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Partitioning atomic and molecular charge densities in non overlapping chemically significant regions is a challenging
problem for quantum chemists. The present method aims to build a tool enabling the determination of “good bound-
aries” with the help of elementary statistical methods or information theory. This is done by minimizing an objective
function with respect to the boundaries of the localization regions, the choice of this function being guided by a clarity
requirement. With the sum of the indexes of dispersion (ΣD) or the mutual information (MI) as objective function, the
method yield partitions in good agreement with the Aufbau rules for Li-Rn atoms and with Lewis’s pairing model for
molecules.

I. INTRODUCTION

The concept of chemical bond belongs to a chemical rep-
resentation of the matter at a microscopic level in terms of
atoms linked by bonds developed by chemists at the begin-
ning of the XXth before the advent of Quantum Mechanics. A
closer description of the physical reality would consider un-
ambiguously defined interacting quantum particles rather than
atoms and bonds. However, as written by S. Alvarez, R. Hoff-
mann and C. Mealli: “Chemistry has done more than well in
creating a universe of structure and function on the molecular
level with just this “imperfectly defined” concept of a chemi-
cal bond. Or maybe it has done so well precisely because the
concept is flexible and fuzzy.”1. The same authors noticed that
the nature of chemical bond continues to be debated. In fact,
the epistemological weakness of the chemical bond concept
can be viewed as a consequence of a chemical representation
aiming to support chemical explanations rather than as a faith-
ful picture of the reality complying demarcation criteria such
as falsifiability.

One of the aims of Quantum Chemistry is to build bridges
between the realm of Quantum Mechanics and the world of
chemical concepts, in other words to find correspondence
between mathematically defined objects and chemical con-
cepts. Two principal routes are used to achieved this task. On
the one hand are orbital based methods in which the math-
ematical intermediates enabling the calculation of approxi-
mate wave functions acquire a chemical meaning and on the
other hand are methods which use a complementary theory
to build strictly defined objects. Among the latter methods is
the Quantum Theory of Atoms in Molecules (QTAIM) devel-
oped by Richard Bader and co-workers2 in which the dynam-
ical system theory is used to partition the space occupied by
a solid or a molecule in basin of attractors of the one electron
density gradient field. These basins satisfy the local virial the-
orem and are called atomic basins. The atom in molecule is
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then defined as the union of a nucleus and of the one electron
density in its atomic basin. QTAIM does not aim to recover
the chemical picture and, during his talks, Richard Bader often
claimed “ there is no bond, there is bonding”. It is possible,
however, to get closer the chemical representation with other
gradient vector fields, such as that of the electron localization
function (ELF)3, used in the same topological framework4.

The present article is focussed on the spacial distribution of
the electron density. In this respect, we propose to achieve a
spacial partition of the molecular position space in terms of re-
gions dominated by definite electron groups with the help of
techniques requiring as few as possible assumptions. These
space-filling additive volumes, the electron group localization
regions, are required to minimize the fluctuations of the num-
ber of electrons within them. Unlike most partition techniques
used in Quantum Chemistry which consider the extrema of
radial functions to evidence atomic shell structures5–12, the
boundaries of the whole set of electron groups are optimized
simultaneously by minimizing an objective function account-
ing for the fluctuation of electron numbers. This new ap-
proach intend to complement, and even to be an alternative
to, the ELF population analysis based on the topology of a
local function. For all atoms in the Li-Rn range and for a
series of small representative molecules there is a satisfac-
tory correspondence between the electron group localization
regions and classical chemical objects such as atomic shells,
Lewis’s bonding and non-bonding electron pairs and Valence
Shell Electron Pair Repulsion (VSEPR) electronic domains.

