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1  |  INTRODUCTION

The growing interest in recent years has put the complement sys-
tem, part of the innate immune response, in the spotlight. Many 
novel functions of the complement system have been discovered, 
exceeding the limits of its bactericidal activity and complementing 
the action of antibodies. Biochemical and biophysical studies are the 
foundations of research in the complement system field. Over the 
years, accumulating evidence has contributed to the precise knowl-
edge of the molecular mechanisms governing the complement sys-
tem available to us today. Complement component C3 is considered 
the “Swiss Army Knife” of innate immunity and host defense and for 

a good reason.1 In this review, we will outline the main C3 functions 
and how they are carried out through interactions with complement 
receptors.

1.1  |  C3—­What is it and where to find it

C3 is the central component of the complement system, present in 
the blood in concentrations of more than 1  mg/mL, which makes 
it one of the most represented proteins in circulation. Native C3 is 
considered biologically inactive, but its activation fragments have a 
multitude of biological functions. A plethora of structure–function 
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Summary
C3 is the central effector molecule of the complement system, mediating its multiple 
functions through different binding sites and their corresponding receptors. We will 
introduce the C3 forms (native C3, C3 [H2O], and intracellular C3), the C3 fragments 
C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the impor-
tant role that C3 plays in human biological processes, we will give an overview of 
the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will 
present a structural description of C3 activation and of the C3 fragments generated 
by complement regulation. We will proceed by describing the C3a interaction with 
the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and 
C3dg/C3d) with complement receptors, divided into two groups: receptors bearing 
complement regulatory functions and the effector receptors without complement 
regulatory activity. We outline the molecular architecture of the receptors, their bind-
ing sites on the C3 activation fragments, the cells expressing them, the diversity of 
their functions, and recent advances. With this review, we aim to give an up-to-date 
analysis of the processes triggered by C3 activation fragments on different cell types 
in health and disease contexts.
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2  |    ZARANTONELLO et al.

studies helped to unveil its multiple biologically active sites impor-
tant in the mediation of complement effector functions, recently re-
viewed in Geisbrecht et al2 C3 is mainly expressed by the liver and 
circulates in plasma, but most of the cell types in the human body 
express some amount of C3. It is abundant in circulation, tissues, 
and even intracellularly. In each of these locations, it can be pre-
sent in different activation states, and it can have different functions 
(Figure 1).

In the circulation and in tissues, C3 is activated by a series of 
enzymatic reactions upon pathogen infection or cell damage. Each 
cleavage gives biologically active fragments, indicated by lowercase 
letters, such as C3a, C3b, iC3b, C3d, and C3d. For the last cleavage 
fragment, the C3dg form is rapidly transformed to C3d in tissues 
and on cell surfaces by proteases, and the available tools most often 
do not allow us to recognize whether C3dg or C3d is present. From 
this point onward, C3d is used to indicate this last fragment, which 
in some contexts could be C3dg. The C3 activation fragments serve 
as inflammatory modulators (the anaphylatoxin C3a) or opsonins 
(C3b, iC3b, and C3d) and have context- and/or receptor-dependent 
pro- and anti-inflammatory, destructive, or protective functions. The 
diversity of the functions is not restricted to the C3 cleavage frag-
ments. The C3 conformation is also a source of diverse biological 
functions. Native C3 can undergo a conformational change upon 
binding of a water molecule to generate C3(H2O), a biologically ac-
tive form resembling C3b in circulation. Intracellular forms of C3 
were also recently discovered. This intracellular C3 could either (a) 
be internalized from the extracellular space in the form of C3(H2O),3 
(b) be expressed by the cell4–6 from the same start site as the se-
creted form of C3, or (c) be from an alternative form, generating a 
shorter, cytoplasmic form lacking disulfide bridges and glycosyla-
tion.7 The intracellular C3 forms regulate cell metabolism, autoph-
agy and contribute to the intracellular detection of cytoinvasive 
pathogens, as described in detail in this special issue by Blom et al8 

Keeping in mind the diversity of the biologically active forms of C3, 
its widespread expression and its presence both in the extracellular 
and intracellular spaces, it is logical to expect that C3 is a key protein 
for the functioning of the human body.

2  | WHY IS C3 SO IMPORTANT—­LESSONS 
FROM C3 DEFICIENCY

The pathological consequences of C3 deficiency in humans are il-
lustrative of the key functional relevance of C3 and its activation 
fragments. C3 deficiency is extremely rare and results in recurrent 
pyogenic infections, mainly caused by Streptococcus pneumoniae and 
Neisseria meningitidis. In isolated cases, C3-deficient patients could 
suffer from immune complex (IC)-related diseases such as systemic 
lupus erythematosus (SLE)-like illness and renal diseases, although 
the deficiency of C3 is not considered a genuine SLE predisposing 
factor, in contrast to the deficiency of C1q and the other compo-
nents of the classical pathway (CP).9,10 Mechanistically, C3 deficien-
cies connected to a lack of opsonization are associated with impaired 
dendritic cell differentiation, memory B-cell responses, and regula-
tory T-cell development in humans.11,12

Mouse models are instrumental in further understanding the im-
plication of C3 in physiology and in complement-mediated diseases. 
C3 knockout in vivo has been used to study several biological or 
pathological processes in the nervous, circulatory, skeletal, respira-
tory, digestive, urinary, and visual systems. From these results, the 
beneficial roles of complement C3, corresponding to the harmful 
effects of C3 deficiency, and detrimental ones, corresponding to 
the protective effects of C3 deficiency, can be deduced and will be 
reviewed in this section. The fact that C3 has been found to play 
a ubiquitous role underlines once again its importance in multiple 
contexts.

