
HAL Id: hal-03790865
https://hal.sorbonne-universite.fr/hal-03790865

Submitted on 28 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Yield Prediction from NiCOlit, a
Small-Size Literature Data Set of Nickel Catalyzed C–O

Couplings
Jules Schleinitz, Maxime Langevin, Yanis Smail, Benjamin Wehnert, Laurence

Grimaud, Rodolphe Vuilleumier

To cite this version:
Jules Schleinitz, Maxime Langevin, Yanis Smail, Benjamin Wehnert, Laurence Grimaud, et al..
Machine Learning Yield Prediction from NiCOlit, a Small-Size Literature Data Set of Nickel Cat-
alyzed C–O Couplings. Journal of the American Chemical Society, 2022, 144 (32), pp.14722-14730.
�10.1021/jacs.2c05302�. �hal-03790865�

https://hal.sorbonne-universite.fr/hal-03790865
https://hal.archives-ouvertes.fr


Machine Learning Yield Prediction from

NiCOlit, a Small-Size Literature Dataset of

Nickel Catalyzed C-O Couplings

J. Schleinitz,∗,†,‡ M. Langevin,∗,†,¶,§ Y. Smail,∥ B. Wehnert,∥ L. Grimaud,∗,‡ and R.

Vuilleumier∗,¶

†Those authors contributed equally to this work

‡LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne

Université, CNRS, 75005, Paris, France

¶PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne

Université, CNRS, 75005, Paris, France

§Molecular Design Sciences - Integrated Drug Discovery, Sanofi R&D, 94400,

Vitry-Sur-Seine, France

∥UPMC, PSL University, Sorbonne Université, CNRS, 75005, Paris, France

E-mail: jules.schleinitz@ens.psl.eu; maxime.langevin@sanofi.com; laurence.grimaud@ens.psl.eu;

rodolphe.vuilleumier@ens.psl.eu

Abstract

Synthetic yield prediction using machine learning is intensively studied. Previous

work focused on two categories of datasets: High-Throughput Experimentation data,

as an ideal case study and datasets extracted from proprietary databases, which are

known to have a strong reporting bias towards high yields. However, predicting yields

using published reaction data remains elusive. To fill the gap, we built a dataset on
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nickel-catalyzed cross-couplings extracted from organic reaction publications, including

scope and optimization information. We demonstrate the importance of including

optimization data as a source of failed experiments and emphasize how publication

constraints shape the exploration of the chemical space by the synthetic community.

While machine learning models still fail to perform out-of-sample predictions, this work

shows that adding chemical knowledge enables fair predictions in a low-data regime.

Eventually, we hope that this unique public database will foster further improvements

of machine learning methods for reaction yield prediction in a more realistic context.

Introduction

Machine learning (ML) algorithms learn complex functions from data. As it can leverage

existing data to perform in silico approximations of costly experimental processes, ML

applications have sparked strong interest in chemical sciences. While ML has already made a

significant impact in drug development,1,2 synthetizability assessment of small molecules3 or

Computer Aided Synthesis Planning,4 the ability of ML to predict a reaction yield from its

experimental conditions remains a major challenge5 that is intensively studied.6,7 Advances

on reaction yield prediction would have a major impact on organic synthesis by significantly

reducing cost, time and resources necessary to synthesize new chemicals.

Progress in ML is markedly driven by the increasing access to data. Thus, currently

available datasets shape the evolution of ML for reaction yield prediction. Despite this,

there are very few publicly available and easily operable datasets of chemical reactions with

associated yields (Table S1). One of those few public datasets is the United State Patent

and Trademark Office (USPTO) dataset,8 that covers a wide range of chemical reactions

extracted from patents. USPTO data is extremely diverse and suffers from a selection bias

as only successful reactions tend to be reported in patents. ML has shown poor performance

predicting yields on this dataset (R2 < 0.2).7 In addition, two sets of High Throughput

Experimentation (HTE) data, one of a Suzuki-Miyaura coupling,9 and one of a palladium-
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catalyzed Buchwald-Hartwig cross-coupling,10 are available in the literature. State-of-the-art

modeling performs extremely well on those high-quality datasets (R2 > 0.8),7,10 but the

extremely focused chemical reaction space covered by HTE limits the predictions to a narrow

scope of experimental conditions and reactants.