II. OVERVIEW OF THE METHOD

Most of chemical concepts in use in interpretative meth-
ods derive from the Lewis bonding model13,14. They rely
on a description in which electrons are assigned to atomic
kernels and atomic valence shells themselves composed of
bonding and non bonding pairs. The kernel and the valence
shell are brought together to form an atom in the molecule.
As the bonding pairs belong to (at least) two valence shells,
Lewis’s atoms fundamentally differ from QTAIM atoms: the



electron group localization 2

sum of the atomic population is the number of electrons in
the QTAIM approach whereas it exceeds that number by two
times the number of bonding pairs in the Lewis model. The
VSEPR model considers the arrangement of the bonding and
non bonding pairs in the valence shells to explain the molec-
ular geometry15,16. Although there is neither experimental or
theoretical proofs of the reality of Lewis’s pairs and VSEPR
electronic domains, these models account for the stoichiome-
try and of the structure of a huge majority of molecules. These
two complementary models assume the hypothesis of local-
ized groups of electrons in other words stable numbers of elec-
trons can be found in defined regions of a molecule. Similarly,
the commonly admitted picture represents isolated atoms as
composed of successive concentric shells encompassing the
nucleus, each containing a definite number of electrons given
by the aufbau rules.

The hypothesis of localized groups of electron suggests that
the space occupied by the isolated atom or the molecule can
be divided in parts associated with each group. These parts
will be hereafter called electron group localization regions.
Consider any set of M space-filling non overlapping volumes
VA. The electron population of these volumes,

N̄A =
∫
VA

ρ(r)dr

is the integral over VA of the one-electron density of prob-
ability function ρ(r). N̄A can be interpreted as of the aver-
aged number of electrons visiting the volume VA obtained after
an infinite number of electron counts. Each individual count
yields a whole number in the range [0,N], N being the number
of electrons of the system, therefore N̄A can be rewritten as the
weighted sum:

N̄A =
N

∑
0

ipi

where pi is the probability of finding i and only i electrons
within VA. A correspondence with chemical objects such as
bonds, atomic shells, lone pairs, functional groups can be
established once the boundaries of the volumes are such as
they minimize the fluctuations of the electron count. The
present method aims to build a tool enabling the determination
of “good” boundaries with the help of elementary statistical
methods or information theory. The estimation of the electron
population uncertainties and their further deeper analysis re-
quire the evaluation of the variances, σ (NA), of related quan-
tities such as the index of dispersion, D(NA) = σ (NA)/N̄A,
the coefficients of variation or relative uncertainties, cv =
σ(NA)/N̄A), and of the covariance matrix. The index of dis-
persion , also called variance to the mean ratio, Fano factor or
relative fluctuation, characterizes the data distributions: D < 1
and D > 1 correspond to under- and over-dispersed regimes
whereas the Poisson distribution yields D = 0. On the infor-
mation theory side, the mutual information17,18, MI, or rate of
transmission, measures the dependence of two random vari-
ables between them. In the case of N electrons distributed

over M volumes VA, the expression of −MI is:

MI = ∑
A

∑
B

pAB(1,2) log
PAB(1,2)

PA(1)pB(2)
(1)

where pA(1) is the probability of finding a given electron (1)
in VA, pB(2) the probability of finding a given electron (2)
in VB and pAB(1,2) the probability of the joint event, a given
electron (1) in VA and another given electron (2) in VB. The
mutual information has the following properties:

1. For independent distributions MI = 0.0

2. For any partition MI ≥ 0.

3. For any N-electron system, the upper bound of MI is
provided by the continuous distribution limit.

4. For a partition into k localization regions, the best
boundaries are those which yield the maximum value
of MI, MImax(k).

Since electrons are quantum particles, the different statisti-
cal quantities mentioned above should be observables or rely
on observables. As already mentioned N̄A being a measure
it can be expressed as the expectation value of an operator.
Such an operator, the count operator, N̂A, has been introduced
almost half a century ago by Diner and Claverie19:

N̂A =
N

∑
i

ŷ(ri) with ŷ(ri)
{

ŷ(ri) = 1 ri ∈VA
ŷ(ri) = 0 ri /∈VA

(2)

In Eq. 2, ri is the position vector of the electron labelled by
i and N is the total number of electrons in the investigated
system. The eigenvalues of N̂ are the set of whole numbers
0, . . .N. The uncertainty can be further evaluated by consid-
ering the variance, σ2(N̄A), for which an operator can be de-
rived from Eq. 2 applying the correspondence principle. In
a paper published in 200420, these ideas were reformulated
in the framework of the multivariate analysis of the variance
in which the covariance matrix elements provide a measure
of the delocalization between pairs of regions. For this pur-
pose the vectorial population operator of dimension M is in-
troduced together with the corresponding eigenvalue and ex-
pectation value vectors:

N̂ =

 N̂A
...