F IGURE  1 Expression of C3 in 
different organs and cell types. Gray-
colored items indicate expression lower 
than 200 transcripts per million (nTPM), 
in black expression is between 200 and 
2500 nTPM, and in bold expression is 
above 2500 nTPM. Of note, hepatocytes 
reach 8000 nTPM. Data from protein atlas 
https://www.prote​inatl​as.org/
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2.1  |  Protective role of C3

The complement system, and in particular the CP, has an estab-
lished role in maintaining homeostasis by removing pathogens and 
damage-associated molecular patterns (PAMPSs and DAMPs, re-
spectively) from the circulation in the case of infection but also in the 
case of tissue injury, autoimmune diseases, and cancer. Confirming 
its role in protection from infection in humans, in vivo studies in mice 
established a direct link between C3 deficiency and breakage of the 
immune defense in bacterial sepsis, acute influenza virus infection, 
Lyme borreliosis, and fungal infection.13–16 Opsonophagocytosis, ox-
idative stress, and cell lysis are key functions of complement to en-
sure the rapid elimination of invading bacteria. Indeed, C3 deficiency 
was shown to increase bacterial load in a model of sepsis induced by 
cecal ligation and puncture. A decrease in inflammatory mediators 
was associated with failure to induce complement-specific functions 
(phagocytosis, oxidative burst, and cell lysis)15 (see Section 4). C3 also 
controls acute influenza virus infection by increasing viral clearance 
through the regulation of CD4+ and CD8+ T-cell responses. T-helper 
cell-dependent IgG responses are diminished in C3-deficient mice 
due to the failure to target viral antigens to lymphoid organs and 
to proceed to later stages of complement activation.14 The Borrelia 
burgdorferi infection model elucidated that complement contribution 
is important to control infection dissemination in the early stages of 
the disease and to prevent the early development of arthritis, while 
other mechanisms come into play at later stages.13 Moreover, the 
presence of C3 was shown to enhance B-cell responses to many an-
tigens. Fungi are not susceptible to complement-mediated cell lysis, 
and the role of C3 in protecting against fungal infection is connected 
to fungal clearance. Interestingly, complement deficiency is protec-
tive when mice are challenged with high doses of fungi.16

The CP of the complement system has an important role in clear-
ing ICs formed when the host is challenged by an invading pathogen 
but also in the context of autoimmunity and cancer by facilitating 
their transport to liver and spleen macrophages. Where circulating 
ICs are involved in a wide spectrum of pathology, the importance 
of C3 to prevent their deposition has mainly been evidenced in the 
kidney. In vivo studies have shown that C3 deficiency leads to the 
deposition of IgM and IgA ICs in the glomeruli of mice immunized 
with apoferritin.17 In a model of lupus nephritis, C3-induced protec-
tion was attributed to IC clearance.18

Moreover, complement plays a role in tissue healing and repair, 
as recorded here in the aging central nervous system, in liver injury, 
in trauma, and in skin psoriatic injury. In the developing brain, com-
plement contributes to synaptic circuit refinement by pruning away 
excess synaptic connections, a fundamental process for obtaining 
optimal cognitive ability in adulthood.19–21 Conversely, complement 
is also involved in neurodevelopmental and neurodegenerative dis-
eases, and the molecular mechanisms implicated are the subject 
of active investigation.22–25 In Alzheimer's mouse models, C3 defi-
ciency exacerbates the accumulation of amyloid beta plaques and 
neurodegeneration; therefore, C3 is critical in the clearance of these 
deposits26,27 (see Section 8.2). Strikingly, recent evidence highlights 

that constitutive loss of C3 in mice results in spontaneous loco-
motor deficits during the aging process, with decreased speed and 
gait ataxia, which can be observed in age-related locomotor defi-
cits and in the absence of anatomical alterations linked to cerebellar 
function.28

The complement system is known to take part in other healing 
processes in organisms. Specifically, C3 has a fundamental role in 
liver regeneration and the removal of damaged tissue after toxic liver 
injury29–31; it also participates in bone development, hematopoietic 
stem cell homing and engraftment, and amphibians, such as newts 
and salamanders, limb regeneration.32 Complement is known to 
mediate platelet activation, and platelets can activate complement. 
C3 is essential for physiological hemostasis, and its deficiency re-
sults in increased bleeding times, delayed thrombosis, and unstable 
thrombi.33 Therefore, functional crosstalk of complement with the 
coagulation cascade is particularly important upon trauma, where 
an early clotting response coordinates with complement-mediated 
early inflammatory signals that eliminate DAMPs and invading 
pathogens.34 In the context of inflammation, C3 was recently found 
to protect against psoriasis-like skin inflammation.35 The absence of 
C3 exacerbated the inflammatory phenotype by upregulating IFN-
γ+ T-cell responses, and the phenotype was reversed by caspase 
inhibition, indicating that C3 exerts its protective role by inhibiting 
apoptosis.35

