo, Julien

Denoulet, Paulin Melatagia Yonta, Bertrand Granado

» To cite this version:

Mathieu Leonel Mba, Roland Christian Gamom Ngounou Ewo, Julien Denoulet, Paulin Melatagia
Yonta, Bertrand Granado. An efficient FPGA overlay for MPI-2 RMA parallel applications. 2022
20th IEEE Interregional NEWCAS Conference (NEWCAS), Jun 2022, Québec, Canada. pp.412-416,
10.1109/NEWCAS52662.2022.9842139 . hal-03790485

HAL Id: hal-03790485
https://hal.sorbonne-universite.fr /hal-03790485

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-03790485
https://hal.archives-ouvertes.fr

An efficient FPGA overlay for MPI-2 RMA parallel
applications

Mathieu Leonel Mba*™, R. C. Gamom Ngounou Ewo?, Julien Denoulet*, Paulin Melatagia Yonta'*, Bertrand Granado*

*LIP6, CNRS UMR 7606, Sorbonne University, Paris, France
TDepaItment of Computer Sciences, University of Yaounde I, Yaounde, Cameroon
HIRD, UMMISCO, F-93143, Bondy, France
§ENSET, University of Douala, Douala, Cameroon
mathieu-leonel.mba@lip6.fr, bertrand.granado @sorbonne-universite.fr, paulin.melatagia@facsciences-uyl.cm,
julien.denoulet@lip6.fr, christian.gamom @univ-douala.com

Abstract—Design productivity issues, including difficult hard-
ware design and long compile times, are major barriers to
the widespread adoption of FPGA-based accelerations in main-
stream computing. Enabling virtualized execution of software
and hardware tasks on FPGA platforms would make them
more accessible to application developers accustomed to software
API abstractions such as MPI and fast development cycles.
In this work, we show that the MATIP platform provides a
viable and efficient FPGA overlay architecture for the design
of MPI parallel applications. We support this with a parallel
model implementation of a feature extraction algorithm for tone
language recognition, which is shown to be at least 7 times more
efficient than a C++ MPI-2 RMA implementation of the same
parallel model on a CPU and almost 3 times more efficient than
a naive FPGA IP implementation.

Index Terms—FPGA Overlay, Time-multiplexed, Spatially con-
figured, HLS, Parallel Applications, MPI.

I. INTRODUCTION

FPGAs provide a viable platform for accelerating computa-
tionally complex applications in areas as diverse as computer
vision, digital signal processing, and networking. Progress
on design tools with High-Level Synthesis (HLS) “promise
to increase the accessibility of designing on FPGAs to a
broader number of designers ” according to Matai [1]. HLS
tools allow designers to use high-level languages such as
C/C++/Scala/Java. Several HLS tools have emerged such as
Bambu[2], Intel® FPGA SDK for OpenCL [3], Xilinx Vivado
HLS[4], etc. But these tools do not always take into account
the different parallel programming models such as OpenMP
and MPI (Message Passing Interface) commonly used in
parallel software development and which eases the realization
of parallel applications.

Some authors have gone in this direction by proposing tools
that allow the synthesis of MPSoCs using the OpenMP and
MPI standards. Such as LegUp[5] which supports OpenMP
and Pthreads and synthesizes them into parallel hardware
structures. The other tool in the same category is SDMPSoC
(Software-defined MPSoCs)[6] which is an environment that
consists of an automatic flow that analyzes an MPI-based
program to build an appropriate MPSoC. The resulting ar-
chitecture is an FPGA-based MPSoC capable of efficiently

executing the MPI program with MicroBlaze processors or
hardware modules as PEs. The system can be optimized
by specialized hardware modules that are connected to the
processors acting as hardware accelerators.

In parallel, researchers have investigated other techniques
for improving design productivity known as FPGA overlays.
According to [7], “an FPGA overlay is a virtual recon-
figurable architecture that overlays on top of the physical
FPGA configurable fabric ”. In other words, an FPGA overlay
is a virtual layer of architecture that conceptually locates
between the user application and the underlying physical
FPGA. This category of tools has many advantages; in terms of
virtualization, reduced compilation time improved debugging
capabilities, etc[7].

