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STRATIFYING SYSTEMS AND g-VECTORS

OCTAVIO MENDOZA, CORINA SÁENZ AND HIPOLITO TREFFINGER

Abstract. In this paper we study the Cartan matrix associated to the Ext-projective strat-
ifying system induced by a basic and τ -rigid object M in mod (A) by means of the g-vectors
of the indecomposable direct summands of M . In particular we show that the Cartan group
of a stratifying system associated to a τ -rigid module can be calculated directly using these
vectors. Moreover we characterise the stratifying systems coming from τ -rigid modules that
have a diagonal Cartan matrix.

1. Introduction

The notion of an Ext-injective stratifying system was introduced in [11] as an axiomatisation
of the standard objects of the standardly stratified algebras defined in [9]. It was quickly realised
that Ext-injective stratifying systems are equivalent to the notions of Ext-projective stratifying
systems [17] and what is now known simply as stratifying systems [16]. Since then, stratifying
systems were intensively studied in [10, 23, 15, 20, 21, 24, 13]. Throughout this paper, A will
denote to a basic finite dimensional k-algebra over an algebraically closed filed k. We will work
on the abelian category mod(A) of all the finitely generated left A-modules. Given a positive
integer t, we denote by [1, t] the set of all the natural numbers between 1 and t, equipped with
the natural order ≤ on the set [1, t].

The notion of Ext-projective stratifying system in mod(A) is defined in [17]. We recall this
notion as follows.

Definition 1.1. [17, Definition 2.1] An Ext-projective stratifying system in mod(A), of size t, is
a triple (Θ, Q,≤), where Θ := {Θ(i)}ti=1 is a family of non-zero A-modules, Q := {Q(i)}ti=1 is a
family of indecomposable A-modules and ≤ is the natural order on [1, t] satisfying the following
conditions:

(a) HomA(Θ(j),Θ(i)) = 0 for j > i;

(b) for each i ∈ [1, t], there is an exact sequence 0 → U(i)
αi−→ Q(i)

βi−→ Θ(i) → 0 in mod (A)
such that U(i) is filtered by the set {Θ(j) : j > i};

(c) Ext1A(Q,X) = 0 where Q :=
⊕t

i=1 Q(i) and X is an A-module filtered by {Θ(i)}ti=1.

Although it has been shown that stratifying systems are objects having very nice properties,
until very recently there was no systematic method to construct stratifying systems in the module
category of a given algebra A. This problem has been addressed in [22] and [25] using tools from
τ -tilting theory and higher homological algebra, respectively.

It was shown in [18] that it can be associated to every Ext-projective stratifying system
(Θ, Q,≤) two invariants CΘ and GΘ, known as the Cartan matrix and the Cartan group of Θ,
respectively (see Section 3). In this paper, we study the Cartan matrix C∆M

and the Cartan
group G∆M

for a stratifying system ∆M associated to a (basic) τ -rigid module M ∈ mod(A). In
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particular, we show that the matrix C∆M
can be obtained using the g-matrix GM (formed by the

g-vectors of the indecomposable direct summands of M), the M -standard matrix SM (formed
by the dimension vectors of the M -standard modules ∆M ) and the M -residual matrix RM (see
Section 5). This result can be summarized as follows, for the complete version, see Theorem 5.3
and Proposition 5.4.

Theorem 1.2. Let M ∈ mod (A) be basic and τ -rigid with a TF-admissible decomposition
M =

⊕t
i=1 Mi, and let ({∆M}ti=1, Q,≤) be its Ext-projective stratifying system. Then,

C∆M
= (GM )tr SM +RM and |G∆M

| =
t∏

i=1

[(GM )tr SM ]i,i

Moreover, if M is filtered by the family ∆M , then RM = 0 and Q(i) ≃ Mi ∀ i.

Then we apply this theorem to characterise algebras A and stratifying systems in mod(A)
coming from τ -tilting modules having a diagonal Cartan matrix, generalising [18, Theorem 5.9].
In what follows, we summarize this result. For more details, see Theorem 5.7.

Theorem 1.3. For a basic τ -tilting module M ∈ mod (A) with a TF-admissible decomposition
M =

⊕n
i=1 Mi such that M ∈ F(∆M ), the following statements are equivalent.

(a) The matrix C∆M
is diagonal.

(b) HomA(Mi,Mj) = 0 for i < j.
(c) HomA(Mi,∆M (j)) = 0 for i < j.

Moreover, if one of the above conditions holds true, then M ≃ AA and A is a weakly triangular
algebra.

The paper is organised as follows. In Section 2 we establish the setting and notation in which
we work and we recall some basic representation theory. Then, in Section 3 we recall some theory
on stratifying systems and we prove some preparatory results. Later, in Section 4 we give a brief
overview of the necessary results on τ -tilting theory that we need in Section 5 where we state
and prove the main results of this paper. Finally, in Section 6 we give some examples illustrating
Theorem 5.3 and we comment about the relationship between stratifying systems and stability
conditions.
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2. Setting and background

For M ∈ mod (A), we denote by rk(M) the number of pairwise non-isomorphic indecompos-
able direct summands of M. Finally, we say that M ∈ mod (A) is basic if there is a decomposition
M =

⊕t
i=1 Mi, with Mi indecomposable for every i and Mi ̸≃ Mj if i ̸= j.

Given an algebra A, we denote by M ↠ N an epimorphism from M to N in mod (A); and
for each M ∈ mod (A), we consider the class

Fac(M) := {X ∈ mod (A) : ∃Mn ↠ X for some n ∈ N}.
Dually, the arrow ↪→ stands for a monomorphism in mod (A), and we have the class

Sub(M) := {X ∈ mod (A) : ∃X ↪→ Mn for some n ∈ N}.