While these datasets have enabled rapid progress of ML for yield prediction, there is a

need for publicly available datasets11,12 more representative of published reaction data or

used by chemists in their everyday work. To the best of our knowledge, the most recent

works on predicting reaction yields5,13 rely on datasets extracted from Reaxys or Sci-Findern,

which are not representative of the whole information contained in published reaction data.

The main hurdle to gather a machine readable reaction database is the difficulty to automate

data extraction from publications. One of the solution to overcome this issue would be

a change toward a numerical data storage in the chemistry community, an option being

the use of electronic laboratory notebooks14 (ELN) interfaced with open-access database.15

Nevertheless, the implementation of such tools requires significant time and investment. It

also requires to convince the chemistry community of the merits of gathering data in a

machine-readable format. Thus, we believe that showing the potentiality of a dataset derived

from published reaction data to predict reaction yield would encourage chemists to embrace

the new technologies available. Such a change would benefit the whole chemistry community.

To address this, we built a literature-mined, open-access reaction dataset that focuses on

the Ni-catalyzed C–O bond activation to form C–C and C–N bonds: the NiCOlit dataset.16 It

gathers more than two thousand peer-reviewed reactions with detailed experimental conditions.

As a singular literature representative dataset, NiCOlit stands as a benchmark for machine

learning prediction of chemical yields found in published reaction data.
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Figure 1: (A) Chemical space of NiCOlit, (B) Diversity of NiCOlit in terms of coupling
partners, substrates and ligands combinations, the color map is proportional to the number of
reactions encountered for each combination. (C) t-SNE projection of NiCOlit obtained with
a DFT-featurization of the dataset, reaction data points are coloured by coupling partner
category (left figure) and by publication origin (right figure).
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Results and Discussion

Description of NiCOlit

NiCOlit was manually extracted from published reaction data cited in a recent review from

Diao and co-workers.17 In this review, the authors focus on the activation of carbon-oxygen

bonds of phenol derivatives with nickel catalysts for coupling reactions. In order to reduce

the size and the diversity of the dataset we arbitrarily restrained the study to challenging

electrophiles towards the oxidative addition: sulfonates,18 phosphates and in situ activated

phenols were left aside.

The reactions displayed in both the main articles and their SI were extracted. For each

reaction, the Simplified Molecular-Input Line-Entry System (SMILES)19 chains of substrates,

coupling partners, precursors, ligands, bases, additives, solvents, and products were gathered

as well as experimental variables: reaction time, temperature and molar ratios of the different

partners (see SI Section 2). This highlighted issues when harmonizing different data sources,

such as disparities in yield measurement techniques, or information being reported in prose

rather than machine-readable format. The resulting database is unique, it gathers 2003

reactions from 45 publications within the chemical space illustrated Fig 1A. The different

types of substrates, coupling partners and ligands reported in this dataset are summarized in

Fig 1B.

The coverage of the substrate-coupling partners combinations is sparse and strongly biased

toward a few reactions such as the Kumada coupling20 (RMgX + ArOCH3), which is the

most investigated with 243 reported reactions. This data-driven analysis21 of nickel-catalyzed

couplings shows that published reaction data seems to focus on specific combinations. We were

surprised to see that reactions were clustered not by reaction variables (e.g coupling partner)

but almost perfectly by publications (Fig 1C). This minimal overlap between publications

may be attributed to the poor reporting of reproduced experiments.
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Chemical Diversity: HTE versus NiCOlit

Inherent differences in terms of chemical diversity and yield distributions between NiCOlit and

HTE data were laid out. This allows further understanding of how performances displayed

by ML on HTE could translate to NiCOlit.