An FPGA overlay can be either spatially configured (SC)
or time-multiplexed (TM), depending on its run-time reconfig-
urability. If an FPGA overlay has functional units (FUs) with
fixed assigned tasks, it is referred to as an SC overlay. If an
FPGA overlay can change the operation of its functional units
on a cycle-by-cycle basis, the overlay is referred to as a TM
overlay. The interconnection between functional units in SC
and TM overlays can be fixed or reconfigurable at run time.
The survey done in [8] highlights the fact that many overlay
tools have been developed in both classes; we can mention
DeCO[9] for SC overlays; GRVI Phalanx [10], and reMORPH
[11] for TM overlays. The work done in[12] highlights a list
of some previous parallel processing overlays.

All of the tools presented in[12] integrate parallel com-
puting models; however, we have not encountered an FPGA
overlay tool that addresses the design of MPI parallel applica-
tions without the intervention of CPUs. MPI parallelization
compared to OpenMP has advantages of no parallelization
overhead, except for the explicit communications that have
been added to the program once the MPI parallel program
has been configured; moreover, all aspects of MPI programs
are generally executed in parallel, unlike OpenMP[13]. In ad-
dition, the MPI-2 RMA standard implements one-sided com-
munication, which, unlike traditional two-sided and collective
communication models, eliminates overhead from unneeded
synchronization, allows greater concurrency, and leads to a

significant reduction in communication costs[14].

In this work, we demonstrate that MATIP![15], which can
be used both as SC overlay and TM overlay, constitutes an
efficient overlay for designing hardware parallel applications
following the MPI-2 RMA standard.

The main contributions of this work can be summarized as
follows: (1) Through the design and the implementation of a
real-life MPI application, we demonstrate that MATIP is an
efficient overlay; (2)We analyze the highlights and character-
istics of the MATIP platform on a real MPI application.

In section II, we present MATIP from an FPGA overlay
perspective. Then section III highlights the parallel model of
a feature extraction algorithm for tonal language recognition.
Its implementations on CPU, on FPGA through the MATIP
overlay, and as hardware IP, is described in section IV. In
section V we present the results of the experiment of the three
implementations. In paragraph VII we conclude this work by
highlighting some perspectives.

II. MATIP ON AN FPGA OVERLAY PERSPECTIVE
A. MATIP architecture

HT_USER
Fsm

v v
[MP-HCL] mp-HCL | mp-HeL | | MPI-HCL ||

$ $

| CROSSBAR ||

Fig. 1. MATIP platform architecture.

MATIP is an environment designed in [15] to deploy
hardware tasks with a distributed memory configuration using
the MPI paradigm. MATIP is structured according to a layered
architecture inspired by the work described by Pavel Zaykov in
[16]. This architecture is made of three layers: the interconnec-
tion layer which realizes the physical links allowing the transit
of the information between the tasks; the communication layer
which offers communication services between the tasks and
the application layer which gathers the various tasks which
constitute the application.

In MATIP, it was chosen as interconnection, a dynamic
network simply made up of a crossbar that does not require
complex routing and which makes it possible to carry out a
dynamic network compatible with the dynamic reconfigura-
tion.

The communication layer consists of a component that
recreates a hardware version of the MPI-2 communication
environment and operates the network. This component is
called MPI-HCL (Message Passing Interface Hardware Com-
munication Layer). The MPI-HCL communication component

IMPI Application Task Integration Platform

is a communication processor that executes the MPI primitives
provided as micro-instructions. This processor is composed of
two parts: one to execute the primitives requested by the local
hardware task, and the other to process the primitives initiated
by the remote hardware tasks through the interconnection
network.

The purpose of the application layer is to facilitate the
integration of a hardware task with the MATIP platform. It
is on this layer that the designer interacts with the MATIP
platform to deploy his application. To deploy an application on
MATIP, the designer will have to decompose his application in
the form of modules, each module carrying out a functionality,
or required processing that is called in the MATIP environment
a hardware task. Thus, the designer has a template called TIC
(Task Integration Component) which is the environment that
allows this hardware task to communicate with the outside.
The MATIP platform defines a model for the realization of
communicating hardware tasks, associating to a user task, a
communication memory, and primitives, to send and receive
messages based on MPI. Figure 1 shows a summary of the
architecture of the MATIP platform.

B. Characteristics of MATIP seen as an overlay architecture

TABLE I
THE CHARACTERISTICS OF MATIP As AN FPGA OVERLAY
ARCHITECTURE.

Value

Parallel MPI
Distributed Memory
SC + T™™M

Caracteristic

Type of applications
Parallel Model
Type of FU

Level RTL

FPGA compatibility any
i NoC

Max Number of FUs 16

Memory word length |8 bifs

MATIP is fully implemented in VHDL, the tasks deployed
in MATIP can be designed in VHDL or, as we propose in this
article, from any tool exploiting an HLS methodology. Table I
summarizes the characteristics of MATIP as an FPGA overlay.