Among the numerous physiological functions of C3 that remain 
unclear, C3 has been involved in apoptosis and angiogenesis regula-
tion. In a model of retinopathy of prematurity, C3−/− mice displayed 
increased neovascularization,36 and in a model of muscle ischemia, 
angiogenesis was associated with increased neutrophil and macro-
phage infiltration.37

C3 has a large number of direct and indirect downstream func-
tions, the molecular details of which are discussed in the coming 
sections. Before that, to highlight the double-edged sword of C3 
activation, we will give an overview of the deleterious effects of C3 
activation.

2.2  | Deleterious effects related to C3 activation

While C3 functioning is key in normal physiology, excessive acti-
vation of C3 is a hallmark of many complement-mediated diseases. 
In this case, protective effects of C3 deficiency are observed in 
experiments in vivo. The excessive activation of C3, leading to the 
formation of active fragments C3b and C3a, has been implicated in 
many acute autoimmune or inflammatory disease models, includ-
ing acute kidney inflammation, neurotrauma, anti-phospholipid 
thrombosis, asthma, and allogeneic transplantation. In the kidney, 
the iconic organ of complement activation, C3 knockout has been 
shown to be protective, not only in several models of acute kidney 
injury, such as ischemia-reperfusion injury,38 in which it was as-
sociated with reduced neutrophil infiltration and NET formation39 
but also in rhabdomyolysis, where it was associated with inflam-
matory monocyte infiltration.40 C3 deficiency decreases the risk 
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4  |    ZARANTONELLO et al.

of rejection in renal transplantation, even if this deficiency is re-
stricted to the kidney, by modulating T-cell responses.41 Finally, 
C3 deficiency reduced the risk of pyelonephritis in a model of 
Escherichia coli pyelonephritis.42 C3 usage was shown to be part 
of the E. coli mechanism to invade the renal epithelium. Strikingly, 
despite these protective effects of C3 knockout in ischemic and 
infectious mouse models in the kidney, in all mouse models of 
glomerulonephritis, such as lupus and IgA nephropathy, in which 
complement activation fragments are detected, C3 knockout was 
protective. This is a key paradox in C3 functions, which can at 
best be partially explained by the impaired protective IC clearance 
function of C3 opsonins.

C3 has a detrimental role in the acute assault, such as focal brain 
ischemia, spinal cord injury, and intracerebral hemorrhage.43–45 
Under these conditions, C3 deficiency protects against inflamma-
tory tissue damage and promotes nerve fiber regeneration after 
spinal cord injury. In an induced intracerebral hemorrhage, behav-
ioral tests show decreased asymmetry in limb use in C3-deficient 
mice, and brain water content measurements indicate lower levels 
of brain edema.45 In anti-phospholipid-induced thrombosis and 
fetal loss, C3 deficiency protects against enhanced thrombosis, 
endothelial cell activation, and fetal injury.46,47 Interestingly, C3 
is a biomarker of non-alcoholic fatty liver disease in rheumatoid 
arthritis patients,48 and C3 contributes to steatosis in fatty liver 
disease in mice.49 The putative mechanism of action of C3 in this 
disease has recently been described: C3 upregulates the expres-
sion of glycine transfer RNA-derived fragments, which in turn 
downregulate the expression of Sirt1, a regulator of lipid meta-
bolic pathways.50 In the pathogenesis of asthma, C3 deficiency al-
ters the allergic response by reducing the characteristic symptoms 
of airway hyperresponsiveness and IgE and IgG responses through 
the downregulation of IL-4 production, an important cytokine for 
Th2 function.51 In pulmonary arterial hypertension, the absence 
of C3 attenuates prothrombotic and proangiogenic symptoms 
in a mouse model of the disease.52 Regulated innate immune re-
sponses are critical for the success of allogeneic transplantation. 
The impact of excessive complement activation, particularly of C3, 
has been studied in an animal model for graft-versus-host disease 
(GVHD). C3−/− mice showed less mortality and GVHD than wild-
type mice, associated with decreases in donor Th1- and Th17-cell 
differentiation, which are critical in the development of GVHD.53

If complement-mediated responses against self are intrin-
sic to several inflammatory and autoimmune diseases, the age-
dependent increase in the expression of complement components 
suggests their implication in age-related diseases.54 Indeed, in ar-
thritis and atherosclerosis, inflammatory signals amplified by C3 
are detrimental,55–57 and C3 deficiency ameliorates age-related 
changes in mouse kidneys, manifesting as tissue sclerosis and fi-
brosis.58 This finding may be linked to a detrimental role of C3 in 
renal fibrosis, exerted by polarizing macrophages toward a proin-
flammatory phenotype, increasing proinflammatory cytokine 
expression, and causing peritubular capillary rarefaction due to 
decreased angiogenesis.59 Not only was C3 found to play a role 

in acute neuropathologies, but C3-deficient mice are also pro-
tected from age-related hippocampal decline and neurodegener-
ation,60–63 and in experimental autoimmune encephalomyelitis, a 
mouse model for multiple sclerosis, C3 is necessary for full disease 
development.64 The absence of chemotactic activity toward in-
flammatory cells induced by C3 knockdown is beneficial in allevi-
ating choroidal neovascularization, a common cause of age-related 
macular degeneration.65