For any subclass X ⊆ mod (A), we have the right Hom-perpendicular complement of X
X⊥ := {M ∈ mod (A) : HomA(−,M)|X ) = 0}.

Dually, we have the left Hom-perpendicular complement ⊥X of X . For a single element class
X = {M}, we just write M⊥ and ⊥M. It is said that N ∈ mod (A) admits an X -filtration if
there is a chain of submodules 0 = M0 ⊆ M1 ⊆ . . . ⊆ Mn−1 ⊆ Mn = M satisfying that each
quotient Mi/Mi−1 ≃ Xi ∈ X . The class of all the N ∈ mod (A) which admits an X -filtration
will be denoted by F(X ).

Let X ⊆ mod (A) and M ∈ mod (A). A morphism f : X → M in mod (A) is called X -precover
(or right X -approximation) of M if X ∈ X and HomA(X

′, f) : HomA(X
′, X) → HomA(X

′,M) is
surjective, for any X ′ ∈ X . Moreover, if the equality fh = f holds true only for an automorphism
h : X → X, it is said that the X -precover is an X -cover. The class X is precovering (or
contravariantly finite) if any N ∈ mod (A) admits an X -precover. Dually, we have the notions of
X -preenvelope (or left X -approximation), X -envelope and preenveloping (or covariantly finite)
class. If X is precovering and preenveloping, it is said that X is functorially finite.

We recall that a pair (X ,Y) of full subcategories in mod (A) is a torsion pair if X = ⊥Y and
Y = X⊥. Given a torsion pair (X ,Y) in mod (A), it is said that X is a torsion class and Y is
a torsion free class. Moreover, in this case, it can be shown that X is closed under quotients
and extensions, while Y is closed under submodules and extensions. It is also well known that,
for every subclass X ⊆ mod (A) which is closed under quotients and extensions, there exists a
subclass Y ⊆ mod (A) such that (X ,Y) is a torsion pair in mod (A). In particular, if X = Fac(M)
for some M ∈ mod (A), then Y = M⊥.

It is also well known that each torsion pair (X ,Y) in mod (A) has associated two additive
functors t, f : mod (A) → mod (A). The torsion functor t is a subfunctor of the identity functor
1mod (A), and the torsion free functor f is equal to the quotient functor 1/t. Moreover, for every
M ∈ mod (A), there exists the so-called canonical short exact sequence

0 → t(M) → M → f(M) → 0,

where t(M) ∈ X and f(M) ∈ Y and such exact sequence is unique up to isomorphisms.
Let X be a full subcategory of mod (A). It is said that X ∈ X is Ext-projective in X if

Ext1A(X,−)|X = 0. Moreover, if X is functorially finite and a torsion class, it is well known that
there are only finitely many (up to isomorphisms) indecomposable Ext-projective modules in X
and we denote by P(X ) their direct sum.

3. Stratifying systems

The concept of stratifying system for module categories was first introduced in [11], and further
studied in [16, 17]. The original definition is stated in Definition 3.2, but it was shown in [16]
that this definition is equivalent to the following one.
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Definition 3.1. [16, Characterisation 1.6] A stratifying system of size t, in mod (A), consists of
a pair (Θ,≤), where Θ := {Θ(i)}ti=1 is a family of indecomposable objects in mod (A) and ≤ is
the natural order on the set [1, t] := {1, 2, . . . , t} satisfying the following conditions:

(a) HomA(Θ(j),Θ(i)) = 0 if j > i;
(b) Ext1A(Θ(i),Θ(j)) = 0 if j ≥ i.

Let (Θ,≤) be a stratifying system in mod (A). The theory of stratifiying systems, developed
in [11, 16, 17], shows that F(Θ) is equivalent to the full subcategory F(∆) of mod (B), where
B is a standardly stratified algebra and F(∆) is the category of the ∆-filtered objects, of key
importance in the theory of quasi-hereditary and standardly stratified algebras. In order to
determine the standardly stratified algebra B, it is necessary to consider the so-called Ext-
projective and Ext-injective stratifying systems. The notion of Ext-projective stratifying system
was given in Definition 1.1.

Definition 3.2. [11, Definition 1.1] An Ext-injective stratifying system in mod(A), of size t, is
a triple (Θ, Y ,≤), where Θ := {Θ(i)}ti=1 is a family of non-zero A-modules, Y := {Y (i)}ti=1 is a
family of indecomposable A-modules and ≤ is the natural order on [1, t] satisfying the following
conditions:

(a) HomA(Θ(j),Θ(i)) = 0 for j > i;

(b) for each i ∈ [1, t], there is an exact sequence 0 → Θ(i)
λi−→ Y (i)

γi−→ Z(i) → 0 in mod (A)
such that Z(i) ∈ F(Θ(j) : j < i);

(c) Ext1A(−, Y )|F(Θ) = 0, for Y :=
⊕t

i=1 Y (i).

Given a stratifying system (Θ,≤), it is well known [11, 16, 17] that there exist a unique (up to
isomorphism) Ext-projective stratifying system (Θ, Q,≤) and an Ext-injective stratifying system
(Θ, Y ,≤). Furthermore, for a given Ext-projective stratifying system (Θ, Q,≤), we have that the
pair (Θ,≤) is a stratifying system. Moreover the same statement holds true for Ext-injective
stratifying systems.

Let (Θ, {Q(i)}ti=1,≤) be an Ext-projective stratifying system in mod (A). By following [18,
Section 4], we consider the Θ-Cartan matrix CΘ ∈ Matt×t(Z), naturally associated to this system,
which is defined as follows: the (i, j)-coordinate of CΘ is [CΘ]i,j := dimk HomA(Q(i),Θ(j)).

