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Abstract: Heteroleptic cyclometalated iridium (III) complexes (1–3) containing di-pyridylamine
motifs were prepared in a stepwise fashion. The presence of the di-pyridylamine ligands tunes their
electronic and optical properties, generating blue phosphorescent emitters at room temperature.
Herein we describe the synthesis of the mononuclear iridium complexes [Ir(ppy)2(DPA)][OTf] (1),
(ppy = phenylpyridine; DPA = Dipyridylamine) and [Ir(ppy)2(DPA-PhI)][OTf] (2), (DPA-PhI = Dipyri-
dylamino-phenyliodide). Moreover, the dinuclear iridium complex [Ir(ppy)2(L)Ir(ppy)2][OTf]2 (3)
containing a rigid angular ligand “L = 3,5-bis[4-(2,2′-dipyridylamino)phenylacetylenyl]toluene” and
displaying two di-pyridylamino groups was also prepared. For comparison purposes, the related
dinuclear rhodium complex [Rh (ppy)2(L)Rh(ppy)2][OTf]2 (4) was also synthesized. The x-ray
molecular structure of complex 2 was reported and confirmed the formation of the target molecule.
The rhodium complex 4 was found to be emissive only at low temperature; in contrast, all iridium
complexes 1–3 were found to be phosphorescent in solution at 77 K and room temperature, displaying
blue emissions in the range of 478–481 nm.

Keywords: phosphorescent iridium complexes; blue emitters; X-ray structural determination

1. Introduction

Cyclometalated iridium (III) complexes are an important class of molecules because
they display remarkable photophysical properties [1] for a wide range of applications [2–7].
Moreover, they show high stability, which makes them adequate emitters for organic light-
emitting devices (OLEDs) [8–10]. Generally, they display octahedral geometry with six
coordination bonds and can be obtained as neutral, homoleptic species, such as [Ir(CˆN)3],
with three cyclometalated ligands bound to the metal center [11,12]. For instance, [Ir(ppy)3]
is a well-representative molecule for such compounds and behaves as a green emitter for
organic light-emitting devices with high efficiency as reported by Thompson and cowork-
ers [13]. The introduction of a bipyridine (bpy)-type ligand (NˆN) to the metal center
generates cationic heteroleptic complexes of the type [Ir(CˆN)2(NˆN)]+ [14–16]. Such com-
pounds have been utilized as light-emitting-electrochemical cells (LECs) [17,18]. Modifying
the nature of the ancillary ligands affects the optical properties of the compounds and
makes them emissive throughout the whole range of the electromagnetic visible and NIR
spectrum [19–22]. Replacement of the bipyridine by the dipyridylamine (DPA) ligand
also provides cationic complexes of the type [Ir(CˆN)2(DPA)]+; however, it affects the elec-
tronic properties of the molecule relative to the [Ir(CˆN)2(NˆN)]+ complexes (CˆN = ppy;
NˆN = bpy) [23]. Unlike bpy, the two pyridyl units in DPA are not conjugated, and this con-
tributes to push the LUMO level to higher energy without changing the HOMO (Scheme 1).
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As a consequence, the HOMO–LUMO gap becomes larger, and eventually, such compounds
become more suited to emit at higher energy, when compared to their analogous com-
pounds [Ir(CˆN)2(NˆN)+ with bipyridine ligands (CˆN = F2ppy, ppy; NˆN = bpy) [24,25].
Hence, using the DPA ligand might be an interesting approach to prepare complexes
that emit in the blue region. Pursuing our research activity in this area of luminescent
metal complexes, we prepared several cyclometalated rhodium and iridium complexes
(1–4) (Scheme 2) containing dipyridylamine motifs in a stepwise fashion. The purpose of
this work is to investigate the effect of the functionalized dipyridyl amine on the optical
properties of these complexes. Furthermore, the binuclear rhodium and iridium complexes
containing rigid angular ligands displaying two dipyridylamine motifs are also reported,
including their luminescent properties when compared to the related mononuclear species.
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Scheme 1. (a) Bipyrdine ligand versus (b) dipyridine amine (DPA) ligand, (c) dipyridy-
laminophenyliodide (DPA-PhI) ligand, and (d) the assembling ligand L containing two dipyridyl
amine motifs, used in this work.
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2. Results and Discussion
2.1. Synthesis and Characterization

Complexes 1–4 were obtained in two steps, following a synthetic procedure developed
by our group. The first step consisted of the preparation of the solvated metal complex in
situ, by treatment of the chloride dimer [M(ppy)2(-Cl)]2 (M = Rh, Ir), with two equivalents
of AgCF3SO3 in acetone at room temperature for 2 h. Then, the mixture was filtered to
remove the solid AgCl and subsequently treated with the desired ligand in dichloroethane
under reflux for 12 h, followed by the reaction work up afforded the target compounds 1–4
in good yields, ranging from 71 to 95% (Scheme 2).