N̂M

N =

 NA
...

NM

N̄ =

 N̄A
...

N̄M

 (3)

The trivial sum rules

∑
M

N̂A = ∑
M

NA = ∑
M

N̄A = N (4)

are the consequence of the space-filling non overlapping re-
quirement. The covariance operator σ̂2 is a matrix operator
whose elements are deduced from their classical expression
by the correspondence principle:

σ̂2
AB = N̂AN̂B− N̄AN̄B (5)
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It is the product of the column vector (N̂− N̄) by its trans-
posed, i.e.:

σ̂2 = (N̂− N̄)(N̂− N̄)† (6)

The product of the population operators appearing in eq. 5
can be expressed in terms of pair population operators, i.e.:

N̂AN̂B =
N

∑
i

N

∑
j

ŷ(ri)ŷ(r j) = Π̂(VA,VB)+ δABN̂(ΩA) (7)

where Π̂(VA,VB) is the spin free pair density operator:

Π̂(VA,VB) =
N

∑
i

N

∑
j 6=i

ŷ(ri)ŷ(r j)with


ŷ(ri) = 1 ri ∈VA
ŷ(r j = 1 r j ∈VB
ŷ(ri) = 0 ri /∈VA
ŷ(r j = 0 r j /∈VB

(8)

Therefore, the covariance matrix is an observable, the ele-
ments of which can be evaluated from the one- and two-
electron density of probability functions, i.e.:

〈σ̂2
AB〉= Π̄AB− N̄A(N̄B−δAB)

=
∫
VA

∫
VB

Π(r,r′)drdr′− N̄A(N̄B−δAB) (9)

They appear to be the difference beween the “quantum me-
chanical” pair populations, Π̄AB and their “classical” analogs
N̄AN̄B or N̄2

A− N̄A in the case of the diagonal elements.
The probabilities involved in the expression of MI are pro-

portional to N̄A and ΠAB, respectively:

pA(1) = N̄A

N
, pAB(1,2) = Π̄AB

N(N−1)
(10)

Moreover, pAB(1,2) can be rewritten as:

pAB(1,2) = 1
N(N−1)

∫
VA

∫
VB

ρ(r1)ρ(r2)(1 + hxc(r1,r2))dr1dr2

= N
N−1

pA(1)pB(2)+
∫
VA

∫
VB

ρ(r1)ρ(r2)hxc(r1,r2)dr1dr2 (11)

where hxc(r1,r2) is the exchange correlation hole, therefore
MI measures the inference of the exchange-correlation inter-
action on the distribution of the electron density over the lo-
calization regions.

The determination of the localization regions is achieved
with the help of an objective function which provides a global
measure of the localization (or delocalization) of the electron
groups. This function, Fk(VA,VB, . . .), depends of the num-
ber of localization volumes involved in the partition and of
their boundaries. The choice of the objective function should
also be guided by a simplicity requirement. As candidates
in the statistical analysis approach we have considered the
Froebenius norm of the covariance matrix, ‖σ2‖F , the sum of
the indexes of dispersion (ΣD) ΣD = ∑

VA

σ2(N̄A)/N̄A, the sum

of the coefficients of variation or relative uncertainties (Σcv)

Σcv = ∑
VA

σ(N̄A)/N̄A and the mutual information in the infor-

mation theory perspective.
The boundaries of the localization regions are simultane-

ously determined by minimizing the objective function with
respect to the bounding surfaces defining the localization vol-
umes starting from a guessed partition. In the case of the mu-
tual information −MI is the minimized function. The opti-
mization scheme and the construction of the guess both de-
pend on the nature of the investigated chemical objects.