The projections of the three datasets on a common 2-dimensional space using Multi-

Dimensional Scaling (MDS)22 (Fig. 2A, see SI for details) shows that NiCOlit is more spread

out than HTE data. The distributions of the pairwise Jaccard distances between the reactions

of each dataset were also computed (Fig. 2B) and corroborate the MDS analysis: distances

between NiCOlit reactions are on average higher than in HTE data.

Most strikingly, we calculated the accessible chemical space as the number of all possible

combinations of discrete variables used for each category (e.g. reactants, catalysts, etc.).

The proportion of accessible space explored23 is an intensive metric that measures the ratio

between the number of chemical reactions experimentally performed and the size of the

accessible chemical space. Despite having roughly a similar number of reactions in the three

datasets, the accessible chemical space of NiCOlit covers almost a trillion reactions versus less

than 20k for both HTE datasets (Fig. 2C). This indicates that predicting yields on NiCOlit

is more challenging than on HTE data. On the other hand, as most of the accessible space

has been explored in HTE data (99% and 36% against only 2x10−7% for NiCOlit), developing

an accurate model for NiCOlit allows to predict yields for a much larger set of unperformed

reactions (almost a trillion reactions for NiCOlit).

Scope/optimization structure of NiCOlit

The presence of reactions with low yields within a dataset is expected to be key for accurate

predictions.11,24 Very recently, Glorius and co-workers demonstrated that data expansion

strategy with artificial low yields could boost ML predictive performances on proprietary

databases.13 However, this could introduce biases that have not yet been studied. HTE data

display relatively homogeneous yield distribution, with many negative examples. Meanwhile,
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Figure 2: Proportion of accessible chemical space observed and reaction diversities for HTE and
NiCOlit data after preprocessing (see Section Data Preprocessing, SI). (A): Multi-Dimensional
Scaling (MDS) projection of the three datasets. (B): Distribution of Jaccard distances
between reactions. MDS and Jaccard distances were calculated on RXNFP featurizations
of the datasets. (C): Proportion of accessible chemical space for HTE and NiCOlit data.
Numbers indicated next to each variable corresponds to the number of different choices
appearing in the dataset for this variable.
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searching the proprietary database Sci-Findern (Fig. 3C) for reactions matching the NiCOlit

chemical reaction space returns 2,203 reactions with a clear bias toward high yields : 60% of

them have a yield above 70%. NiCOlit yield distribution lays between HTE and Sci-Findern

data, with a significant amount of zero yields experiments but few reactions in the 20 to 40%

yield range. This suggests a reporting bias in published reaction data, and an even stronger

bias in proprietary databases. The fact that published reaction data contains significantly

more negative examples than proprietary databases raises hope that such data could prove

much more useful for machine learning model building.

Despite similarities in the reported yield distribution of NiCOlit and HTE data, the

underlying structure of the reaction data drastically differs. In HTE, all possible combinations

of reactants and reaction conditions are explored (Fig. 3A). Due to time and cost constraints,

chemists tend to perform a sparser exploration of the chemical space to achieve a faster

convergence. Indeed, published reaction data is reported in two categories of tables or schemes:

optimization and scope. Optimization refers to the reaction conditions meaning that most

variables except substrate and coupling partner are modified in order to achieve an efficient

reaction (vertical dots arrays Fig. 3B). In a complementary fashion, scope refers to reactions

with various substrates and coupling partners under optimized conditions (horizontal cross

arrays Fig. 3B). Scope experiments are performed in order to demonstrate the robustness of

the reaction. In the case of NiCOlit, we noticed that yield distribution of optimization data

is similar to the HTE yield distribution and that scope data displays a distribution reminding

that of Sci-Findern (Fig. 3C-D). Exploiting optimization tables during data extraction allows

to bypass the lack of low yields reactions in proprietary datasets, and could offer improved

predictive performances.