Compared to the state of the art on parallel processing
overlays[17], MATIP presents advantages as much on the
variety of PE types as on its flexibility (SC/TM). Table II?
shows the positioning of MATIP with other FPGA overlays
that deal with parallel applications in state of art.

TABLE I

THE SITUATION OF MATIP IN COMPARISON WITH THE STATE OF THE ART
Overlay Type of PE FUs SC/TM Topology C
DRAGON[17] Processor SC Mesh/Torus Shared Memory
GRVI Processor RV641 ™ 2D Torus soft NoC Shared memory + MP
GRVI Phalanx[10] Processor RV32I ™ Hopelite NoC Shared memory + MP
SSA[18] FMAC SC Torus+Mesh Stream
SIMD-Octavo[19] soft-processor ™ Mesh Shared Memory
reMORPHI[11] CGRM ™ 2D Mesh Shared Memory
SCMA[20] SCM SC 2D Mesh Shared Memory
MATIP[15] HW Module SC/TM NoC Distributed Memory

In the next section, we present one of the most dominant
and accurate[21] Pitch Determination Algorithms (PDA), used

2MP(Message Passing), FMAC(Floating-point Multiply Accumulate Unit),
CGRM (Coarse GRained Modules), SCM (Systolic Computational Memory)

Stage 1 Stage 2 Stage 3
‘.'4| Stream Builder ﬁ/ﬂ Hanning Window%#f—.‘ FFT ‘

Frame Buffer I 1

Fo
Pitch — . — o —
.\ ‘«[Normalization. e iFFT . U @

Stage 7 Stage 6 Stage 5 Stage 4

Fig. 2. Praat auto-correlation function pipeline model

Task i Task i+1
)
Treatment; Treatment;sy

Output Buffer : Au;

Fig. 3. Pipelined MPI-2 RMA communication scenario for Praat auto-
correlation function

Output Buffer : A;

as a principal feature for tonal language recognition that has
been the focus of our work as a parallel application.

III. PARALLEL MODEL OF A FEATURE EXTRACTION
ALGORITHM FOR TONAL LANGUAGE RECOGNITION

A. Praat Auto-correlation Function (Praat ACF)

Praat ACF presented in[22] is according to the classification
of Hess & al[23], a short-term analysis PDA. According to the
work of Boersma & al[22], the autocorrelation r,(7) of the
original signal segment is obtained, by dividing the autocor-
relation r,(7) of the windowed signal by the autocorrelation
74, (7) of the window as in Equation (1).

ro(r) = TalT) 1)

7w (T)
B. PFarallel algorithm Design

To parallelize the Praat algorithm, we use a pipeline of 7-
stages inspired by its different steps (see Figure 2). The choice
of the pipeline model here is explained by the gradual arrival
of the data. Indeed, the samples of the vocal signal are sent
in a stream by a microphone. It is, therefore, more efficient to
process one window at a time; hence the choice of the pipeline
model.

C. MPI communication scenario design

To leverage the performance offered by the Remote Mem-
ory Access mechanism, we have designed a communication
scenario that exploits the MPI-2 RMA communication mech-
anism while building the pipeline parallelization model. Figure
3 illustrates this communication scenario. Each task processes
a data frame that comes from the previous task (except the
first task that operates on the data coming from the source as
a microphone) through the MPI PUT primitive [24]. Then it
treats the information according to the computation function
allocated to it and writes the result to the local memory of the
next task. From one to the next, the various tasks thus form a
pipeline.

IV. PARALLEL MODEL IMPLEMENTATION

We have implemented this algorithm in three versions:
a parallel MPI-2 RMA CPU version, implemented in C++,
a parallel MPI-2 RMA FPGA version developed with the
MATIP overlay, and an FPGA version implemented as a
hardware IP.

The MPI-2 RMA CPU parallel version was debugged and
compiled using the Open MPI implementation [25]. The hard-
ware testing environment was a 2.2 GHz, 12 nodes Intel(R)
Core(TM) i7-8750H CPU computer with 8 GB of RAM, and
the software testing environment is based on Ubuntu 20.04 as
Operating System and OpenMPI 4.0.5 used as Message Pass-
ing Interface (MPI) library exploiting C++ as the programming
language.