The main idea in [18] behind the introduction of the Cartan matrix CΘ, for an Ext-projective
stratifying system (Θ, {Q(i)}ti=1,≤), is that we can use it to construct a finite abelian group GΘ,
known as the Cartan Group of Θ which is defined as GΘ := CoKer(CΘ), where the matrix CΘ

is identified with the Z-linear map Zt → Zt, X 7→ CΘ X. It is shown in [18], that |GΘ| = 1 if
and only if the standardly stratified algebra EndA(Q)op is quasi-hereditary. Then the size |GΘ|
of GΘ give us a measure of how far is EndA(Q)op from being quasi-hereditary.

Lemma 3.3. [17, 18, 19] Let (Θ, {Q(i)}ti=1,≤) be an Ext-projective stratifying system in mod (A).
Then, CΘ is an upper triangular matrix and HomA(Q(i),Θ(i)) ≃ EndA(Θ(i)) ∀ i ∈ [1, t]. More-
over |GΘ| =

∏n
i=1[CΘ]i,i.

Proof. From [19, Lemma 2.5 (b)], we have that the matrix CΘ is upper triangular. On the
other hand, for each i ∈ [1, t], the isomorphism HomA(Q(i),Θ(i)) ≃ EndA(Θ(i)) is given by [17,
Lemma 2.6 (b)]. Finally, the equality |GΘ| =

∏n
i=1[CΘ]i,i is obtained from [18, Theorem 4.2

a.] □

Let (Θ, {Q(i)}ti=1,≤) be an Ext-projective stratifying system in mod (A). In what follows, for
each i ∈ [1, t], we consider the exact sequence ηi : 0 → U(i)

αi−→ Q(i)
βi−→ Θ(i) → 0 associated to

each Θ(i), see Definition 1.1 (b), and the map

∂i,j : HomA(U(i),Θ(j)) → Ext1A(Θ(i),Θ(j)), f 7→ f · ηi,
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where f · ηi is the push-out of f and ηi.

Proposition 3.4. For an Ext-projective stratifying system (Θ, {Q(i)}ti=1,≤) in mod (A), the
following statements are equivalent.

(a) The matrix CΘ is diagonal.
(b) HomA(Q(i), Q(j)) = 0 for i < j.
(c) HomA(Q(i),Θ(j)) = 0 for i < j.
(d) For i < j, we have that HomA(Θ(i),Θ(j)) = 0 and

∂i,j : HomA(U(i),Θ(j)) → Ext1A(Θ(i),Θ(j)), f 7→ f · ηi
is an isomorphism.

Moreover, if one of the above conditions holds true, then HomA(Q(i), U(j)) = 0 for i < j.

Proof. (a) ⇔ (c): It follows from Lemma 3.3.
(b) ⇒ (c): Let HomA(Q(i), Q(j)) = 0 for i < j. We prove now that HomA(Q(i),Θ(j)) = 0. If

Q(j) = Θ(j) there is nothing to prove. Otherwise, take f : Q(i) → Θ(j) and consider the exact
sequence

ηj : 0 → U(j)
αj−→ Q(j)

βj−→ Θ(j) → 0

associated to Θ(j), where U(j) is nonzero and U(j) ∈ F(Θ(k) : k > j). Since Q(i) is Ext-
projective in F(Θ), there exist f ′ : Q(i) → Q(j) such that f ′βj = f . By hypothesis, f ′ = 0.
Hence f = 0.

(c) ⇒ (b): Let HomA(Q(i),Θ(j)) = 0 for i < j. We carry on the proof by reverse induction on
j. If j = n then Θ(n) = Q(n) and thus (b) follows. Therefore, we can assume that j < n. Let us
prove that HomA(Q(i), Q(j)) = 0. In order to do that, take a map g : Q(i) → Q(j) and consider
the exact sequence ηj . Since gβj = 0, there exist h : Q(i) → U(j) such that αjh = g. Moreover,
since U(j) ∈ F({Θ(k) : k > j}), [17, Proposition 2.10] implies the existence of an exact sequence

0 → N → Q0(U(j))
ϵU(j)−−−→ U(j) → 0

in F(Θ), where Q0(U(j)) ∈ add
(⊕

k>j Q(k)
)
. Once again, by using that Q(i) is Ext-projective

in F(Θ), there exist h′ : Q(i) → Q0(U(j)) such that ϵU(j)h
′ = h. By induction, h′ = 0. Therefore

g = αjϵU(j)h
′ = 0.

(c) ⇔ (d): Let i < j. By applying the functor HomA(−,Θ(j)) to the exact sequence ηi, we
get the following exact sequence

0 → HomA(Θ(i),Θ(j)) → HomA(Q(i),Θ(j)) → HomA(U(i),Θ(j)) → Ext1A(Θ(i),Θ(j)) → 0

Thus, the equivalence between (c) and (d) follows from the above exact sequence.
Finally, assume that (b) holds true. Then, by applying the functor HomA(Q(i),−) to ηj we

get that HomA(Q(i), U(j)) = 0 for i < j.
□

Corollary 3.5. For an Ext-projective stratifying system (Θ, {Q(i)}ti=1,≤) in mod (A), such that
the matrix CΘ is diagonal, the following statements are equivalent.

(a) [U(i) : Θ(j)] = 0 for i < j.
(b) Ext1A(Θ(i),Θ(j)) = 0 ∀ i, j.
(c) Q(i) ≃ Θ(i) as A-modules ∀ i.
(d) U(i) = 0 ∀ i.

Moreover, if one of the above conditions holds true, then F(Θ) = add(Q) and EndA(Q) ≃
×t

i=1 EndA(Q(i)) as k-algebras.
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Proof. By Proposition 3.4, we get that HomA(Θ(i),Θ(j)) = 0 ∀ i ̸= j, and moreover ∂i,j :

HomA(U(i),Θ(j))
≃−→ Ext1A(Θ(i),Θ(j)) for i < j.