The 1H-NMR spectra of complexes 1–4 recorded in CD2Cl2 and CD3NO2 confirm the
formation of the target complexes. For instance, complex 1 displayed a symmetric pattern
for the aromatic protons of the two “ppy” and the dipyridyl amino groups, due to the
presence of C2-symmetry in the molecule. A total of 10 multiplets were visible in the range
of δ 6.1–8.3 ppm; moreover, the amine-H appeared downfield at δ 9.92 ppm. On the other
hand, compound 2, which also contains a C2-symmetry, displayed 12 multiplets for the
aromatic protons between δ 6.1 ppm and δ 8.0 ppm, highlighting a symmetric motif as
well. As for the binuclear complexes, the 1H-NMR of 3 and 4 displayed similar spectra.
Again, a well symmetric pattern was visible for the aromatic protons, where 13 multiplets
for 3 (11 multiplets for 4) appeared in the range of δ 6.2 ppm to δ 8.2 ppm, in addition the
methyl protons that appeared as a singlet at δ 2.41 ppm, which was downfield relative
to the free ligand L. The 13C-NMR spectra of complexes 3 and 4 showed 24 aromatic
carbons in the range δ 116.8–167.4 ppm, confirming the symmetric pattern observed in the
solution for these molecules. Moreover, the integrity of the iridium and rhodium dimers
3–4 in the solution was ascertained by electrospray spectrometry, in which [{Ir(ppy)2}2(L)]2+

fragment was identified at m/z = 816.2208, and for [{Rh(ppy)2}2(L)]2+, at m/z = 726.1628,
respectively (Figure S9). A complete spectroscopic characterization (1H, 13C, IR, MS) and
elemental analyses are given in the experimental section and SI (Figures S1–S8). Moreover,
the structure of 2 was confirmed by a single-crystal X-ray diffraction study.

2.2. X-ray Molecular Structure of [Ir(ppy)2(DPA-PhI)][OTf] (2)

Convenient crystals of 2 were obtained from CH2Cl2/Et2O via a slow evaporation
process of diethyl ether into a CH2Cl2 solution of the complex. The structure confirms the
formation of the target molecule 2 (Figure 1a).

The structure shows that the iridium center is coordinated to two “ppy” ligands and
one dipyridylamino moiety, generating a distorted octahedral geometry around the metal
center. The two nitrogen centers of the two ppy units were disposed in trans-configuration,
with N-Ir bond distances of 2.047(3) Å and 2.062(3) Å. The two carbon centers were in
cis-geometry and induced a trans-effect on the two nitrogen centers of the DPA-PhI ligand.
As a consequence, the N-Ir bond distances were 2.168(3) Å and 2.172(3) Å. These distances
are longer than those observed for the two ppy units. This data is in accord with those
reported previously. The chelating angle of the dipyridylamino ligand (NˆN) towards the
Ir(III) center was 83.82(10)◦, as expected for a six-membered metallacycle. This is larger than
those of the ppy ligands (CˆN), 80.27(12)◦ and 80.49(12)◦. Unlike the (CˆN) ligands, which
are planar, the NˆN chelate ring adopted a boat conformation with central amine nitrogen
bonded to the -PhI group. The latter was disposed of in the apical position (Figure 1a).
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Figure 1. (a) Molecular structure of 2, with thermal ellipsoids drawn at the 30% probability level;
triflate ion, water molecules, and hydrogen atoms were omitted for clarity. (b) π-π interactions among
individual molecules generating 1D supramolecular assembly. Selected average bond distances (Å)
and angles (deg): Ir-N1 2.168(3), Ir-N2 2.172(3), Ir-N4 2.062(3), Ir-N5 2.047(3), Ir-C17 2.011(3), Ir-C28
2.009(3), N1-Ir-N2 83.82(10), N4-Ir-C17 80.49(12), and N5-Ir-C28 80.27(12).

Examining the packing of the molecules in the crystal revealed the presence of two
sets of π-π interactions among individual molecules (Figure 1b). The first interaction
occured between two ppy units of the two adjacent molecules, with π-π contacts with
C20···C24 at 3.342(7) Å, while the second π-π interaction with C8···C9 at 3.644(5) Å occured
between two diphenylamino groups of two close individual molecules generating 1D
supramolecular assembly.