Finally, C3 deficiency was found to protect against tumor 
growth in multiple mouse models.66,67 Cutaneous squamous cell 
carcinoma was found to induce epidermal hyperplasia and drive 
tumorigenesis.68 In a model of carcinogen-induced sarcoma, C3 
and C3a receptors (C3aR) deficiency was associated with reduced 
tumor growth, reduced accumulation and functional skewing of 
tumor-associated macrophages, increased T-cell activation, and 
response to anti-PD-1 therapy.69 Moreover, the local production 
of the proinflammatory anaphylatoxins C3a and C5a is crucial to 
the tumor response to radiotherapy and concomitant stimulation 
of tumor-specific immunity.70 Many other examples highlight the 
role of C3 activation fragments in different types of cancers.71 
Overall, C3 contributes to the context-dependent functions of 
the complement system in cancer, where the outcome is defined 
by the site of complement activation, the composition of the 
tumor microenvironment, and the sensitivity of the tumor cell to 
complement attack, as recently reviewed by Roumenina et al72 
Pancancer transcriptomic analysis based on the prognostic impact 
of complement revealed that the coregulated overexpression of 
complement genes, including C3, confers either poor or favorable 
prognosis depending on the cancer type. Interestingly, in a sub-
group of tumors called the “Protective C3” group, C3 appeared 
to influence the patient prognosis independently from the other 
complement proteins.72

C3−/− mice are indeed susceptible to infections and have defi-
cits in homeostatic processes, but they are protected in a multi-
tude of inflammation-related disease models. These observations 
illustrate the “double-edged sword” of the functioning of the C3 
activation fragments—their defensive action could turn offensive 
if misdirected in a pathological process. Not only is C3 involved in 
multiple biological processes, but this occurs in physiology, aging, 
allergy, and chronic and acute disease contexts, highlighting the 
importance and complexity of C3-mediated responses and the 
broad potential for therapeutic intervention. Compstatins are an 
ever-growing family of C3-targeting inhibitors73 developed to ad-
dress this ambitious goal. The original compound is a C3 inhibitor 
that can block all complement pathways and therefore all the C3 
fragment-mediated functions.74 Compstatins are derivatives of a 
13-residue peptide macrocycle, and they bind C3 between the 
MG4 and MG5 domains75 (see Section 3). In 2021, the compsta-
tin pegcetacoplan was approved for the treatment of paroxysmal 
nocturnal hemoglobinuria (PNH), and several other compstatin-
derived compounds are under investigation for periodontal 
disease, COVID-19, age-related macular degeneration, and neuro-
degenerative diseases.73
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    | 5ZARANTONELLO et al.

3  |  FORMATION OF C3 AND C5 
CONVERTASES—­THE HEART OF THE 
COMPLEMENT CASCADE

C3 is the central molecule of the complement system and is the point 
of convergence of all its activation pathways. Structurally, C3 is part 
of the A2M protein family, with which it shares the domain architec-
ture. Like all family members, it contains 8 macroglobulin-like (MG) 
domains, a linker region (LNK), an anaphylatoxin domain (ANA), a 
C1r/s, Uegf, B (CUB) domain, and a thioester (TE) domain. One last 
domain is present at the C-terminus of complement components C3, 
C4, and C5 called the C345c domain. Mature C3 is formed by an 
α- and a β-chain, which are held together by disulfide bridges. The 
α-chain encompasses domains MG1 to the first half of MG6 and the 
LNK, while the second half of MG6, ANA, MG7, CUB, TE, MG8, and 
C345c domains form the β-chain (Figure 2, left).76 One characteristic 
structural unit of A2M family proteins is the “MG ring”, formed by 
the MG domains arranged in a ring-like fashion, visible in the right 
panel of Figure 2.

Complement can be activated by three pathways: the classical 
pathway (CP), lectin pathway (LP), and alternative pathway (AP).77 
C3 is cleaved by the CP and LP C3 convertase C4b2b (updated no-
menclature from C4b2a according to the new guidelines78), while in 
the AP, it is cleaved by the AP C3 convertase C3bBb into the frag-
ments C3a and C3b. Cleavage of C3 at an Arg-Ser bond releases the 
C3a anaphylatoxin in the fluid phase and triggers a dramatic confor-
mational change in the nascent C3b molecule.79 The TE domain is 
released, exposing the reactive glutamine acyl group of the internal 
thioester (Figure  2, center). Nucleophilic attack at this acyl group 
is predominantly by water hydroxyl groups, with C3b remaining in 
the fluid phase. However, a small proportion of the reactive C3 will 

undergo nucleophilic attack by surface hydroxyl or amino groups, 
with consequent covalent attachment to that surface. This process 
is known as opsonization, and it can either trigger phagocytosis or 
proceed to the formation of the AP C3 convertase by binding to fac-
tor B (FB) and, following activation by FD, generating the AP C3bBb 
convertase (Figure 2, right).80 The fact that C3b deposited by the CP 
can in turn form a C3 convertase, which will amplify C3b deposition 
on the activator surface, is known as the “amplification loop” of com-
plement activation. AP C3 convertase is very short-lived and needs 
to be stabilized by properdin (FP) to have a fully functional impact in 
vivo. The binding of properdin leads to a 10-fold increase in the half-
life of AP C3 convertase.81,82