(a) ⇒ (b): Let i, j ∈ [1, t]. By [17, Lemma 2.6 (b)], we know that Ext1A(Θ(i),Θ(j)) = 0 for
i ≥ j. Hence, we can assume that i < j. Since U(i) ∈ F(Θ(l) : l > i), by (a) we have that
HomA(U(i),Θ(j)) = 0. Therefore Ext1A(Θ(i),Θ(j)) = 0 for i < j.

(b) ⇒ (c): Let i ∈ [1, t]. Then, by (b), we get that the exact sequence ηi : 0 → U(i)
αi−→

Q(i)
βi−→ Θ(i) → 0 splits. Thus Q(i) ≃ Θ(i) as A-modules since Q(i) and Θ(i) are indecomposable

(see [17, Corollary 2.13]).
(c) ⇒ (d): From (c) and the exact sequence ηi, we have that dimk U(i) = 0 and hence

U(i) = 0.
(d) ⇒ (a): It is trivial.
Finally, If one of the above conditions holds true, then we get that Q(i) ≃ Θ(i) as A-modules

∀ i. Hence HomA(Q(i), Q(j)) = 0 for i ̸= j and thus EndA(Q) ≃ ×t
i=1 EndA(Q(i)) as k-algebras.

□

4. τ-tilting theory

Most of the results of this paper are proven using the tools provided by τ -tilting theory [1].
We now give a brief summary of the definitions and results on τ -tilting theory that will be needed
later. For a broader survey on this topic, the reader is encouraged to see [26].

Definition 4.1. [1, Definition 0.1] Let M ∈ mod (A). If HomA(M, τM) = 0, it is said that M
is τ -rigid. A τ -rigid module M is τ -tilting if rk(M) = rk(AA). A pair (M,P ) is called τ -rigid if
P ∈ mod (A) is projective, M is τ -rigid and HomA(P,M) = 0. Finally, the τ -rigid pair (M,P )
is τ -tilting if rk(M) + rk(P ) = rk(AA).

One of the main features of τ -tilting theory is that all functorially finite torsion classes in
mod (A) can be described by using τ -tilting pairs, as stated in the following result that has been
taken from [1, Theorem 2.7] and [3, Theorem 5.10].

Theorem 4.2. For any algebra A, there is a well defined function
Φ : τ -rig(A) → f-tors(A), M 7→ Fac(M),

from τ -rigid basic pairs to functorially finite torsion classes in mod (A). Moreover, Φ is a bijection
if we restrict it to the class sτ -tilt(A) of τ -tilting pairs, and in this case Φ−1(X ) = P(X ).

In [22], it was shown how to produce a stratifying system from a basic τ -rigid module M ∈
mod (A). We start by recalling the notion of torsion free admissible decomposition.

Definition 4.3. [22, Definition 3.1] Let M ∈ mod (A) be basic and τ -rigid. A decomposition
M =

⊕t
i=1 Mi as the direct sum of indecomposables A-modules is called torsion free admissible

(TF-admissible, for short) if Mi ̸∈ Fac
(⊕

j>i Mj

)
, for every i ∈ [1, t].

The existence of such TF-admissible decompositions is supported by the following proposition
proved in [22].

Proposition 4.4. [22, Proposition 3.2] Every basic and τ -rigid A-module M ∈ mod (A) admits
a TF-admissible decomposition.

The following result, proved in [22], tells us how to build a stratifying system (∆M ,≤) from a
TF-admissible decomposition of M ∈ mod (A). The stratifying system (∆M ,≤) is known as the
M -standard stratifying system associated to this TF-admissible decomposition.
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Theorem 4.5. [22, Theorem 3.4] Let M ∈ mod (A) be a basic and τ -rigid with a TF-admissible
decomposition M =

⊕t
i=1 Mi, and let fk be the torsion free functor associated to the torsion

pair
(
Fac(

⊕
j≥k Mj), (

⊕
j≥k Mj)

⊥
)
. Then, the family ∆M := {∆M (i) := fi+1(Mi)}ti=1 and the

natural order on [1, t] form a stratifying system in mod (A) of size t.

In this paper we study the relation between the homological properties of a basic and τ -rigid
module M ∈ mod (A) and its induced M -stratifying system (∆M ,≤). In order to do that, we
need to introduce a vector with integer coordinates, known as the g-vector of M , associated
to each module M in mod (A). For defining such g-vector, we denote by P (1), . . . , P (n) the
iso-classes of indecomposable projective A-modules.

Definition 4.6. [1, Section 5] Let M ∈ mod (A) and P1 → P0 → M → 0 be the minimal

projective presentation of M, where P0 =
n⊕

i=1

P (i)ai and P1 =
n⊕

i=1

P (i)a
′
i . The g-vector of M is

set to be gM := (a1 − a′1, a2 − a′2, . . . , an − a′n) ∈ Zn.

Another useful vector associated with M ∈ mod (A) is the dimension vector dim(M) ∈ Zn

whose i-th coordinate is the composition factor of the simple S(i) in M, where S(i) is the simple
top of P (i). There is important homological information that arises when g-vectors and dimension
vectors interplay, as shown in [2]. For u, v ∈ Zn, we denote by ⟨u, v⟩ the standard inner product∑n

i=1 uivi of these vectors.

Theorem 4.7. [2, Theorem 1.4.(a)] Let M and N be in mod (A). Then

⟨gM ,dim(N)⟩ = dimk(HomA(M,N))− dimk(HomA(N, τAM)).

5. Main results

In this section we state and prove our main results. From now on, let n := rk(AA) and fix some
basic and τ -rigid module M in mod (A) with some TF-admissible decomposition M =

⊕t
i=1 Mi.