2.3. Absorption Properties

The absorption spectra of the ligand the L and the complexes 1–4 in the CH3CN
solution at room temperature are depicted in Figure 2, and related key data are reported in
Table 1.
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Figure 2. Absorption spectra of bridging ligand L and complexes 1–4 in CH3CN solution at rt.

Table 1. Absorption data.

λmax, nm (ε, ×103 M−1 cm−1) a

L 286 sh (45.4), 318 sh (65.2), 336 (68.8)
1 254 (49.3), 267 sh (41.8), 300 sh (22.4), 377 sh (4.04)
2 249 (45.9), 262 sh (41.2), 295 sh (25.1), 376 sh (4.73)
3 263 (104.0), 295 (90.5), 306 (89.6), 336 (69.9), 385 sh (11.8)
4 231 sh (87.1), 261 (84.8), 312 (76.7), 336 (74.7)

a In CH3CN solution at rt; sh is the shoulder.

The ligand L exhibited a broad and relatively intense absorption band and two shoul-
ders between 280 and 340 nm in the UV region. The first one was centered at about 336 nm,
with ε = 68,800 M−1 cm−1 and one of the shoulders at 318 nm (ε = 65,200 M−1 cm−1). These
two lowest-energy bands are attributed to the amine N-to ring CT transitions. The second
shoulder, located at a higher energy at ~286 nm (ε = 45,400 M−1 cm−1), was assigned to
the pyridine-based ligand-centered (LC) transition. These features were also observed in
previous studies of 2,2′-dypyridylamine derivatives [26,27].

The Ir(III) complexes 1–3 presented several absorption bands in the UV region (Figure 2).
The most intense absorption bands were found between 245 to 265 nm, in which the molar
absorption coefficient of the binuclear complex 3 was twice as intense (ε = 104,000 M−1 cm−1)
as the mononuclear complexes 1 and 2 (ε < 49,000 M−1 cm−1). The absorption behavior of
[Ir(ppy)2(DPA)][OTf] (1), as well as its luminescence properties (vide infra), were almost
identical to what was already reported for the analogous [Ir(ppy)2(DPA)][PF6], with a
hexafluorophosphate counter ion [23]. Additionally, complex 3 showed another three
intense and defined absorption bands at 295, 306, and 336 nm (ε > 69,000 M−1 cm−1),
while the mononuclear complexes exhibited only two shoulders between 260 and 300 nm
(ε < 42,000 M−1 cm−1). These absorption bands are associated with the spin-allowed π-π*
ligand-centered (LC) transitions from dipyridylamine and phenylpyridine ligands [25,26,28–30].
For all the complexes, a weak and broad absorption band above 370 nm was observed,
which is attributed to metal-to-ligand charge transfer (MLCT) transitions, along with ligand-
centered (LC) contribution from the ligands. In addition to these transitions, a long tail
extended to the visible region can be attributed to the strong spin-orbit coupling (SOC)
applied by the Ir atom, which can cause the direct singlet–triplet transition [2,6,23,31–33].
The Rh(III) derivative 4 displayed a similar envelope of absorption bands, with the obvious
absence of the low energy singlet–triplet direct absorption above 380 nm [34].
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2.4. Luminescence Properties

The photoluminescence properties of the bridging ligand L and complexes 1–4 were
investigated in de-aerated and air-equilibrated CH3CN solution at room temperature
(298 K) and in CH3OH:C2H5OH (1:4) glassy solution at 77 K. The normalized emission
spectra of the ligand and complexes at 298 K are shown in Figure 3, and the spectra at 77 K
are given in Figure 4. The emission maxima (λmax), photoluminescence quantum yields
(φ), and lifetimes (τ) are collected in Table 2.
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Figure 4. Normalized emission spectra of bridging ligand L and complexes 1–4 in CH3OH: C2H5OH
(1:4) glassy solution at 77 K.
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Table 2. Emission data.

rt 77 K

λmax, nm a φ (%) a τ, ns a λmax, nm b τ, µs b

L 395 73.7 (64.0) 1.6 (1.4) 362 (fluo)
494 (phos)

0.7 × 10−3

(fluo)
722 × 103

(phos)
1 481 11.0 (1.2) 510 (55) 473 4.8
2 478 0.3 (0.2) 20 (17) 470 5.2
3 478 0.6 (0.3) 115 (63) 488 5.5 × 103

4 - - - 464 93
a In de-aerated and air-equilibrated CH3CN solution at rt. b In CH3OH:C2H5OH (1:4) glassy solution at 77 K.