For better productivity, we implemented both FPGA ver-
sions using the HLS approach. For the MATIP version, we
implemented the different modules with Vivado HLS and
exported them as VHDL IPs. Then we integrated the generated
IPs in MATIP through the HDL Wrapper and implemented the
communication scenario through the Vivado tool. The FPGA
version as hardware IP is a naive implementation of the Praat
algorithm obtained by successive calls of the different mod-
ules. We have optimized all HLS implementations using the
HLS PIPELINE and HLS DATAFLOW pragmas. The resulting
implementations are clocked at a frequency of 100MHz. Table
III presents the resource utilization of the hardware IP version,
the application modules, and that of the MATIP version on
Xilinx xc7al00tcsg324-1 FPGA.

TABLE III
RESOURCE UTILIZATION OF SEQUENTIAL HLS VERSION, APPLICATION MODULES,
AND THE HLS+MATIP ARCHITECTURE ON XILINX XC7A100TCSG324-1 FPGA.

LUT LUTRAM FF BRAM DSP
Hanning 426 (0.67%) 0 (0.0%) 242 (0.19%) 2.5 (1.85%) 2 (0.83%)
FFT 13575 (21.41%) 247 (1.30%) 8071 (6.37%) 8.5 (6.30%) 101 (42.08%)
\ X \2 210 (0.33%) 0 (0.0%) 265 (0.21%) 0.5 (0.37%) 8 (3.33%)
iFFT 14047 (22.16%) 309 (1.63%) 9180 (7.24%) 8.5 (6.30%) 93 (38.75%)
----- izati 1444 (2.28%) 0 (0.0%) 697 (0.55%) 0.5 (0.37%) 2 (0.83%)
Pitch i 17302 (27.29%) 110 (0.58%) 12008 (9.47%) 1.5 (1.11%) 174 (72.50%)
Hardware IP 38626 (60.92%) 96 (0.51%) 16229 (12.80 %) 15 (11.11%) 234 (97.50%)
MATIP Version 51384 (81.05%) 376 (1.98%) 79381 (62.60%) 19.5 (14.44%) 0 (00.0.0%)

V. EXPERIMENTS AND RESULTS
A. Dataset

Our experiment was carried out on a corpus of 8§ minimal
pairs of words of the K6l language® recorded with Audacity*
at a frequency of 8000 Hz.

B. Results

To validate our implementation, we evaluated the percentage
of well-estimated Fyy (Fy for which the percentage of error
between the result of our implementation and that produced
by the Praat software is less than 10%). The accuracy obtained
for the various records is given in Table I'V.

3Commonly known as ewondo, kélé is a language spoken in the central
and southern parts of Cameroon by more than 2,500,000 people.
“https://www.audacityteam.org/

TABLE IV
THE ACCURACY OF OUR IMPLEMENTED PDA RUN ON THE MINIMAL PAIRS OF
WORDS RECORDS

Word 1 Word 2

Word - meaning Accuracy in % Word - meaning Accuracy in %
bam - scold 96.29 bam - worry 100.00

bog - extract 95.69 bog - pile up 99.00

kob - graze 100.00 kob - join 100.00
maan - reward 96.74 maan - crossroads 98.86
minkud - bag 95.19 minkdad - clouds 98.96

seg - decrease 91.46 ség - cut out 95.06

yem - know 94.37 y€ém - tighten 98.02

zam - good taste 96.33 zdm - raffia 93.26

To evaluate the performance of our model and to validate
the relevance of MATIP overlay, we have executed the com-
putation of 221 Frames on the CPU version and the two
FPGA implementations (Hardware IP and MATIP version).
The latency measurements in the number of cycles reveal that
the MATIP implementation is at least 7 times more efficient
than the one implemented on the CPU, while the hardware
IP version is at least 2,7 times more efficient. The figure 4
shows the evolution curve of the latency in the number of
cycles of the three implementations according to the number of
executed frames. And the figure 5 shows the evolution curves
of the speedup rate obtained from the ratio between the latency
of the CPU implementation and that of the Hardware IP and
MATIP versions. The two curves have horizontal asymptotes
y = 7 for MATIP version and y = 2,7 for Hardware IP. These
asymptotes give information about the speedup values when
the number of frames tends to infinity.

To understand these results, we have performed measure-
ments (cumulative average latency of the 7 stages in cy-
cles) on the main internal steps of the tasks (see figure 6)
namely: Wincreate, Winpost, Winwait, Computes, Put data,
and Wincomplete. The Wincreate part (removed from the
graph®) is very time-consuming on CPU but is executed only
at the launch of the tasks, hence the high speedup rate at
the first frame which drops quickly. As we can see, in these
different processing segments, we almost always have better
performance on the MATIP version compared to the CPU
version.