Benchmark of Machine Learning Models on NiCOlit

Then, we evaluated how existing methods for yield prediction perform on NiCOlit. As the

representation of chemical reactions in a machine readable format is a crucial step in statistical

8



Figure 3: Analysis of scope-optimization dataset structures and yields distributions. (A):
Projection of the Buchwald-Hartwig dataset on the scope-optimization space, showing ho-
mogeneous coverage. The second Principal Component (PC) is displayed as the first PC
is primarily driven by the 3 bases present in the dataset. (B): Projection of NiCOlit on
the scope-optimization space, showing a biased exploration. (C): Yields distribution for the
NiCOlit, HTE, and Sci-Findern data. Bias towards high yields is observed on the NiCOlit and
especially the Sci-Findern datasets. (D): Yields distribution for the scope and optimization
data on NiCOlit.
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modeling of reaction yields,25 we selected four approaches representative of the state-of-the-art

(see section III of SI). The first approach, RDKit FingerPrint (RDKit FP), is based on the

RDKit’s (a cheminformatics tool) chemical reaction fingerprints26,27 and one-hot encodings

of the remaining variables (ligand, additive, solvent and catalyst precursor). RDKit FPs were

obtained through the concatenation of RDKit’s difference reaction fingerprint, computed

by subtracting the molecular fingerprint of the reactant from the fingerprint of the product,

and the one-hot encodings. The second approach, referred to as Density Functional Theory

(DFT), follows the guidelines given by the Auto-QChem framework28 to generate DFT-based

molecular descriptors adapted to the selected reaction. For the third approach, RXNFP,

we featurized chemical reactions using the deep-learning RXNFP method.29 Eventually,

the reactions were featurized using the differential reaction fingerprint (DRFP) which was

shown to perform better than DFT-based featurization in reaction yield prediction on the

HTE Buchwald-Hartwig dataset.30 A preprocessing that removes successively reactions from

reviews (190), reactions in 2 steps (76), reactions that could not be featurized with the

DFT methods (205, see Table S6) and those than belong to publications with less than

20 reactions after previous steps (126) was applied, giving 1406 unique reactions. Yield

prediction models were built for each featurization with Random Forest regression models31

that have shown excellent results on reaction yield prediction6 and outperform other machine

learning approaches (i.e. support vector machines and neural networks, see Figure S21) on

NiCOlit. All metrics reported are averaged over 10 experiments with different random seeds.

The DFT method outperforms the three others, and reaches an R2 of 0.54, even though the

difference with the RDKit FP and DRFP is modest (R2 of 0.50), while RXNFP showed the

weakest performance (R2 of 0.39) (Fig. S6). As expected, the performance of the model

trained on optimization data performed better (R2 of 0.48) than when trained on scope data

(R2 of 0.36) (Fig. S16).

The predictive performance on NiCOlit turns out to be far better than the one reported

on the highly heterogeneous USPTO dataset (R2 < 0.2)7 and on data extracted from
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AstraZeneca’s Electronic Lab Notebooks (R2 < 0.3).22 This shows the potential of machine

learning applied to published reaction data. Performances remain nonetheless lower than

reported on the HTE data (R2 > 0.8). An explanation could be the highly biased structure

of published reaction data described in Fig. 3B, while HTE data cover a narrow and

homogeneous chemical space (Fig. 2A and 1A-B) and are devoid of experimental and

reporting bias.13,24,32,33 Unlike published reaction data, HTE systematically reports yields

for all reactions including low yields, and is comprised of reactions performed in the same

experimental settings. This makes them a perfect case study for statistical learning compared

to NiCOlit, at the cost of exploring a narrower chemical space. It is to be noted that while

DFT outperforms other methods, it fails to featurize some reactions. There is thus a tradeoff

between the accuracy of the DFT method and its ability to process every reaction. For some

applications, other featurizations that show slightly lower accuracy but are faster to compute

and more reliable could be more adapted. Nonetheless, the rest of the manuscript focuses on

the results obtained with the DFT model.