It is important to note that the approach described here is
totally independent of i) the way the one and two-electron
densities have been determined, ii) external references such
as promolecular densities or iii) functions explicitly relying
on approximations. Its application only require the availabil-
ity of the one and two-electron densities.

III. ATOMIC SHELLS.

The determination of non overlapping atomic shell struc-
tures has been the subject of an abundant literature reviewed
in the introduction of Miroslav Kohout’s article introducing
the curvature of the electron position uncertainty (PUC) as
localization indicator12. Most functions described in this re-
view usually display an atomic shell structure but only few
of them yield shell populations close to the occupancies ex-
pected from the aufbau principle although discrepancies may
occur for transition elements. For example, PUC does not dis-
play the valence shells of Ru and Rh whereas it shows an extra
external shell for Ag.

In a first step, the partitioning ability of the objective func-
tions has been investigated on single boundary searches. As
shown in Table I, ‖σ2‖F and Σcv fail to find the shell bound-
aries of some atoms whereas ΣD and −MI are the only objec-
tive functions yielding the expected results along the whole
series of elements. The Froebenius norm and Σcv present fail-
ures for every boundary, for example they do not display the
valence shells of the Cr-Zn transition elements. The index of
dispersion of the integrated density beyond the outer radius
works nicely for light elements but displays a shoulder rather
than a minimum for Nb and Mo11; adding the index of disper-
sion of the integrated density within this radius density gives
rise to a minimum.

TABLE I. Atoms for which ‖σ2‖F and Σcv fail to find the expected
shell boundary.

boundary ‖σ2‖F Σcv
K-L Rb-Rn Mn-Rn
L-M Tl-Rn Na-Lu, Re, Ir
M-N Cr-Zn Cr-Zn
N-O Zr-Rh, Ag-Sn Y-Sb, Er

Tm
O-P Sm, Dy, Tm, Cs, La, Pr-Gd,

Hf-Bi Dy, Er-Rn

In a second step, the shell radii are determined by opti-
mizing the objective function involving all the shells expected
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from the Aufbau principle. The search is carried out with the
Fletcher and Powell algorithm21 starting from the radii deter-
mined in the previous step. For all elements convergence is
achieved for both functions. The complete set of results, i.e.
the shell radii, shell populations and variance of the popula-
tion is available as supplementary information.

a. Core shells The core shell populations are closer to
the number of electrons expected from occupancies than those
calculated by other methods. The K-shell populations range
in the intervals [2.01-2.08] for ΣD and [2.01-2.05] for −MI
whereas the deviations from 2.0 observed on smaller sam-
ples may attain 0.2 for ELF9 and 0.3 for PUC12. The in-
dex of dispersion increases with the atomic number reach-
ing 0.33 for the sixth period elements. L shell populations
are calculated by both methods around 8, 8.4±0.3,for Ne-
Rn element with an index of dispersion increasing from 0.07
to 0.34. The M and N shell populations main group ele-
ments are also in reasonable agreement with the expectations:
17.8±0.3,17.85±0.25 (M), 30.25±0.4,30.43±0.4 (M) for
ΣD and −MI respectively. However, the discrepancies may
be as large as 3.0 for transition and rare earth elements.

b. valence shells Valence shells populations of main
group elements are always calculated in close agreement with
the electron configuration occupancies, the differences do not
exceed 0.3. The populations and variance of the valence shell
of periods 4-6 transition elements are presented in Table II.
Unlike ELF9 and PUC12 which yield populations in good
agreement with the N shell occupancy, values obtained by ΣD
and −MI for Mn-Ni atoms are less by c.a. 0.8 than the expec-
tations. As a general rule the descriptions provided by ΣD
and −MI for early and late transition metals are consistent
with their ground state configurations. Deviations larger than
0.5 occur for Nb, Mo and Ru in period 5 and for all the period
6 transition elements except Ta, Pt, Au and Hg. In the rare
earth series, the averaged P shell population is 1.86. However,
populations less than 1.0 are calculated for Sm and Er. The
indexes of dispersion of the valence populations of transition
and rare earth elements, ∼ 0.5, are about twice those calcu-
lated for the main group elements of the same period.