VI. DISCUSSION

The above results show that MATIP is an efficient FPGA
overlay for the design of MPI applications on FPGA in terms
of speedup compared to a CPU version. This overlay allows
new users to use FPGA in giving them the same approach as
a pure software MPI program. The compatibility of MATIP
with the HLS approach is a great asset for more productivity
in application design. Compared to SDMPSoC[6](see Table V
), MATIP implements the one-sided communication known to
be more efficient than the two-sided one. Furthermore, made
in VHDL, MATIP is compatible with all FPGAs and ASICs. It
admits reconfigurable PEs, hence its flexibility. Its scalability
depends on the network of the interconnection layer.

SInternal processing function (Hanning, FFT, IFFT, etc.) for each task called
Treatment in Figure 3
%Values, CPU version: 481122826 cycles; MATIP version: 264858 cycles

8
3><1()

——MATIP Version Latency]|
——CPU Version Latency
Hardware IP Latenc:

Latency (in cycles)

0.5

I I I
o 50 100 150 200 250
Number of Frames

Fig. 4. Evolution curve of the latency in the number of cycles of CPU
implementation, Hardware IP version and MATIP version.

——MATIP Version Speedup)
--Y=7
Hardware IP Speedup
180 -y=2.7

120 -

Speedup
n

@ @ 5

3 8 8

T T

I L I

S
s
T
L

20+ -

Number of Frames

Fig. 5. MATIP version speedup versus Hardware IP version speedup
computed in comparison with the CPU implementation

3000000
A
S 2500000
>
)
£
= 2000000
g
g = WINPOST
o 1500000 = WINWAIT
2 COMPUTE
g u WINSTART
& 1000000 mPUTDATA
2 WINCOMPLETE
8
S 500000
E
3
s}

0 —
MATIP CPU

Implementation plateform

Fig. 6. Histograms of comparative analysis of the internal execution parts of
the tasks on the MATIP and CPU implementations

TABLE V
SDMPSOC Vs. MATIP QUALITATIVE COMPAREASON
MPI Com. FPGA PEs types Design Flow Reconf. PEs ility
SDMPSoC two-sided Xilinx MB & HW Module Automated No FPGA Limited
MATIP one-sided Any HW Module Semi-Automated Yes NoC Limited

VII. CONCLUSION

The HLS approach offers productivity but does not support
parallel MPI applications. FPGA overlays encapsulate many of
the problems in FPGA applications design. In the state of the
art, we have not encountered FPGA Overlay tools that address
MPI parallel applications design without the intervention of
CPUs that can constitute a halo on the performance of the
global system. In this work, we have described and analyzed
MATTP, highlighting its characteristics when used as an FPGA
overlay. Through the implementation of a parallel model of a
real-life application, MATIP proved to be an efficient overlay
architecture for the design of parallel applications based on the
MPI-2 RMA standard; having obtained an implementation at
least 7 times more efficient on FPGA than on a Core i7 CPU
(see Figure 5). As a perspective, we consider the automation of
the design flow of the HLS approach combined with MATIP,
as this would provide an overlay that combines efficiency and
productivity in parallel applications design on FPGA.

REFERENCES

[1] Janarbek Matai et al. “Enabling fpgas for the masses”. In:
arXiv preprint arXiv:1408.5870 (2014).

[2] Christian Pilato and Fabrizio Ferrandi. “Bambu: A modular
framework for the high level synthesis of memory-intensive
applications”. In: 2013 23rd International Conference on Field
programmable Logic and Applications. IEEE. 2013, pp. 1-4.

[3] Tomasz S Czajkowski et al. “From OpenCL to high-
performance hardware on FPGAs”. In: 22nd international con-
ference on field programmable logic and applications (FPL).
IEEE. 2012, pp. 531-534.

[4] Tom Feist. “Vivado design suite”. In: White Paper 5 (2012),
p- 30.

[S] Andrew Canis et al. “Legup high-level synthesis”. In: FPGAs
for Software Programmers. Springer, 2016, pp. 175-190.

[6] Jens Rettkowski and Diana Gohringer. “Sdmpsoc: Software-
defined mpsoc for fpgas”. In: Journal of Signal Processing
Systems 92.10 (2020), pp. 1187-1196.