The ligand L exhibits at room temperature a relatively broad and unstructured emis-
sion band, centerd at 395 nm (Figure 3). Notably, L presents a high quantum yield in
de-aerated solution (φ = 73.7%), moderately quenched by oxygen in aerated solution
(φ = 64.0%), and shortens lifetimes on the nanosecond time scale, even when the oxygen is
removed (τ = 1.6 ns in de-aerated and 1.4 ns in aerated solution, respectively). This behavior,
which can be attributed to the fluorescence of the 2,2′-pyridylamine units of the molecule, is
in line with previous studies of parent compounds and their use as blue-emitting active ma-
terial in OLED devices, as has been suggested [26,35–40]. The fluorescence spectrum of L in
CH3OH: C2H5OH glassy solution at 77 K is slightly more structured and hypsochromically
shifted about 2300 cm−1, with respect to that at room temperature, and presents a shorter
lifetime, τ = 0.7 ns (Figure 4, Table 2). Interestingly, under the same conditions and under
pulsed excitation light in time-gated detection mode, the phosphorescence emission of the
ligand L has also been detected, displaying a structured emission profile with a maximum
at about 494 nm, ca. 20,250 cm−1 (Figure 4).

The Ir(III) complexes 1–3 presented in the de-aerated CH3CN solution at room tem-
perature a significant red-shift of the emission, in comparison to the free ligand (Figure 3),
exhibiting broad, structured, and almost identical emission spectra, with λmax at about
480 nm, a second band at ~520 nm, and a shoulder around 550 nm. The novel dinuclear
Rh(III) complex [Rh (ppy)2(L)Rh(ppy)2][OTf]2 (4) displayed a non-emission behavior. We
also note that the mononuclear complex containing dipyridylamine [Rh(ppy)2(DPA)][PF6]
was also found to be non-emissive [34]. The vibronic structure observed indicates a pre-
dominantly 3LC π-π* character of the emissive excited state, rather than 3MLCT or 3LLCT
characters. This is in line with the photoluminescence behavior of other cyclometalated
Ir(III) complexes [29,30,41–46]. However, differences in the photoluminescence quantum
yields and lifetimes can be seen between them in Table 2. In de-aerated CH3CN solutions,
the mononuclear complex 1 exhibited a remarkably higher quantum yield and longer life-
time, φ = 11.0% and τ = 510 ns, than the complex 2 (φ = 0.3%, τ = 20 ns). This observation
indicates that adding a phenyl unit with an iodine atom to the ligand 2,2′-diphenylamine
has a detrimental effect on the quantum yield, and the excited-state lifetime concomitantly
decreases. The same reasoning can be applied to the binuclear complex 3, where its emis-
sion properties (φ = 0.6%, τ = 110 ns) were affected by the increment of the conjugation of
the ligand and the role that plays the formed bridge. Similarly, Williams and co-workers
had observed that the complex [Ir(L4)2]3+ [43], and the binuclear complex [Ir(tpy)(µ-tpy-
φ-φ-mtbpy)Ir-(dpyx)]4+ [47], presented short lifetimes and low quantum yields. This was
attributed to an increment of the conjugation by introducing a bis-mesityl group into the
terpyridine ligand for the former, and to an extended bridging ligand for the latter complex.
These results have already been seen in other families of binuclear Ir(III) complexes, where
lower quantum yields than their related mononuclear derivatives were shown, due to the
nature of the bridging ligands and the length of the spacer [1,48–53]. In our case, the lower
quantum yield and shorter emission lifetimes suggest an enhancement of the non-radiative
decay pathways.
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In air-equilibrated CH3CN solutions, the three Ir(III) complexes 1–3 were less emissive,
the quantum yield being about two times lower than in de-aerated solutions. At the same
time, the emission lifetimes were shortened; complex 1 presents a 10-fold decrease, while
complex 3 displays a smaller quenching by oxygen, ca. a 2-fold decrease. The phospho-
rescence emission of complex 2, bearing the phenyl-iodine group in the dipyridylamine
ligand, was only slightly quenched by oxygen, suggesting that the excited triplet-state de-
activation back to the ground singlet-state was dominated by the non-radiative intersystem
crossing processes promoted by the strong spin-orbit coupling induced by the iodine atom
(ζ = 5069 cm−1), rather than the triplet–triplet energy transfer to the molecular oxygen [54].