As we mentioned in the previous section, this determines a stratifying system (∆M ,≤) which, in
turn, induces an Ext-projective stratifying system (∆M , Q,≤). Moreover, for each i ∈ [1, t], we
consider the following exact sequences:

(1) the canonical exact sequence

εi : 0 → K(i)
ιi−→ Mi

πi−→ ∆M (i) → 0

of Mi with respect to the torsion pair
(
Fac(

⊕
l>i Ml), (

⊕
l>i Ml)

⊥) ;
(2) the exact sequence

ηi : 0 → U(i)
αi−→ Q(i)

βi−→ ∆M (i) → 0

associated to each ∆M (i), see Definition 1.1 (b). We also consider the following integer matrices:
(3) the G-matrix GM ∈ Matn×t(Z) of M whose i-th column is [GM ]i := (gMi)tr;
(4) the M-standard matrix SM ∈ Matn×t(Z) whose i-th column is [SM ]i := dim(∆M (i))tr;
(5) the M-residual matrix RM ∈ Matt×t(Z) whose (i, j)-coordinate is

[RM ]i,j := dimk HomA(U(i),∆M (j))− dimk HomA(K(i),∆M (j))

Remark 5.1. We note that in (3) we are incurring in an abuse of notation, since the G-matrices
are only defined for τ -tilting pairs, see [8, 12, 27].

An important lemma in the proof of our main theorem is the following.

Lemma 5.2. For a basic and τ -rigid module M ∈ mod (A) with a TF-admissible decomposition
M =

⊕t
i=1 Mi, and the Ext-projective stratifying system (∆M , Q,≤) induced by (∆M ,≤), the

following statements hold true.
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(a) HomA(U(i),∆M (j)) = 0 and HomA(K(i),∆M (j)) = 0 if i ≥ j.
(b) We have the isomorphisms of k-vector spaces

HomA(Mi,∆M (i)) ≃ HomA(Q(i),∆M (i)) ≃ EndA(∆M (i)) ∀ i ∈ [1, t].

(c) For all i, j ∈ [1, t], we have

[C∆M
]i,j = dimk HomA(Mi,∆M (j)) + [RM ]i,j

(d) HomA(∆M (j), τMi) = 0 and Ext1A(Mi,∆M (j)) = 0 ∀ i, j.

Proof. Fix some i ∈ [1, t]. Then, we have the exact sequence

ηi : 0 → U(i)
αi−→ Q(i)

βi−→ ∆M (i) → 0,

where U(i) ∈ F(∆M (j) : j > i), and the canonical exact sequence

εi : 0 → K(i)
ιi−→ Mi

πi−→ ∆M (i) → 0

of Mi with respect to the torsion pair (Xi,Yi) :=
(
Fac(

⊕
l>i Ml), (

⊕
l>i Ml)

⊥) . Moreover, by
[22, Corallary 3.6(c)], we have that F(∆M ) is a subcategory of Fac(M).

We know that Mi is Ext-projective in Fac(M). Since F(∆M ) ⊆ Fac(M), we have in particular
that Mi is Ext-projective in F(∆M ). Hence, we can complete the following commutative diagram

0 // K(i)
ιi //

q

��

Mi
πi //

p

��

∆M (i) // 0

0 // U(i)
αi // Q(i)

βi // ∆M (i) // 0.

Note that the first square of the above diagram is the push-out of q and αi. Hence, there
exist an exact sequence 0 −→ K(i) −→ U(i)

⊕
Mi −→ Q(i) −→ 0 to which we apply the functor

HomA(−,∆M (j)) to obtain the following one

(∗) : 0 −→ HomA(Q(i),∆M (j)) → HomA(U(i)⊕Mi,∆M (j)) → HomA(K(i),∆M (j)) → 0.

(a) Let i ≥ j. Since U(i) ∈ F(∆M (r) : r > i) and HomA(∆M (r),∆M (j)) = 0 ∀ r > i, we can
conclude that HomA(U(i),∆M (j)) = 0. On the other hand, by using that

K(i) ∈ Fac

(⊕
l>i

Ml

)
⊆ Fac

⊕
l>j

Ml

 ,

it follows that HomA(K(i),∆M (j)) = 0.
(b) Take i = j in (∗). Then, from (a), HomA(K(i),∆M (i)) = 0 and HomA(U(i),∆M (i)) = 0.

Hence, by (∗) we get that HomA(Q(i),∆M (i)) ≃ HomA(Mi,∆M (i)). Finally, the isomorphism
HomA(Q(i),∆M (i)) ≃ EndA(∆M (i)) follows from Lemma 3.3.

(c) It follows by applying dimk on the exact sequence (∗).
(d) Since τM ≃

⊕t
r=1 τMr, it is enough to show that HomA(∆M (j), τ(M)) = 0 ∀ j ∈ [1, t].

But, the aforementioned statement holds true since ∆M (j) ∈ Fac(Mj) ⊆ Fac(M) and M is
τ -rigid. Finally, we have Ext1A(Mi,∆M (j)) ≃ DHomA(∆M (j), τMi) = 0. □

Now, we are ready to announce and prove our first main result.

Theorem 5.3. For a basic and τ -rigid module M ∈ mod (A) with a TF-admissible decomposition
M =

⊕t
i=1 Mi, and the Ext-projective stratifying system (∆M , Q,≤) induced by (∆M ,≤), the

following statements hold true.
(a) The matrix (GM )tr SM is upper triangular and [(GM )tr SM ]i,j = dimk HomA(Mi,∆M (j))

∀ i, j.
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(b) RM is an upper triangular matrix with zeros in its diagonal. Moreover, we have that
RM = 0 ⇔ HomA(Mi,∆M (j)) ≃ HomA(Q(i),∆M (j)) ∀ i < j.

(c) C∆M
= (GM )tr SM +RM .

(d) RM = 0 if M ∈ F(∆M ).