Properdin is the only known positive regulator of the comple-
ment system, and it will be described in detail in another contri-
bution to this series. A model for C3 substrate binding to the AP 
C3 convertase is presented in Figure 3,83 where it is evident that 
the C3/C3b MG4 mediates important enzyme–substrate con-
tacts, making it a good target for complement inhibition at the 
C3 level. In the AP, inhibiting these contacts affects both the C3 
substrate and the C3b molecule portion of the convertase enzyme 
(Figure  3). In the CP and LP, interfering with these interactions 
prevents the association of the C3 substrate molecule with the 
convertases (Figure 3, left). Another source of complement C3 ac-
tivation is spontaneous hydrolysis of the labile thioester group. 
This nucleophilic attack by water to the C3 thioester is known as 
the “tick-over” mechanism, and it is accompanied by a conforma-
tional change in C3 resulting in a C3b-like conformation, gener-
ating a molecule called C3(H2O).84 C3(H2O) is able to bind to FB 
and, after FB cleavage by FD, to form a fluid phase convertase. 
The role of this fluid phase convertase is still debated in the com-
plement field. Some suggest that the labile thioester provides a 

F IGURE  2 The conformational change occurring upon C3 activation by a C3 convertase. When C3 (left, PDB ID 2A73) is cleaved by a C3 
convertase (C4b2a or C3bBb), the anaphylatoxin domain is released to generate C3a in the fluid phase, and C3b which opsonizes the target 
surface, thanks to an extensive conformational change exposing the thioester in the TE domain, allowing it to react with a nucleophile on the 
surface (center, PDB ID 2I07). C3b can now form the alternative pathway C3 proconvertase by binding to FB. FB is cleaved by FD to give the 
alternative pathway C3 convertase C3bBb (right, PDB ID 2 WIN). All figures displaying structures were prepared in PyMOL 2.3.0 https://
pymol.org/2/ and edited in Inkscape.

 1600065x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/im

r.13147 by Inserm
 D

isc Ist, W
iley O

nline L
ibrary on [25/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://pymol.org/2/
https://pymol.org/2/


6  |    ZARANTONELLO et al.

constant low level of complement activation, which has the role 
of providing protection against invading pathogens and foreign 
substances such as toxins. However, this view is challenged by 
the absence of experimental evidence on the existence of a fluid 
phase convertase. The actual contribution of this pathway to com-
plement activation requires further investigation.85–87 Another 
burning question is whether and how a C3 convertase functions in 
the intracellular space. The intracellular cleavage of C3 and gen-
eration of a C3a-like molecule are now clearly evidenced,4,6,88–91 
and its biological relevance for cellular metabolism and function-
ing is undeniable, but the mechanism remains poorly understood. 
Experimental evidence suggests that this cleavage is made by 
cathepsin L in lysosomes4 or by intracellular FB.89 An intracellular 
C3bBb complex cleaving C5 was even detected in macrophages.92 
Whether a genuine C3/C5 convertase, similar to the extracellular 
convertase, exists intracellularly needs further investigation, as it 
would require fully folded intracellular C3 and FB. Describing the 

molecular mechanisms of the generation of intracellular C3a and 
C5a will be a major breakthrough in the coming years.

4  |  TERMINAL PATHWAY OF 
COMPLEMENT—­LYTIC CELL DEATH AS A 
FIRST LINE OF DEFENSE

Sustained C3b deposition at the activator surface results in a switch 
of substrate specificity of the convertases from C3 to C5. It is not 
yet known whether the C5 convertases form a trimeric complex by 
binding of a C3b molecule to the C3 convertases C4b2b and C3bBb 
or whether the additional C3b molecule at the surface is needed 
to prime C5 for cleavage by C4b2b/C3bBb.93,94 However, recent 
data suggest that the conformational activation of C5 (or C5 prim-
ing) could be a mechanistic explanation for ongoing terminal path-
way activity in the presence of C5 inhibitors.95 The understanding 

F IGURE  3 The substrate-bound alternative pathway C3 convertase. A model of substrate binding by the alternative pathway C3 
convertase based on the crystal structure with PDB ID: 3PVM. C3b in the C3 convertase is shown in gray, Bb in roseate. The substrate C3 is 
shown in brown, with the highlighted ANA domain in lime green, and the MG4 domain in green. The figure underlines the importance of the 
MG4 domain interface for efficient convertase activity. In fact, residues in MG4 are part of the interface between the substrate C3 and the 
C3b in the convertase (left), but also between the C3b in the convertase and the substrate C3 (right). To generate the model, C3 was aligned 
to C5 in the CVF:C5 complex (PDB ID 3PVM), while C3b bound to Bb was aligned to CVF.