All investigated complexes 1–4 and the bridging ligand L were luminescent in CH3OH:
C2H5OH glassy solution at 77 K. The three Ir(III) complexes 1–3 showed emission spectra
that were much more structured, with respect to the emission in the CH3CN solution at
298 K. As observed in Figure 4, the emission bands of the Ir(III) complexes were similar
to the phosphorescence emission of the ligand L, suggesting that the emissive excited
states of the complexes originated from the dipyridylamine unit of the ligand. Nonetheless,
the emission spectra of the binuclear complex 3 were more similar to that of the ligand
L and exhibited a maximum emission at 488 nm, with small rigidochromic blue-shift
(6 nm) with respect to that of the ligand L, and was red-shifted (~10 nm) compared
to its emission in CH3CN solution at 298 K. On the other hand, the two mononuclear
complexes, 1 and 2, exhibited an emission maximum at about 470 nm, and a small blue-
shift was observed, around 8 nm, with respect to their emission in CH3CN at 298 K. These
observations can confirm that the 3LC π-π* character is predominant in the emissive excited
state [11,29,31,41,55]. The Rh(III) derivative 4 shows a structured emission, blue-shifted
with respect to that of the corresponding Ir(III) derivative 3 by ca. 1060 cm−1. In this case
the emission can also be attributed to 3LC excited states, as for the Ir(III) analogue 3 [56,57].

The trend of emission lifetimes of the Ir(III) complexes 1–3 differed substantially from
298 K to 77 K (Table 2). In a glassy solution at 77 K, longer mono-exponential lifetimes were
observed. This feature is commonly observed in Ir(III) ortho-metalated complexes, as the
rigid matrix and the low temperature usually hinder the non-radiative mechanisms, thus
increasing the luminescence intensity and the relevant excited-state lifetime [1]. While the
mononuclear complexes exhibited lifetimes in the range of the microseconds, τ = 4.8 µs
for 1 and τ = 5.2 µs for 2, which are in line with previous findings of other mononuclear
Ir(III) complexes [29,31,41,55,58–61], the binuclear complex 3 showed significantly longer
emission lifetimes, in the range of the milliseconds: τ = 5.5 ms. As mentioned before, the
extended conjugation and the presence of substituents on the ligands play a significant role
in the photophysics of the complexes. It should be noted that relatively long lifetimes in the
microseconds scale have been found in other families of binuclear Ir(III) complexes with
different bridging ligands [31,47–49,62–65], but excited state lifetimes in the millisecond
scale are relatively rare for Ir(III) complexes [1].

3. Conclusions

In this paper, we described the synthesis of some mononuclear cyclometalated iridium
complexes (1–2) containing dipyridylamine ligands. The x-ray molecular structure of
complex 2 is reported and confirms the formation of the target molecule. Moreover,
we successfully extended our synthetic methodology and prepared two rare binuclear
cyclometalated iridium (3) and rhodium (4) complexes featuring two dipyridylamine motifs.
These binuclear complexes represent the first examples of these types of compounds. The
Ir(III) complexes 1–3 displayed a blue phosphorescence at about 480 nm, originating from
3LC excited states mainly located on the bridging ligand bearing the dipyridylamine moiety.
The Rh(III) complex 4 was only luminescent in glassy solution at 77 K, with the emission
originating from 3LC excited states as well. The dinuclear complex 3 presented an unusually
long excited-state lifetime, in the millisecond range, for this kind of complex. Notably, in
the bridging ligand L, the fluorescence and phosphorescence emissions were both observed.
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The dipyridylamine ligand evidenced a strong influence on the photophysical properties of
the iridium complexes.

4. Materials and Methods

All solvents used were of reagent grade or better. Deuterated solvents and commer-
cially available reagents were used as received, unless otherwise specified. The 1H-NMR
spectra were recorded on Bruker Avance-400 and Avance-Neo 500 spectrometers. Chemical
shifts were reported in the ppm downfield from tetramethylsilane and refer to the residual
hydrogen signal of deuterated solvents (CHD2NO2 at 4.33 ppm, CHDCl2 at 5.32 ppm)
and the residual solvent carbon signal (CD3NO2 at 61.4 ppm, CD2Cl2 at 53.5 ppm) for 13C
NMR. IR spectra were recorded on a Bruker Tensor 27 equipped with a Harrick ATR. Lig-
and 3,5-Bis[4-(2,2′-dipyridylamino)phenylethynyl] toluene (L) was prepared, as reported
previously by our group [66].