(e) |G∆M
| =

∏t
i=1[(G

M )tr SM ]i,i.

Proof. Let i, j ∈ [1, t]. Then, by Theorem 4.7 we get

[(GM )tr SM ]i,j = ⟨gMi ,dim(∆M (j))⟩ = dimk(HomA(Mi,∆M (j)))−dimk(HomA(∆M (j), τAMi)).

On the other hand, from Lemma 5.2 (d), we know that HomA(∆M (j), τAMi) = 0, proving that

[(GM )tr SM ]i,j = dimk(HomA(Mi,∆M (j))).

Thus, from Lemma 5.2 (c), we also get the equality C∆M
= (GM )tr SM + RM , proving (c).

Moreover, by Lemma 5.2 (a) and the exact sequence (∗) in the proof of Lemma 5.2, we can
obtain (b). Also, since C∆M

is upper triangular (see Lemma 3.3), then by (b) and (c) it follows
that the matrix (GM )tr SM is upper triangular. Finally, (e) follows directly from (b), (c) and
Lemma 3.3.

Assume now that M ∈ F(∆M ). Then, by the proof of [22, Corollary 3.8], we get that the
exact sequences ηi and εi are isomorphic, for each i ∈ [1, t]. Therefore we obtain (d). □

As we have seen in Theorem 5.3 (d), the condition M ∈ F(∆M ) is enough to get that RM = 0.
In the following, we characterise when M ∈ F(∆M ).

Proposition 5.4. Let M ∈ mod (A) be a basic and τ -rigid module with a TF-admissible decom-
position M =

⊕t
i=1 Mi, and let (∆M , Q,≤) be the Ext-projective stratifying system induced by

(∆M ,≤). Then, for any i ∈ [1, t], the following statements are equivalent.
(a) Mi ∈ F(∆M ).
(b) The exact sequences ηi and εi are isomorphic.
(c) Q(i) ≃ Mi.
(d) Ext1A(Q(i),K(i)) = 0.
(e) K(i) ≃ U(i).

Proof. (a) ⇒ (b) It follows by the proof of [22, Corollary 3.8].
(b) ⇒ (c) It is trivial.
(c) ⇒ (d) It follows from Ext1A(M,Fac(M)) = 0 since K(i) ∈ Fac(M).
(d) ⇒ (e) Since Ext1A(Q(i),K(i)) = 0, there is some q : Q(i) → Mi with πiq = βi. On the other

hand by the proof of Lemma 5.2, there is some p : Mi → Q(i) with βip = πi. Since βi(pq) = βi

and βi : Q(i) → ∆M (i) is right minimal [17, Lemma 2.3], we get that pq is an isomorphism,
and thus q : Q(i)

∼−→ Mi since Q(i) and Mi are indecomposable. Thus, we have that the exact
sequences ηi and εi are isomorphic. In particular, K(i) ≃ U(i).

(e) ⇒ (a) By the exact sequence εi and the fact that F(∆M ) is closed under extensions, we
conclude that Mi ∈ F(∆M ). □

Let Λ be a finite dimensional k-algebra. We recall from [18] that the Cartan group GΛ of Λ
is the Cokernel of the Cartan map CΛ : K0(proj(Λ)) → K0(Λ), [Pi] 7→ dim(Pi), where {Pi}ni=1

is a representative set of pairwise non-isomorphic indecomposable projective Λ-modules.

Corollary 5.5. Let M ∈ mod (A) be basic and τ -tilting and consider a TF-admissible decompo-
sition M =

⊕t
i=1 Mi such that M ∈ F(∆M ). Then, for the algebra B := EndA(M)op, we have

that GB ≃ CoKer(SM ).
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Proof. Let (∆M , Q,≤) be the Ext-projective stratifying system induced by (∆M ,≤). By Theorem
5.3 and Proposition 5.4, we get that C∆M

= (GM )tr SM and Mi ≃ Q(i) ∀ i ∈ [1, t]. On the
other hand, by [1, Theorem 5.1], we conclude that the matrix GM ∈ Matn×n(Z) induces an
isomorphism Zn → Zn, X 7→ GM X, of abelian groups. Therefore, CoKer(C∆M

) ≃ CoKer(SM )
and then the result follows from [18, Theorem 4.2]. □

As we have already seen, the Cartan matrix CΘ associated to a stratifying system Θ is an
upper-triangular matrix. We now will characterise in Theorem 5.7 the stratifying systems coming
from τ -tilting modules M whose associated Cartan matrix CΘ is diagonal. Before proving our
second main theorem, we need the following intermediate result.

Proposition 5.6. For a basic and τ -rigid module M ∈ mod (A), with a TF-admissible decom-
position M =

⊕t
i=1 Mi, the following statements (a), (b) and (c) are equivalent.

(a) The matrix (GM )tr SM is diagonal and HomA(Mi,K(j)) = 0 for i < j.
(b) HomA(Mi,Mj) = 0 for i < j.
(c) For i < j, we have that HomA(∆M (i),∆M (j)) = 0, HomA(Mi,K(j)) = 0 and the map

HomA(K(i),∆M (j)) → Ext1A(∆M (i),∆M (j)), f 7→ f · εi
is an isomorphism.

Moreover, for B := EndA(M)op and di := dimk EndA(∆M (i)), we have that GB ≃
⊕t

i=1 Z/diZ
if M ∈ F(∆M ) and (GM )tr SM is diagonal.

Proof. Let i, j ∈ [1, t]. Consider the canonical exact sequence

εj : 0 → K(j) → Mj → ∆M (j) → 0

of Mj with respect to the torsion pair
(
Fac(

⊕
l>j Ml), (

⊕
l>j Ml)

⊥
)
. Note that εj lies in Fac(M);

and since Ext1A(M,Fac(M)) = 0, from εj we get the exact sequence

(∗) : 0 → HomA(Mi,K(j)) → HomA(Mi,Mj) → HomA(Mi,∆M (j)) → 0.