The distribution of the probabilities of finding n electrons in
a given localization region provides a complementary picture
characterizing the calculated shell structure22,23 and be further
used to support chemical interpretations. The bar chart dis-
played in figure 1 shows maximum probabilities for n = 8,17
and 1 for the L, M and N shells, respectively. Both distri-
butions present a slight asymmetry. The accessible electron
numbers of the M shell correlate with the oxidation states
(OS), i.e OS=18−n.

IV. MOLECULES

The optimization of the localization regions in small
molecules has been achieved by an iterative trial and error
algorithm. The molecular volume is represented by a rect-
angular prism enclosing more than 99.5% of the charge den-
sity and divided in cubic cells of 1.0−3 bohr3. Starting from a
guessed partition provided by ELF , each cell is assigned to a

TABLE II. Transition elements: valence shell Aufbau occupancy n,
populations N̄ and population variance σ2(N̄) calculated by ΣD and
−MI.

ΣD −MI
N̄ σ2(N̄) N̄ σ2(N̄)

Sc 2 2·08 0·49 2·04 0·49
Ti 2 2·11 0·56 2·06 0·56
V 2 2·11 0·60 2·05 0·59
Cr 1 1·23 0·61 1·14 0·57
Mn 2 1·27 0·64 1·17 0·59
Fe 2 1·47 0·77 1·39 0·73
Co 2 1·16 0·59 1·05 0·54
Ni 2 1·13 0·58 1·02 0·52
Cu 1 1·09 0·55 0·97 0·49
Zn 2 2·08 0·76 2·01 0·74

Y 2 2·23 0·64 2·19 0·63
Zr 2 2·40 0·79 2·35 0·78
Nb 1 2·05 1·06 1·99 1·03
Mo 1 3·57 1·72 3·62 1·74
Tc 2 1·69 0·98 1·93 0·88
Ru 1 1·57 0·93 1·48 0·88
Rh 1 1·41 0·84 1·30 0·78
Pd 0
Ag 1 1·14 0·68 0·94 0·57
Cd 2 2·18 1·0 2·10 0·97

Hf 2 2·67 0·93 2·67 0·93
Ta 2 2·32 0·88 2·30 0·88
W 2 2·89 1·18 2·89 1·18
Re 2 0·79 0·44 0·65 0·34
Os 2 1·03 0·63 0·76 0·45
Ir 2 1·02 0·62 0·79 0·46
Pt 1 0·91 0·55 0·68 0·40
Au 1 0·74 0·36 0·62 0·31
Hg 2 1·94 0·92 1·99 0·94

localization region. For each cell at the border of two regions,
the assignment is changed and the objective function recalcu-
lated. If the value of the objective function is improved, the
new assignment is kept and otherwise rejected. The process is
repeated until convergence is achieved.

Table III compares the localization region populations cal-
culated for a series of small molecules. The nomenclature
adopted to label the localization regions is that introduced for
ELF attractors and basins a quarter of century ago24. Al-
most all the values calculated with ΣD and −MI are close
one another and in good agreement with those predicted by
the Lewis structure. The discrepancies with respect to the ex-
pected whole numbers being less than 0.25, except for CO
and N2. The ELF partition always yields larger populations
for lone pairs, V(A), at the expense of bonds, V(A, B), as for
example in ammonia, water, hydrogen fluoride and hydrogen
chloride molecules where the V(A,H) populations nicely cor-
relates with the χ(A)− χ(H) electronegativity difference. In
linear molecules, when the axial symmetry merges several for-
mal lone pairs in a single region, the population of the bond
becomes unexpectedly large with ΣD and −MI. For exam-
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TABLE III. Populations of localization regions of ABx and C2H2n (n = 1,2,3) molecules determined with ΣD, −MI and ELF .