[Ir(ppy)2(DPA)][OTf] (1). [Ir(ppy)2(µ-Cl)]2 (75 mg, 0.07 mmol) and AgOTf (39 mg,
0.15 mmol.) were introduced into a Schlenk tube containing acetone (20 mL), and the
mixture was refluxed for 2 h. Then the suspension was filtered through celite to remove the
AgCl precipitate and the filtrate was collected and dried under vacuum. To this was added,
via a cannula, a solution of dipyridylamine (DPA) (26 mg, 0.15 mmol) in dichloroethane
(10 mL). The reaction mixture was heated to reflux with stirring for 12 h and then cooled
to room temperature. The solution was concentrated under vacuum, and the subsequent
addition of diethyl ether (50 mL) created a yellow precipitate. The resulting precipitate
was collected by filtration, washed with ether (2 × 10 mL), and dried under a vacuum to
make complex 1 a yellow powder (102 mg, 83%). The 1H NMR (500 MHz, CD2Cl2) δ (ppm)
found: 9.92 (s, 1H, NH), 8.21 (ddd, J = 5.9; 1.5; 0.7 Hz, 2H, H2), 7.95 (br d, J = 8.2 Hz, 2H,
H5), 7.84 (ddd, J = 8.2; 7.5; 1.5 Hz, 2H, H4), 7.70–7.65 (m, 4H, H8 and H15), 7.60–7.57 (m,
4H, H13 and H16), 7.15 (ddd, J = 7.5; 5.9; 1.5 Hz, 2H, H3), 6.98 (ddd, J = 7.8; 7.3; 1.2 Hz, 2H,
H9), 6.84 (td, J = 7.5; 1.4 Hz, 2H, H10), 6.62 (ddd, J = 7.2; 5.9; 1.4 Hz, 2H, H14), 6.17 (br. d,
J = 7.5 Hz, 2H, H11). The 13C NMR (125 MHz, CD2Cl2) δ (ppm): 167.7 (C6), 151.7 (C17),
150.0 (C12), 149.6 (C13), 149.5 (C2), 144.0 (C7), 139.3 (C15), 138.2 (C4), 131.8 (C11), 130.4
(C10), 124.8 (C8), 123.0 (C3), 122.4 (C9), 119.8 (C5), 119.0 (C14), 116.3 (C16). The results
were calculated for C33H25F3N5O3IrS.H2O: C 47.25; H 3.24; N 8.35%. We found: C 47.35; H
3.22; N 8.22%. IR, v(CF3SO3

−) 1030 cm−1; 1251 cm−1.
[Ir(ppy)2(DPA-PhI)][OTf] (2). This compound was prepared in a similar way to

that described for [Ir(ppy)2(DPA)][OTf], but using [Ir(ppy)2(µ-Cl)]2 (100 mg, 0.092 mmol),
AgOTf (52 mg, 0.20 mmol.) and ligand 4-(2,2′-Dipyridylamino)-phenyl iodide (DPA-PhI)
(75 mg, 0.20 mmol.). The target compound was isolated as a yellow powder (164 mg,
81%). The 1H NMR (500 MHz, CD2Cl2) δ (ppm) found: 7.97 (ddd, J = 8.2; 1.3; 0.8 Hz, 2H,
H5), 7.94–7.90 (m, 4H, H13 and H15), 7.88 (ddd, J = 5.8; 1.5; 0.8 Hz, 2H, H2), 7.82 (ddd,
J = 8.2; 7.5; 1.5 Hz, 2H, H4), 7.70 (dd, J = 7.8; 1.5 Hz, 2H, H8), 7.67 (d, J = 9.0 Hz, 2H,
H21), 7.58 (dd, J = 8.9; 1.3 Hz, 2H, H16), 7.07 (ddd, J = 7.2; 5.9; 1.3 Hz, 2H, H14), 7.02 (ddd,
J = 7.8; 7.3; 1.2 Hz, 2H, H9), 6.90–6.86 (m, 4H, H3 and H10), 6.65 (d, J = 9.0 Hz, 2H, H20),
6.21 (ddd, J = 7.6; 1.2; 0.4 Hz, 2H, H11). The 13C NMR (125 MHz, CD2Cl2) δ (ppm) found:
167.6 (C6), 153.5 (C17), 151.5 (C13), 149.7 (C2), 148.1 (C12), 143.9 (C7), 143.2 (C19), 140.7
(C15), 139.4 (C21), 138.5 (C4), 131.7 (C11), 130.5 (C10), 125.0 (C8), 123.7 (C14), 123.2 (C16),
122.9 (C9), 122.8 (C3), 121.9 (C20), 120.0 (C5), 88.8 (C22). The results were calculated for
C39H28F3IN5O3IrS.H2O: C 45.00; H 2.91; N 6.73%. We found: C 44.68; H 2.88; N 6.66%.
IR(ATR), v(CF3SO3