(a) ⇔ (b): It follows from (*) and Theorem 5.3 (a).
(a) ⇔ (c): Let i < j. Consider the exact sequence εi : 0 → K(i) → Mi → ∆M (i) → 0. Then,

we get the exact sequence
0 → HomA(∆M (i),∆M (j)) → HomA(Mi,∆M (j)) → HomA(K(i),∆M (j)) → Ext1A(∆M (i),∆M (j)) → 0

Since Ext1A(Mi,∆M (j)) = 0 (see Lemma 5.2 (d)). Thus, the equivalence between (a) and (c)
follows from the above exact sequence and Theorem 5.3 (a).

Let M ∈ F(∆M ) and (GM )tr SM be a diagonal matrix. By Theorem 5.3 and Proposition 5.4,
we get that C∆M

= (GM )tr SM and Mi ≃ Q(i) ∀ i. Then, by [18, Theorem 4.2] and Lemma 5.2
(b), we conclude that GB ≃

⊕t
i=1 Z/diZ. □

Theorem 5.7. For a basic τ -tilting module M ∈ mod (A), with a TF-admissible decomposition
M =

⊕n
i=1 Mi such that M ∈ F(∆M ), the following statements are equivalent.

(a) The matrix C∆M
is diagonal.

(b) HomA(Mi,Mj) = 0 for i < j.
(c) HomA(Mi,∆M (j)) = 0 for i < j.
(d) For i < j, we have that HomA(∆M (i),∆M (j)) = 0 and the map

HomA(K(i),∆M (j)) → Ext1A(∆M (i),∆M (j)), f 7→ f · ηi
is an isomorphism.

Moreover, if one of the above conditions holds true, then M ≃ AA, A is a weakly triangular
algebra and HomA(Mi,K(j)) = 0 for i < j.
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Proof. Let (∆M , Q,≤) be the Ext-projective stratifying system induced by (∆M ,≤). By Theorem
5.3 and Proposition 5.4, we get that C∆M

= (GM )tr SM , U(i) ≃ K(i) and Mi ≃ Q(i) ∀ i. Thus,
the fact that HomA(Mi,K(j)) = 0 for i < j (by assuming one of the above conditions) and the
equivalences between (a), (b), (c) and (d) follow from Proposition 3.4.

Now, assume that one of the above equivalent conditions holds true. Let us proof, firstly,
that M ≃ AA. Indeed, since the decomposition M =

⊕n
i=1 Mi is TF-admissible, we get from

(b) that Mi ̸∈ Fac(
⊕

j ̸=i Mj) ∀ i ∈ [1, n]. On the other hand, it is known that
⊕

j ̸=i Mj admits
two torsion classes, namely, Fac(

⊕
j ̸=i Mj) and ⊥(

⊕
j ̸=i τMj). Moreover, since Fac(

⊕
j ̸=i Mj) ⊊

⊥(
⊕

j ̸=i τMj) and Mi ̸∈ Fac(
⊕

j ̸=i Mj), we have that Mi ∈ ⊥(
⊕

j ̸=i τMj) and thus the mutation
of M =

⊕t
i=1 Mi at Mi is descendent, for all i ∈ [1, n]. Let us show that Fac(M) = mod(A).

Suppose that Fac(M) ̸= mod(A). Since (Fac(M),M⊥) is a torsion pair in mod(A), it follows
from [8, Theorem 3.1], that there exists a mutation M ′ of M such that Fac(M) ⊊ Fac(M ′)
contradicting that any mutation of M is descendent. Therefore Fac(M) = mod(A) and then
M ≃ AA. In particular, A is a standardly stratified algebra since Mi ≃ Q(i) ∀ i; and by [18,
Remark 4.5], we conclude that A is a weakly triangular algebra. □

6. Examples and relation with the wall-and-chamber structure

In this last section we calculate the Cartan matrix of stratifying systems induced by τ -rigid
modules and we explore some connections between stratifying systems and stability conditions.

6.1. Examples. Before we go to the examples, we recall the notation of Lemma 5.2 of the two
short exact sequences naturally associated to ∆M (i) for i ∈ {1, . . . , t}.

εi : 0 → K(i)
ιi−→ Mi

πi−→ ∆M (i) → 0,

ηi : 0 → U(i)
αi−→ Q(i)

βi−→ ∆M (i) → 0.

Example 6.1. Let A be the quotient path k-algebra given by the quiver

2

��
1

@@

3oo

and the third power of the ideal generated by all the arrows. The Auslander-Reiten quiver of
A can be seen in Figure 1. Note that every module is represented by its Loewy series and both

2 1 3

2
3

1
2

3
1

2
3

1
2
3

3
1
2

2
3
1

Figure 1. The Auslander-Reiten quiver of A
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copies of 2
3 should be identified. Thus, the Auslander-Reiten quiver of A has the shape of a

cylinder.

Now take the τ -rigid modules A =
1
2
3
⊕

2
3
1
⊕

3
1
2

and M =
1
2
3
⊕ 1

2 ⊕ 1. It can be shown that, in both

cases, the τ -tilting modules are written in a TF-admissible fashion. Hence, their corresponding

induced stratifying system are ∆A =

{
1, 2,

3
1
2

}
and ∆M =

{
1
2
3
, 1, 2

}
.

i ∆A(i) Mi K(i) Q(i) U(i)

1 1
1
2
3

2
3

1
2

2

2 2
2
3
1

3
1

2 0

3
3
1
2

3
1
2

0
3
1
2

0

Table 1. Modules associated to the stratifying system ∆A

i ∆M (i) Mi K(i) Q(i) U(i)

1
1
2
3

1
2
3

0
1
2
3

0

2 1
1
2

2
1
2

1

3 2 2 0 2 0

Table 2. Modules associated to the stratifying system ∆M

Using the modules in Table 1 and Table 2 and the Auslander-Reiten quiver of A, one can calculate
easily the following matrices.