Analysis of ML performance on out-of-sample predictions

Previous work on reaction yield prediction7,10 focused mainly on predictive yields on random

splits of the data. However, the nature of scientific discovery pushes chemists to constantly

explore new reaction chemical space. Thus, the reactions for which we want to make yield

prediction are not sampled from a static distribution, but undergo continuous distribution

shift.34 For instance, chemists are often interested in reactions including a novel substrate or

a novel coupling partner (Fig. 4). Therefore, validation on a random split is not necessarily

informative of how a model would perform when used by chemists in a prospective fashion.

This problem was underlined in recent publications,7,10,35 where machine learning algorithms

showed far worse predictive performances when applied to out-of-sample data (e.g. on

reactions with an additive not seen in the training set). While reported models performed

very well on random splits (with an R2 above 0.9, see Table S1), these performances dropped
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significantly on some out-of-samples tests, with coefficient of correlations R2 at best of 0.54

(obtained with a DFT model6).

Figure 4: (A): Examples of train-test splits from left to right: random split, split according
to substrate (one substrate in the test set and all others in the training set), split according
to publication (one Digital Object Identifier (DOI) is taken as the test set and all others as
training set) and split according to coupling partner category (all reactions of one coupling
partner category are taken as test set and all other coupling partners as training set). (B)
DFT model performances for the different splits displayed in A. The performances displayed
represent an average result over 10 random splits for the random task and all the possible
substrates, DOI or coupling partner categories splits for the three remaining tasks.

We chose the prediction of reaction yield for an unseen substrate (Fig. 4) as a task of

practical interest. All reactions that feature a given substrate were held-out; after training

on the rest of the dataset, the model predicts the yields of the held-out reactions. Those

results were aggregated over all substrates in the dataset. While the DFT model showed
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encouraging results on the substrate split task, the question of whether the reported predictive

performance (R2 = 0.33) is of practical interest is not clear. Therefore, we designed a realistic

classification task, where the model classifies reactions using an unseen substrate in two

classes, high yields (> 50) and low yields (≤ 50). This use case corresponds to the situation

where a chemist wants to explore reactions with a new substrate, and relies on the model’s

prediction to discard low yield substrates, and to prioritize efficient ones. On this task, the

DFT method reached high predictive performance (with a ROC-AUC, a performance metric

for classifiers, of 0.74, see Fig. S18). This highlights a practical application of yield prediction

models that can be achieved with existing methods.

Researchers have incentives to explore novel chemical space (Fig. 1C). Moreover, for each

publication, reaction yield is biased by the chemist’s skills and the way it is measured. This

leads to a high heterogeneity between reactions from different publications. We evaluated

how ML predicts yields on data from a new publication. A train-test split of the data,

where the test set is comprised of all reactions from one publication, and the train set of all

other reactions that do not appear in this publication, is used to assess the yield prediction

performance of a model on a new publication (Fig. 4A - DOI Hold-out). Our results,

computed over every different publication in NiCOlit, showed the inability (R2 of -0.01) of

ML to generalize to data from new publications.

While the reactions in NiCOlit are all extracted from publications referenced in the same

review, they cover a wide range of possible mechanisms. As most of the publications extracted

do not provide detailed mechanistic study of the reaction performed, a discrimination was

made according to the nature of the coupling partner and substrate (as depicted Fig. 1B). All

reactions of the same coupling partner category were held-out (e.g. boronic derivatives, see

Fig. 1C). Models were trained on the rest of the dataset, and used to predict the yields of the

held-out reactions (Fig. 4A - Coupling Partner Hold-out). Predictive performance, computed

over every different coupling partner in NiCOlit, reported for these experiments indicates

whether the model is able to predict yields on coupling reactions using a different category of
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partners than the reactions of the training set. Again, the models fail to extrapolate to new

coupling partners categories.