−) 1030 cm−1; 1251 cm−1.
[{Ir(ppy)2}2(L)][OTf]2 (3). Complex 3 was obtained following a similar procedure

as described above, but starting with the following amounts [Ir(ppy)2(µ-Cl)]2 (65.0 mg,
0.06 mmol), AgOTf (35 mg, 0.13 mmol.), and 3,5-Bis[4-(2,2′-dipyridylamino)phenylethynyl]
toluene (L) (40 mg, 0.06 mmol). Compound 3 was obtained as a yellow powder (114 mg,
95%). The 1H NMR (400 MHz, CD3NO2) δ (ppm) found: 8.12–8.06 (m, 12H, H5, H13 and
H15), 8.02 (d, J = 5.9 Hz, 4H, H2), 7.95–7.92 (m, 4H, H16), 7.88 (td, J = 8.0; 1.5 Hz, 4H, H4),
7.79 (dd, J = 7.8; 1.0 Hz, 4H, H8), 7.54 (br.s, 1H, H26), 7.49 (d, J = 9.0 Hz, 4H, H21), 7.43 (br.
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S, 2H, H27), 7.27–7.22 (m, 4H, H14), 7.00 (td, J = 7.8; 1.1 Hz, 4H, H9), 6.93 (d, J = 9.0 Hz,
4H, H20), 6.90–6.84 (m, 8H, H3 and H10), 6.32 (dd, J = 7.8; 1.1 Hz, 4H, H11), 2.41 (s, 3H,
H29). The 13C NMR (100 MHz, CD3NO2)) δ (ppm) found: 167.3 (C6), 153.5 (C17), 151.5
(C13), 150.3 (C2), 148.4 (C12), 144.6 (C7), 144.5 (C19), 140.9 (C15), 139.5 (C28), 138.4 (C4),
133.0 (C21), 131.9 (C27), 131.8 (C11), 131.0 (C26), 130.0 (C10), 124.8 (C16), 124.7 (C8), 124.4
(C14), 123.5 (C25), 122.8 (C3), 122.7 (C9), 119.8 (C5), 117.5 (C22), 116.9 (C20), 88.9 (C23), 88.4
(C24), 19.8 (C29). IR(ATR), v(CF3SO3

−) 1032 cm−1; 1253 cm−1. The ES-HRMS (m/z) was:
[{Ir(ppy)2}2(L)]2+:816.2203; the result found was: 816.2208.

The results were Calculated for C89H62F6N10O6IrS2.C2H4Cl2: C 53.87; H3.28; N 6.90%.
We found: C 53.90; H 3.14; N 7.13. IR,v(CF3SO3

−) 1030 cm−1; 1251 cm−1.
[{Rh(ppy)2}2(L)][OTf]2 (4). This compound was prepared in a similar procedure to

that described for [Ir(ppy)2(DPA)][OTf], but using the following materials: [Rh(ppy)2(µ-
Cl)]2 (53 mg, 0.06 mmol), AgOTf (34 mg, 0.13 mmol.), and 3,5-Bis[4-(2,2′-dipyridylamino)
phenylethynyl]toluene (L) (40 mg, 0.06 mmol). Compound 4 was obtained as an off-white
powder (78 mg, 71%). The 1H NMR (400 MHz, CD3NO2) δ (ppm) found: 8.14–8.08 (m,
8H, H5 and H13), 8.08–8.02 (m, 8H, H2 and H15), 7.96 (ddd, J = 8.1; 7.5; 1.5 Hz, 4H, H4),
7.86–7.80 (m, 8H, H8 and H16), 7.54 (br.s, 1H, H26), 7.50 (d, J = 9.0 Hz, 4H, H21), 7.43 (br. s,
2H, H27), 7.25 (ddd, J = 7.2; 5.7; 1.2 Hz, 4H, H14), 7.08 (td, J = 7.6; 1.2 Hz, 4H, H9), 6.98–6.90
(m, 12H, H3, H10 and H20), 6.37 (d, J = 7.6 Hz, 4H, H11), 2.41 (s, 3H, H29). The 13C NMR
(100 MHz, CD3NO2)) δ (ppm) found: 166.3 (d, JCRh = 33.0 Hz, C12), 164.6 (C6), 154.0 (C17),
151.2 (C13), 150.3 (C2), 144.5 (C19), 144.4 (C7), 141.0 (C15), 139.5 (C28), 138.6 (C4), 133.1
(C21), 132.9 (C11), 131.9 (C27), 131.0 (C26), 129.9 (C10), 124.6 (C8), 124.1 (C16), 123.5 (C9,
C14 and C25), 122.9 (C3), 120.0 (C5), 117.75 (C20), 117.66 (C22), 88.9 (C23), 88.4 (C24), 19.8
(C29). The results were Calculated for C89H62F6N10O6Rh2S2.3/2C2H4Cl2:C 58.16; H 3.61;
N 7.37%. We found: C 58.18; H 3.32; N 7.45%. IR,v(CF3SO3

−) 1030 cm−1; 1251 cm−1. The
ES-HRMS (m/z) was: [{Rh(ppy)2}2(L)]2+:726.1629; we found: 726.1628.