F IGURE  4 The cleavage steps carried out by FI during C3b regulation. When C3b (left, PDB ID 2I07) is cleaved by FI in the CUB domain 
(pink), the C3f fragment is released in the fluid phase, and iC3b remains flexibly attached to the target surface (center, PDB ID 7AKK). A 
last FI cleavage in the CUB domain releases the C3c fragment and leaves C3d bound to the surface (right, PDB ID 7AKK). The thioester 
glutamine is shown in red, anchoring the TE domain to the activator surface. The location of the remaining iC3b domains is putative, as they 
are flexibly attached to the TE domain through what remains of the CUB domain (pink).
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    | 7ZARANTONELLO et al.

of the molecular mechanism and structural organization of the C5 
convertases is a major challenge to be fully resolved in the upcoming 
years. The C5 convertases are denoted C4b2bC3b and C3bBbC3b, 
and they cleave C5 to release the anaphylatoxin C5a and the larger 
C5b, which is very unstable and can only associate with the mem-
brane if it immediately binds to C6.96,97 The resulting C5b6 complex 
can then bind successively to C7, C8, and multiple copies of C9. C8 
starts membrane penetration, followed by C9, and forms a pore, 
named the membrane attack complex (MAC), leading to cell lysis.98,99 
However, MAC also has other nonlytic, proinflammatory functions, 
reviewed in ref. [100]. The steps from C5 cleavage to MAC assembly 
are known as the terminal pathway of the complement system.

5  |  REGULATION OF C3 ACTIVATION

The activation of C3 is dangerous for host cells; therefore, C3 acti-
vation is tightly controlled by multiple regulators, part of the regula-
tors of complement activation (RCA) protein family, which for C3 are 
complement receptor 1 (CR1), factor H (FH), factor H-like 1 (FHL1), 
decay-accelerating factor (DAF), and membrane cofactor protein 
(MCP).101 These proteins are characterized by a shared structural 
unit called a complement control protein (CCP) domain (alternatively 
called SUSHI or short consensus repeat domain). The repetition of 
this domain forms the structure of these proteins. The RCA family 
members that bind to C3b for its degradation are FH, FHL1, CR1, 
and MCP.102 FH is the most important regulator of the AP, and its 
detailed description is presented in another contribution to this se-
ries. The RCAs, except DAF, act as cofactors of the protease factor 
I (FI), in mediating C3b inactivation. Two cleavages by FI in the CUB 
domain of C3 release the fragment C3f and leave the iC3b fragment 
bound to the surface. A third and final cleavage releases the C3c 
fragment and leaves the C3dg fragment bound to the surface, which 
is further cleaved by proteases to yield C3d (Figure 4).103,104

While part of the binding site of FH and MCP is on the TE domain 
of C3b, CR1 does not have an affinity for this domain. Hence, FH 
and MCP can only catalyze FI cleavage up to iC3b formation under 
physiological conditions, as the third cleavage site is less available for 
FI cleavage, being between the TE and CUB domains, which are held 
together by the cofactor MCP or FH. When CR1 is the cofactor for 

FI, the protease can proceed to the generation of opsonin C3d.104 
CR1 and FH also exert decay acceleration activity, a property shared 
with membrane-bound DAF, by binding the convertase and accel-
erating the decay of the AP C3 convertase. Mutations in CFH, CFI, 
and C3 are risk factors for the genetic disease atypical hemolytic 
uremic syndrome (aHUS), and they are involved in the pathogenesis 
of a group of renal diseases called C3 glomerulopathies (C3G).105–108 
Autoantibodies against C3 are frequent in patients with lupus ne-
phritis and correlate with disease activity.109–111 The C3 nephritic 
factors are autoantibodies recognizing the C3 convertase, but not 
unbound C3 or C3b, found in C3G, and they impair the decay ac-
celeration activity of the regulators.112,113 The localization for their 
binding sites is unknown, but it involves neoepitopes formed in the 
context of the AP C3 and C5 convertases complex.

Detection of the C3 activation fragments in ex vivo models 
of complement activation and in tissues is important for clinical 
practice and for understanding disease pathogenesis. Analysis of 
C3 activation fragments and C5b-9 on cultured endothelial cells 
incubated with serum from aHUS patients closely resembles the 
pathophysiological context of this disease.114 It has shown elevated 
deposits from the sera of patients or model conditions of aHUS, ma-
lignant hypertension, elevated liver enzymes, low platelet syndrome 
(HELLP syndrome), sickle cell disease, preeclampsia, lupus nephritis, 
etc.109,115–118 In one case, it was used to adjust the therapeutic regi-
men with a complement-blocking drug, as the test showed increased 
deposition of C5b-9 before the relapse of the disease, encouraging 
further studies.119 To make specific diagnoses, tissue staining for C3 
activation fragments is critical in clinical practice, especially on kid-
ney biopsies. Anti-C3c (detecting C3b/iC3b but not C3d) immunos-
taining is performed as a routine work-up on kidney biopsies, which 
detect only ongoing complement activation. In lupus nephritis, C3c 
versus C3d (stains C3 and the activation fragments C3b, iC3b, and 
C3d) staining allows the differentiation between active and inactive 
lupus nephropathy.120 Interestingly, rhabdomyolysis-induced acute 
kidney injury was long considered complement-independent be-
cause the anti-C3c staining on kidney biopsies was largely negative. 
A recent study indeed demonstrated negative anti-C3c but strongly 
positive anti-C3d,40 which can be explained by the rapid cleavage of 
iC3b to C3c and then to C3d121 because all biopsies were performed 
more than 24 hours after the initiation of rhabdomyolysis. This study 