From a mechanistic point of view, the failure of the models to extrapolate is not very

surprising as nickel catalysts can react through very different mechanistic pathways.36 In

this perspective, we analyzed the importance of the different features used by the models

to perform predictions on more focused subsets of the NiCOlit. All reactions belonging to

the same coupling partner category were regrouped and a predictive model was trained on

each of these subsets. Then the importance of the features used by the models to perform

the predictions were analyzed and displayed Fig. 5. The differences between the models

are striking. As an example, the model trained on the RMgX coupling partner is highly

dependent on the ligand, the substrate and the molar ratios used while the couplings with

RLi mainly depend on substrate characteristics. Nevertheless, these features importance

cannot be understood in the light of chemical rules (a more detailed analysis of the Si and

Zn cases is available in the SI). Considering that widely different features are used to predict

yields on the different coupling partner categories, the poor generalizability of the models is

not surprising.

Figure 5: Analysis of feature importance in predictive models trained on coupling partner
category NiCOlit subsets. Each subset contains all the reactions belonging to a category of
coupling partners.

14



Chemist’s Expertise Enables ML Predictions in a Low-Data Regime

Based on those results, we hypothesize that models trained on a restricted dataset of reactions

sharing similar coupling partners would lead to equivalent predictive performances than

models trained on the entire NiCOlit dataset. If true, this would give a precious guideline

when gathering published reaction data in order to perform yield prediction.

Table 1: Performances of DFT and baselines models on each coupling partner and substrate
categories subsets.a

Coupling
partner R2

R2

restricted
R2

k-NN baseline

R2 scope/
optimization

baseline
Number of
reactions

Number of
publications

Accessible
reactions

B 0.47 0.45 0.17 0.26 472 11 1× 108

C-H 0.59 0.56 0.31 0.11 271 3 3× 107

RMgX 0.51 0.48 0.23 0.18 266 5 6× 105

CO2 0.52 0.51 0.12 0.36 87 1 7× 103

Zn 0.54 0.57 -0.16 0.09 68 2 1× 103

NCO 0.39 0.30 -0.21 0.18 57 1 2× 104

Al 0.20 0.18 -0.35 0.26 53 1 1× 104

Si 0.64 0.57 0.10 0.42 53 1 3× 104

Li -0.13 0.05 -0.29 -0.03 52 1 2× 104

Amines 0.17 -0.05 -0.58 0.32 27 1 5× 102

Substrate R2

R2

restricted
R2

k-NN baseline

R2

scope/optimization
baseline

Number of
reactions

Number of
publications

Accessible
reactions

OR 0.55 0.57 0.3 0.13 546 11 5.4× 109

OPiv 0.55 0.56 0.31 0.33 394 12 3.2× 109

OC(=O)N 0.41 0.35 -0.06 0.24 215 14 1.4× 108

OC(=O)O 0.66 0.64 0.44 0.15 82 4 4.5× 105

OAc 0.36 0.40 -0.15 0.31 72 7 4.2× 106

Otriazine 0.42 0.53 0.01 0.39 54 1 1.8× 105

OSiR3 -0.25 -0.25 -1.77 0.00 23 5 1.0× 104

OCOR 0.06 -0.39 -0.74 0.31 17 4 3.2× 103

OPh -0.30 -1.34 -0.41 -0.01 3 3 4.9× 102

aR2 corresponds to the predictions of a model trained on 80% of NiCOlit for a specific substrate or
coupling partner category. R2 restricted corresponds to the performances on the same target for a model
trained on 80% of NiCOlit restricted to the targeted substrate or coupling partner. k-NN baseline is a nearest
neighbor search based on DFT features and scope/optimization baseline returns the average yield of scope or
optimization data according to whether the reaction is in a scope or optimization table. Metric reported is
Pearson’s coefficient of correlation R2. The best values (with regard to predictive performance) are reported
in bold.

To test this hypothesis, we trained the models on NiCOlit restricted to a given category

of coupling partner (e.g. all reactions with a boron-based coupling partner) or substrate, and
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compared the results with those obtained with a model trained on the full dataset (similar

results for NiCOlit restricted to single DOIs are available Table S13). Indeed, for most of the

coupling partners or substrates, the model trained on the restricted dataset performs as well

as the model trained on the full data (Table 1).