X-Ray crystal structure determination. A single crystal was selected, mounted, and
transferred into a cold nitrogen gas stream. Intensity data was collected with a Bruker
Kappa-APEX2 system, using fine-focus sealed tube Mo-Kα radiation. Unit-cell parameters
determination, data collection strategy, integration, and absorption correction were carried
out with the Bruker APEX2 suite of programs. The structure was solved with SIR97 and
refined anisotropically by full-matrix least-squares methods with SHELXL, using WinGX.
The structure was deposited at the Cambridge Crystallographic Data Centre with number
CCDC 2171075 and can be obtained free of charge via www.ccdc.cam.ac.uk (accessed on 8
September 2022).

Crystal data for 2: C39H32F3IIrN5O5S, triclinic P -1, a = 9.3487(3) Å, b = 14.9683(5)
Å, c = 15.8197(5) Å, α = 95.105(2)◦, β = 106.778(1)◦, γ = 105.650(1)◦, V = 2007.20(11) Å3,
Z = 2, green bar 0.5 × 0.1 × 0.05 mm3, µ = 4.209 mm−1, min/max transmission = 0.42/0.49,
T= 200(1) K, λ = 0.71073 Å, θ range = 2.16◦ to 30.54◦, 59351 reflections measured, 12284
independent, Rint = 0.0193, completeness = 0.999, 514 parameters, 0 restraints, final R
indices R1 [I > 2σ(I)] = 0.0310 and wR2 (all data) = 0.0885, GOF on F2 = 1.111, and largest
difference peak/hole = 2.70/−1.13 e·Å−3.

Photophysical measurements. All solvents used for photophysical studies were of
spectroscopic grade and were used without further purification. Square optical Suprasil
Quartz (QS) cuvettes of 1 cm path length were used for the absorption and emission
measurements at room temperature. Luminescence measurements of CH3OH:C2H5OH
(1:4) frozen glassy solutions at 77 K were performed in quartz capillary tubes immersed in
liquid nitrogen, hosted within a homemade quartz cold finger Dewar.

The absorption spectra of dilute solutions were obtained by using a Perkin Elmer
Lambda 950 UV/VIS/NIR spectrophotometer. The molar absorption coefficients (ε) were
calculated by applying the Lambert–Beer law to low absorbance spectra (A < 1) and
recorded at successive dilutions.

Steady-state photoluminescence spectra were measured in right angle mode using
an Edinburgh FLS920 fluorimeter, equipped with a Xenon arc lamp and a Hamamatsu

www.ccdc.cam.ac.uk
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R928P Peltier-cooled photomultiplier tube. The concentration of sample solutions was
adjusted to obtain absorption values of A < 0.1 at the excitation wavelength. The solutions
were de-aerated by bubbling argon for at least 20 min in custom-made gas-tight cuvettes.
All emission spectra were corrected for the wavelength-dependent phototube response
between 200 and 900 nm, using a calibration curve provided by the manufacturer. The
luminescence quantum yields in the solution were evaluated by comparing the wavelength-
integrated intensities of corrected spectra, with reference to [Ru(bpy)3]Cl2 (φr = 0.040 in
air-equilibrated H2O) and quinine sulphate (φr = 0.53 in air-equilibrated H2SO4 0.1 N) stan-
dards [54]. The phosphorescence spectra of the ligand in solvent-diluted glassy solutions at
77 K were recorded in gated detection mode on the same Edinburgh fluorimeter equipped
with a pulsed Xe lamp.

The luminescence lifetimes were obtained using a TCSPC apparatus (HORIBA) equipped
with a TBX Picosecond photon detection module and NanoLED/SpectraLED pulsed excita-
tion sources. The analysis of luminescence decay profiles against time was accomplished
using the Decay Analysis Software DAS v6.5 (HORIBA).

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27186003/s1, Figures S1–S8. 1H and 13C NMR
spectra of complexes 1–4 and Figure S9. ESI-MS spectra of complexes 3 and 4.
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