C∆A
=

1 0 1
0 1 1
0 0 1

 GA =

1 0 0
0 1 0
0 0 1

 SA =

1 0 1
0 1 1
0 0 1

 RA =

0 0 0
0 0 0
0 0 0

 .

C∆M
=

1 1 0
0 1 0
0 0 1

 GM =

1 0 0
0 1 −1
0 1 −1

 SM =

1 1 0
1 0 1
1 0 0

 RM =

0 0 0
0 0 0
0 0 0

 .

In particular, it is straightforward to verify that C∆A
= (GA)trSA+RA and C∆M

= (GM )trSM+
RM , as shown in Theorem 5.3.

Example 6.2. Let A be the quotient path k-algebra given by the quiver

3
β1 //

1
α1

oo
β2 //

2
α2

oo

and the ideal generated by the set of relations {β1α1β1, β1α1 − α2β2, α2β2α2}. Now take the

τ -rigid module A =
1

3 2
1

⊕
2
1
2
⊕

3
1
3
. Hence, its corresponding induced stratifying system are ∆A ={

1,
2
1
2
,
3
1
3

}
. A quick calculation shows that the modules associated to the stratifying system ∆A

are the following.
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i ∆A(i) Mi K(i) Q(i) U(i)

1 1
1

3 2
1

3 2
1

1 0

2
2
1
2

2
1
2

0
2
1
2

0

3
3
1
3

3
1
3

0
3
1
3

0

Table 3. Modules associated to the stratifying system ∆A

From Table 3 we can calculate the matrices associated to ∆A, which are below. In particular, it
is straightforward to verify that C∆A

= (GA)trSA +RA, as shown in Theorem 5.3.

C∆A
=

1 0 0
0 2 0
0 0 2

 GA =

1 0 0
0 1 0
0 0 1

 SA =

1 1 1
0 2 0
0 0 2

 RA =

0 −1 −1
0 0 0
0 0 0

 .

6.2. Stratifying systems and wall-and-chamber structures. Another important instance
of the use of g-vectors was made to relate τ -tilting theory and stability conditions. Recall from
[14] that given M ∈ mod(A) and a vector v ∈ Rn, we say that M is v-semistable if ⟨v,dimM⟩ = 0
and ⟨v,dimL⟩ ≤ 0 for all submodule L of M . Using this notion of stability, one can construct (for
every finite dimesional algebra A) a geometric invariant known as the wall-and-chamber structure
of A. We briefly recall this construction.

The union of the walls in the wall-and-chamber structure of A is the set of all the vectors
v ∈ Rn such that there exists at least one nonzero module M which is v-semistable. A chamber
in the wall-and-chamber structure of A is a open connected component of the complement of the
union of the set of walls.

Now, let M =
⊕t

i=1 Mi be a τ -rigid module, where Mi is indecomposable for all 1 ≤ i ≤ t and
Mi is not isomorphic to Mj if i ̸= j. Then we denote by C◦

M the cone spanned by the g-vectors
of Mi for all 1 ≤ i ≤ t, that is,

C◦
M :=

{
t∑

i=1

αig
Mi | αi ∈ R>0

}
.

The explicit relationship between τ -tilting theory and stability conditions is given in the
following proposition.

Proposition 6.3. [4, Proposition 3.13] Let M =
⊕t

i=1 Mi be a τ -rigid module and let v ∈ C◦
M .

Then a module X is v-semistable if and only if X ∈ M⊥ ∩ ⊥τM .

Remark 6.4. It follows from the previous proposition and the results of [1] that C◦
M is a chamber

if and only if M is a τ -tilting module.

Based on Proposition 6.3 we can show the following property of stratifying systems induced
by τ -rigid modules.

Proposition 6.5. Let M be a τ -rigid module with TF-admissible decomposition M =
⊕t

i=1 Mi

and let ∆M := {∆M (i) | 1 ≤ i ≤ t} be the stratifying system induced by M . Then ∆M (i) is
v-semistable for all v in the cone C◦⊕

j>i Mj
of
⊕

j>i Mj.

Proof. By Proposition 6.3 we only need to show that ∆M (i) ∈
⋂

j>i

(
M⊥

j ∩ ⊥τMj

)
. On the one

hand, we have that ∆(i) ∈ FacM ⊂ ⊥τM ⊂ ⊥τMj for all j > i. On the other hand, Theorem 4.5

states that ∆M (i) ∈
(⊕

j>i Mj

)⊥
and the result follows. □
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Note that in the statement of Proposition 6.5 if we fix i = t we are saying that Mt = ∆M (t)
is v-semistable for all vector v in a cone spanned by the empty set. By convention, the cone
spanned by the empty set is the cone {0} consisting only of the origin 0 in Rn. In this case,
Proposition 6.5 is trivial since every module is 0-semistable.

If we assume that M is a τ -tilting module, then the Proposition 6.5 indicates that the strat-
ifying system ∆M induced by M can be interpreted as a distinguished way to construct the
chamber C◦

M associated to M . Moreover, note that
⋂

j>i

(
M⊥

j ∩ ⊥τMj

)
is a wide subcategory of

mod (A) for all 1 ≤ i ≤ n. This indicates that a construction of the category of wide subcategories
introduced in [6] or even the τ -cluster morphism category [5, 7] can be constructed using the
wall-and-chamber structure of the algebra.

Given the close relationship between g-vectors, stability conditions and Cartan matrices, it
would be interesting to see if the latter has a geometric realisation in the wall-and-chamber
structure of A.
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