[71 Hayden Kwok-Hay So and Cheng Liu. “FPGA overlays”. In:
FPGAs for Software Programmers. Springer, 2016, pp. 285—
305.

[8] Xiangwei Li and Douglas L Maskell. “Time-multiplexed
FPGA overlay architectures: A survey”. In: ACM Transactions
on Design Automation of Electronic Systems (TODAES) 24.5
(2019), pp. 1-19.

[9] Abhishek Kumar Jain et al. “DeCO: A DSP block based

FPGA accelerator overlay with low overhead interconnect”.

In: 2016 IEEE 24th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM). IEEE.

2016, pp. 1-8.

Jan Gray. “Grvi phalanx: A massively parallel risc-v fpga

accelerator accelerator”. In: 2016 IEEE 24th Annual Interna-

tional Symposium on Field-Programmable Custom Computing

Machines (FCCM). IEEE. 2016, pp. 17-20.

Kolin Paul, Chinmaya Dash, and Mansureh Shahraki Moghad-

dam. “reMORPH: a runtime reconfigurable architecture”. In:

2012 15th Euromicro Conference on Digital System Design.

IEEE. 2012, pp. 26-33.

Riadh Ben Abdelhamid, Yoshiki Yamaguchi, and Taisuke

Boku. “A Highly-Efficient and Tightly-Connected Many-Core

Overlay Architecture”. In: IEEE Access 9 (2021), pp. 65277-

65292.

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

Nor Asilah Wati Abdul Hamid and Paul Coddington. “Com-
parison of MPI Benchmark Programs on Shared Memory and
Distributed Memory Machines (Point-to-Point Communica-
tion)”. In: The International Journal of High Performance
Computing Applications 24.4 (2010), pp. 469-483. por: 10.
1177/1094342010371106.

James Dinan et al. “An implementation and evaluation of the
MPI 3.0 one-sided communication interface”. In: Concurrency
and Computation: Practice and Experience 28.17 (2016),
pp. 4385-4404.

Gamom Ngounou Ewo and Roland Christian. “Déploiement
d’applications paralleles sur une architecture distribuée
matériellement reconfigurable”. PhD thesis. Cergy-Pontoise,
2015.

Pavel Zaykov. “MIMD implementation with PicoBlaze micro-
processor using MPI functions”. In: Proceedings of the 2007
international conference on Computer systems and technolo-
gies. 2007, pp. 1-7.

Riadh Ben Abdelhamid, Yoshiki Yamguchi, and Taisuke Boku.
“Condensing an overload of parallel computing ingredients
into a single architecture recipe”. In: 2020 IEEE 31st Interna-
tional Conference on Application-specific Systems, Architec-
tures and Processors (ASAP). IEEE. 2020, pp. 25-28.
Kentaro Sano, Yoshiaki Hatsuda, and Satoru Yamamoto.
“Multi-FPGA accelerator for scalable stencil computation with
constant memory bandwidth”. In: /EEE Transactions on Par-
allel and Distributed Systems 25.3 (2013), pp. 695-705.
Charles Eric Laforest and Jason H Anderson. ‘“Microarchi-
tectural comparison of the MXP and Octavo soft-processor
FPGA overlays”. In: ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 10.3 (2017), pp. 1-25.
Kentaro Sano et al. “FPGA-array with bandwidth-reduction
mechanism for scalable and power-efficient numerical simula-
tions based on finite difference methods”. In: ACM Transac-
tions on Reconfigurable Technology and Systems (TRETS) 3.4
(2010), pp. 1-35.

Sofia Strombergsson. “Today’s Most Frequently Used FO
Estimation Methods, and Their Accuracy in Estimating Male
and Female Pitch in Clean Speech.” In: Interspeech. Dresden.
2016, pp. 525-529.

Paul Boersma et al. “Accurate short-term analysis of the
fundamental frequency and the harmonics-to-noise ratio of a
sampled sound”. In: Proceedings of the institute of phonetic
sciences. Vol. 17. Citeseer. 1993, pp. 97-110.

Wolfgang J Hess. “Pitch determination of speech signals—a
survey”. In: Spoken Language Generation and Understanding.
Springer, 1980, pp. 263-278.

Marc Snir et al. MPI-the Complete Reference: the MPI core.
Vol. 1. MIT press, 1998.

Edgar Gabriel et al. “Open MPIL: Goals, concept, and design
of a next generation MPI implementation”. In: European
Parallel Virtual Machine/Message Passing Interface Users’
Group Meeting. Springer. 2004, pp. 97-104.