F IGURE  5 Different opsonins can 
trigger specific effector functions. Each 
circle encloses the effector functions of 
the represented opsonins, and through 
which receptors they are implemented. 
Cell-type-specific effector functions were 
omitted for clarity, and they are presented 
in tables at the end of each section 
describing the corresponding receptor.
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8  |    ZARANTONELLO et al.

illustrates the importance of staining for C3d to understand the 
disease process when complement activation is expected, but the 
anti-C3c staining is negative, notably in chronic processes. Finally, 
tissue staining for C3c or C3d also detects local/intracellular C3 pro-
duction in fixed and paraffin-embedded tissues.122 This is clearly ev-
idenced in renal cancer, where a fraction of the tumor cells produce 
C3 (and hence stain positive) and deposit C3 activation fragments 
on their surface due to complement activation.123 The two patterns 
could be distinguished and quantified separately, as local production 
but not surface deposits correlate with poor prognosis in this type 
of cancer.124

Here, we have described the C3 cleavage fragments that elicit 
complement effector functions (Figure 5). In the following sections, 
we will explore these functions by detailing their interactions with 
complement receptors.

6  |  THE C3A:C3AR AXIS:  CONTEXT-­
DEPENDENT PRO-­ AND ANTI-­
INFLAMMATORY ACTIVITY,  EXERTED 
IN THE CIRCULATION, TISSUE 
MICROENVIRONMENT, AND THE 
INTRACELLULAR SPACE

The only bioactive fluid phase fragment generated by C3 cleavage 
is anaphylatoxin C3a. C3a binding to its receptor (C3aR) elicits a re-
sponse at the activation site involving histamine release from mast 
cells, smooth muscle contraction, augmented vascular permeabil-
ity, and mast cell chemokine secretion125 (Table  1). The biological 
activity of C3a is regulated by carboxypeptidase-N, which cleaves 
off the C-terminal arginine residue and generates the inactive 
molecule C3a-desArg.126,127 C3aR is a transmembrane G-protein-
coupled receptor distributed in peripheral tissue and the central 
nervous system and is expressed by all leukocytes.128 Recently, a 
mouse atlas of C3aR1 mRNA levels in several organs has allowed a 
precise mapping of the expressing cells and tissues and a compari-
son with known human data.129,130 Interestingly, C3aR was found 
to be stored intracellularly in eosinophils and macrophages, as re-
ported for CD4+ T cells, suggesting that it may function intracel-
lularly in several contexts.4 Indeed, a recent study showed that it 

can downregulate mitochondrial metabolism in oxidatively stressed 
epithelial cells.131 C3a has been reported to have bactericidal activ-
ity exerted by binding to the membrane and inducing cell lysis.132 
With increasing evidence over the years, research has pointed to a 
dual role of C3a depending on the context, and C3a is currently de-
scribed as a modulator of inflammation.133 In particular, C3a can act 
as an anti-inflammatory molecule on neutrophils, attenuating their 
mobilization from the bone marrow to the circulation after ischemia-
reperfusion injury,134 and it decreases the death rate in sepsis in 
mice.135 It mediates the beneficial C3 function of tissue regeneration 
after liver injury (see Section  2.1) by stimulating cell proliferation, 
and it contributes to hematopoietic stem cell retention in the bone 
marrow, homing, and engraftment.136–138 In the brain, the C3a:C3aR 
axis has an important role in the recovery after the acute phase of 
ischemic injury, modulating neurogenesis and axonal and synaptic 
plasticity.139 In chronic inflammation, such as autoimmune disease, 
C3a acts as a proinflammatory mediator. High levels of C3aR ex-
pression are found in the glomeruli of lupus nephritis patients.140 
In cancer, C3a can have protumoral effects impacting immune sys-
tem activation at the tumor site and favoring tumor progression. The 
C3a:C3aR interaction maintains an immunosuppressive environ-
ment in sarcoma and promotes tumor progression by skewing the 
phenotype of tumor-associated macrophages,69 while in lung cancer, 
C3a:C3aR signaling acts on CD4+ T cells and induces an inhibitory 
phenotype.141 In pancreatic ductal adenocarcinoma, C3a:C3aR acti-
vates the extracellular-regulated kinase pathway, inducing epithelial-
to-mesenchymal transition.142 Hence, C3a has pleiotropic effects 
depending on the specific context in which it engages its receptor 
C3aR. Therapeutic intervention to inhibit or recover its activity 
should be carefully targeted to the desired location and time point.