We also compared the predictive performance of the model trained on random splits of the

full NiCOlit and on NiCOlit restricted to a specific coupling partner or substrate categories

with two baselines. When confronted with a novel reaction with unknown yield, the Nearest

Neighbor baseline (k-NN baseline) searches for the closest reaction in the database with a

known yield and return its value as the yield prediction for the query reaction. This baseline

assesses the performances of one of the natural strategy to extrapolate an unseen yield from

the closest known reaction, that mimics the way a human chemist could proceed. The second

baseline (scope/optimization baseline) returns the mean yield of reactions extracted from

scope (resp. optimization) tables in the database if the query reaction is itself extracted from

a scope (resp. optimization) table. This baseline accounts for the fact that a stratification by

scope/optimization explains a part of the variability in yields observed within the database.

As recent work suggests machine learning doesn’t outperform simple baselines in related

prediction tasks,5 our goal was to make sure that there was clear added value from using

the machine learning approach. For substrates or coupling partners types with more than 70

data points, the machine learning approach systematically outperformed both baselines.

Furthermore, the performance is highly variable according to coupling partner or substrate

categories. The most straightforward explanation for this behavior is the disparity between

the number of reactions documented for each coupling partner category. The models exhibit

poor or modest performances for coupling partners with less than 70 reactions reported.

Adequate coverage of chemical space is crucial for building ML models.37 Those results show

that a dataset of a much smaller size than NiCOlit can be used to build a predictive model,

provided that all reactions belong to the same coupling partner or substrate category (Fig. 6).

This study also shed light on the approximate number of reactions needed to reach satisfying
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Figure 6: ML performances when trained on full or restricted chemical space. The restricted
dataset represented correspond to the boronic derivatives category of the coupling partners.
Similar results are obtained with other coupling partner categories.

predictive performance (roughly one hundred reactions). We compared the performances on

the restricted sets with between 70-500 reactions and retrieved comparable performances

(R2 ≈ 0.5) than what was obtained on Buchwald HTE data with a similar number of training

points (R2 = 0.59 for 98 data points).10 Interestingly, good performances can be attained in

low-data regimes by injecting domain specific knowledge. Furthermore, for similar predictive

performances, most accessible reaction spaces (last column, Table 1) are larger than their

HTE counterparts.

Conclusion

To reach its full potential, machine learning relies on high quality data. In the future, we

expect that initiatives such as the Open Reaction Database12 will provide the community

with the data needed. In the meantime, there is currently a lack of public unbiased datasets

of chemical reactions with detailed experimental conditions. By releasing NiCOlit, we hope

to foster the development of impacting data-driven approaches for yield prediction. Our
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results highlight the specificities of published reaction data. Comparison with HTE data

shows a reporting bias towards high yields. Nonetheless, this bias is weaker in NiCOlit

than in its counterpart extracted from proprietary database. Our analysis reveals that it

is the extraction of optimization tables that allows the presence of negative examples and

limits this reporting bias. In the light of recent results,13 this could lead to a significant

improvement of machine learning models trained on published data. We also highlight a clear

experiment selection bias, where reactions are explored along the two orthogonal optimization

and scope directions. A benchmark of several machine learning approaches confirms those

observations. Indeed, predictive performance on NiCOlit lies between the one obtained on

HTE data and on other available data sources of chemical reactions (proprietary databases or

USPTO). A key step in evaluating predictive models remains experimental validation of the

model’s predictions, a practice that we highly encourage even though it is outside the scope

of this work. Nonetheless, we designed several experiments to test the limitations of machine

learning models on out-of-sample prediction tasks. While predictive models cannot currently

extrapolate to new reactions or coupling partner categories, we showed that the model is able

to generalize on reactions with new substrates. Leveraging this observation, we explain how

domain-specific chemistry knowledge can help synthetic chemists select relevant data points

to build models in low-data regimes. With only a hundred data points, building predictive

models is within reach. We hope that these findings and our open-access database will

stimulate the adoption of machine learning for yield predictions in the chemistry community,

and encourage systematic data sharing in machine readable formats.
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