Molecule C(A) C(B) V(A) V(B) V(A,B)
ΣD -MI ELF ΣD -MI ELF ΣD -MI ELF ΣD -MI ELF ΣD -MI ELF

LiH 2·01 2·01 2·01 1·99 1·99 1·99
BH3 2·05 2·06 2·06 1·99 1·99 1·99
CH4 2·06 2·05 2·09 1·99 1·99 1·98
NH3 2·07 2·05 2·11 2·03 2·05 2·16 1·97 1·97 1·91
H2O 2·07 2·04 2·12 2·07 2·09 2·27 1·89 1·89 1·67
HF 2·08 2·05 2·13 5·70 5·76 6·42 2·21 2·18 1·45
HCl 10·06 10·05 10·07 5·96 6·03 6·18 1·98 1·92 1·75
FHF– 2·08 2·06 2·10 7·70 7·77 7·77 0·40 0·32 0·26
LiF 2·03 2·03 2·03 2·08 2·08 2·11 7·88 7·88 7·85
CO 2·04 2·02 2·08 2·10 2·05 2·12 2·19 2·19 2·24 2·88 2·93 4·02 4·86 4·69 3·18
N2 2·05 2·03 2·10 2·42 2·41 3·21 5·05 5·12 3·39
F2 2·09 2·06 2·21 5·88 6·13 6·66 2·01 1·59 2×0·13

C(C) V(C,H) V(C,C)
C2H2 2·05 2·02 2·10 2·10 2·02 2·32 5·70 5·91 5·14
C2H4 2·05 2·03 2·09 1·99 1·99 2·11 2×1·99 2×2·0 2×1·69
C2H6 2·06 2·04 2·09 1·96 1·95 2·0 2·14 2·21 1·81

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

20

40

60

n

p n
(%

)

FIG. 1. Probability distribution of electron numbers in the N, M, L
shells of Ni

ple, the V(F,H) population of hydrogen fluoride amounts to
2.21 and 2.18 for ΣD and −MI, respectively. We suspect the
large N̄V (F) and pV (F) appearing in denominators in the ac-
tual expression of these objective functions to be responsible
for this uncomfortable feature. The Froebenius norm and Σcv,
do not work better yielding 0.0 and 3.49, respectively, values
which support our explanation. Attempts to divide V(F) in
three subregions are unsuccessful. However the bonding pic-
ture of FHF– provided by ΣD and −MI does not noticeably
differs from the ELF one as the V(H) population is less than
0.5 for the three approaches.

Another interesting example of discrepancies between ΣD
and−MI population happens for the difluorine molecule. The
description of the valence density given by ELF shows a bond
region split in two small basins, each with a very low popu-
lation. This led Rosa LLusar and co-workers to call this pat-

tern “protocovalent”25. Moreover the off diagonal covariance
matrix element σ2(VF ,VF) has a rather large absolute value
indicating a significant delocalization between the lone pairs
of the two fluorine atoms. Weak bond populations and large
absolute value of covariance between lone pairs of adjacent
atoms is the ELF signature of charge-shift bonding26,27. The
picture provided by the covariance matrix Froenenius norm
minimization fully agree with ELF . Since the fluorine lone
pairs are merged by the axial symmetry, ΣD and −MI favour
perfect pairing in the bond region: during the optimization
process not only the two “protocovalent” moieties of the F−F
bond are merged and the population of the resulting region
increased to 2.01(ΣD) and 1.59(−MI) but also σ2(VF ,VF) is
halved.

In the bonding picture of CO and N2 provided by ΣD and
−MI, the populations of the bond exceeds its ELF value by
more than 1.0. Figure 2 as well as the population values
show that the increase of the bond at the expense of the oxy-
gen lone pairs is the main difference between −MI and ELF .
Whereas, ELF provides a description of CO in terms of super-
position of Lewis diagrams dominated by the |C−−O〉 and
〈C−O〉 structures28, the MI results is explained by consid-
ering |C−−O〉 and |C−−−O| as major contributions. The
bond population of N2 calculated with ΣD and −MI is inter-
mediate between a triple bond and a double bond while that
obtained from the ELF partition has obviously a rather large
single bond contribution.

In the case of the hydrocarbons all method yield popula-
tions close to the Lewis diagram expectations. In agreement
with the ELF findings, the C2H4 double bond gives rise to
two distinct pair regions whereas in C2H2 the D∞h merges the
three bonding pairs in a single region.
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V(C)

V(C,O)

V(O)

V(C)

V(C,O)

V(O)

FIG. 2. From left to right ELF and −MI localization regions of CO
in a σv plane. Colour code: cores: magenta, lone pairs: red, bond:
green.

V. CONCLUSION

The analysis of the charge density presented here provides
a picture in terms of localized electron groups close to the
chemical representation derived from Lewis’s valence theory.
The approach used in this article is inspired by the data pro-
cessing of experimental results since the statistical or infor-
mation theory analysis is carried out on the output of elec-
tron count numerical experiments. As one and two-electron
density are observables, the same treatment can be applied in
principle to experimental data. We endeavoured to restrict the
arbitrary factors to the choice of the objective function.

In light of these preliminary results, the ΣD and −MI are
the objective functions which yield, at least qualitatively, the
best agreement with the chemical models for both atomic shell
structure and “electron shared” interactions2,4 in molecules.
In the case of ionic bonding (LiF and LiH) the cation and ionic
moieties are perfectly separated. From a quantitative point of
view, the populations of the valence regions calculated with
these methods are usually closer to those deduced from classi-
cal structural formulas than those provided by the ELF anal-
ysis. It is particularly the case of the ELF valence popula-
tions of H2O and N2 for which the difference with the perfect
pairing model were interpreted as unphysical rather than as a
consequence of bond polarity or mesomery.29,30. Attempts to
decompose groups formally containing several electron pairs
into pair subgroups failed for atoms and for linear molecules
exemplifying the importance of the nucleus-electron potential
(the external potential in the DFT vocabulary) whose sym-
metry constraints the number of distinct electron groups as
it has been also shown with the ELF . It is interesting to
note that multivariate statistics (∑D) and information theory
(−MI) yield very similar results.

The Maximum Probability Domains (MPDs)11,31–33 is an
other, and even better approach attesting the reality of spa-
tially localized electron groups. Unfortunately the regions
generated by this method are not constrained to be non-
overlapping, and therefore the development of a population
analysis from MPDs appears difficult. On the global objective

function optimization side, all the features of the ELF pop-
ulation analysis can be adapted in a straightforward fashion
and most concepts introduced in this framework remain valid.
However, it is no longer rigorous to use the vocabulary and
the mathematical properties of dynamical systems.

Although ΣD and −MI often yield very close results, it
should be interesting to consider other objective functions,
such ‖σ2‖F and Σcv, in parallel studies aiming to understand
the evolution of a chemical property along a series of parent
molecules. In such studies, it is further possible to bring to-
gether regions corresponding to a chemical subset of the sys-
tem in order to simplify the chemical explanations, as for ex-
ample the proton donnor and proton acceptor moieties of an
hydrogen bond complex34.

Beyond the quantitative analysis of the charge density, the
method described in this article should be used to conceptually
refine our chemical representation of the matter. The variance
and information related criteria are rooted on the statistical
interpretation of quantum mechanics. They enables to corrob-
orate or falsify the hypothesis of localized electron groups by
numerical experiments providing precise, and to some extent
mathematizable, definitions of the related chemical objects.
To this respect, our method intend to contribute to a clarifi-
cation of the weakly defined concepts of the chemical bond-
ing theory, and among them the concept of bond itself, in or-
der to improve the scientificity of interpretative computational
chemistry.

Computational details

a. Atoms

• Method: restricted Hartree Fock

• Periods 2-5 elements: quadruple zeta basis set35,36

• Period 6 elements: triple zeta basis set37–39

b. Molecules

• B3LYP40–43

• Basis set: 6-311G(d,p)44,45

• Nuclear coordinate of the optimized geometry.

c. Softwares

• ab initio calculations Gaussian0946,

• ELF partition TopMod47,48

Supplementary material

A tribute celebrating Klaus Ruedenberg, formula enabling
the calculation of partial overlap integrals of cartesian gaus-
sian type orbitals and the complete ∑D and MI Li-Rn shell
structure tables are reported in the Supplementary Material.
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