7  |  RECEPTORS BEARING COMPLEMENT 
REGULATORY FUNCTIONS: CR1,  MCP, DAF, 
AND CRIG

7.1  |  C3b interaction with CR1

C3b is tightly regulated by CR1, which is capable of dissociating C3/
C5 convertases and serving as a cofactor for FI to degrade C3b into 

Expressing cell type Function References

Mast cells Histamine release [125]

Eosinophils, macrophages Unknown, intracellular? [129,130]

CD4+ T cells Important for homeostasis, induction of 
inhibitory phenotype in lung cancer

[4,141]

Epithelial cells Metabolism downregulation [131]

Neutrophils Attenuates mobilization [134]

Hematopoietic stem cells Retention in the bone marrow, homing, 
engraftment

[136–138]

Astrocytes, neurons Modulates neurogenesis, and axonal and 
synaptic plasticity

[139]

TABLE  1 Cells expressing C3aR and 
the known functions triggered by C3a 
binding
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    | 9ZARANTONELLO et al.

iC3b and C3d. CR1 is a membrane-bound complement receptor and 
a member of the RCA family. Similar to the other members, CR1 has 
a modular domain architecture formed by 30 CCP domains, a trans-
membrane domain, and a cytoplasmic tail.143 The C3b binding inter-
actions are mediated by two regions, each composed of three CCP 
domains, CCP8-10 and CCP15-17.144–146 CR1 is one of the cofactors 
binding to C3b and aiding in FI degradation. CR1 also has decay-
accelerating activity, exerted by binding to C3b in the C3 convertase 
and by dislodging the bound FB (Figure 2, right). CR1 is expressed on 
many different cell types, namely, monocytes, granulocytes, B and 
some T lymphocytes, kidney podocytes, and particularly cells of the 
circulatory system147 (Table 2). CR1 expressed on erythrocytes repre-
sents 90% of the total circulating CR1.148 In addition to its regulatory 
role in C3b convertase formation, CR1 is also important for the fixa-
tion of ICs and their removal from circulation by transporting them to 
the liver and spleen.149 Due to its primary role in IC clearance, CR1 is 
an important receptor for the maintenance of homeostasis, and CR1 
(and CR2; see Section 8.1) is abnormally expressed on B cells of lupus 
patients.150 The role of CR1 in Alzheimer's pathogenesis is not yet 
clear. Studies have reported that impaired C3b regulation by CR1 due 
to overexpression of a subfunctional isoform is correlated with an 
increased risk of Alzheimer's disease development151,152; however, 
a recent review highlights that an isoform with the most active sites 
might be responsible for the increased disease risk.153

A secondary function of CR1, triggered by high C3b density, is 
the induction of IL-1 production and secretion of IL-1β on mono-
cytes.154 C3b binding to CR1 has been reported to modulate adap-
tive immunity, particularly by inhibiting B-cell differentiation and 
T-cell proliferation.155–159 Finally, CR1 also facilitates human T-cell 
infection with C3 fragment-opsonized HIV by generating C3 frag-
ments through its cofactor activity, which can in turn interact with 
CR2.160 Due to its multiple functions and implications in disease, 
CR1-based therapeutics are being developed to control C3 depo-
sition on tissues and complement activation in the circulation; one 
example is CSL040. CSL040 is a soluble version of CR1 truncated 
at residue 1392, and it is promising for preventing complement-
mediated kidney damage.161,162 Another CR1-based inhibitor con-
sists of a monoclonal antibody targeting C3d covalently linked to 
CR1 CCP1-10 domains (C3d mAb-CR11-10). CR1 CCP1-10 are im-
portant for decay-accelerating activity exerted on the CP and AP 
convertases. This inhibitory fusion protein could allow targeting the 
complement inhibitory activity of CR1 CCP1-10 to sites of ongoing 
complement activation, avoiding systemic complement inhibition 
and its side effects.163

7.2  |  The multiple functions elicited by C3b binding 
to MCP

C3b can also be degraded by FI in the presence of membrane cofac-
tor protein (MCP or CD46) as a cofactor. MCP is composed of 4 CCP 
domains, 1-3 serine/threonine-rich domains, a transmembrane do-
main, and a cytoplasmic tail,164,165 and it is a member of the RCA pro-
tein family. MCP is expressed on all cells exposed to the circulatory 

complement system, except erythrocytes (Table  3); MCP binds to 
C3b deposited by the AP on host cells and promotes its inactivation 
by FI.166,167 In addition to its regulatory function of C3 deposits, MCP 
has an important signaling role in CD4+ T cells.4 Extracellular activa-
tion of C3aR and MCP by C3a and C3b, respectively, promotes ef-
fector functions, in agreement with the impaired Th1 responses in 
MCP- and C3-deficient patients. Moreover, the MCP cytoplasmic tail 
enables Treg cells to remain in an anti-inflammatory state. MCP in 
CD8+ T cells transmits important signals for fatty acid metabolism for 
optimal effector functions.168 In both CD4+ and CD8+ T cells, MCP 
plays a role in cell metabolism, although through different signaling 
events.169 CD8+ T cells regulate amino acid influx and fatty acid me-
tabolism, while CD4+ T cells tune amino acid influx, oxidative phos-
phorylation, and glycolysis. Loss of function mutations on the MCP 
gene leads to the development of aHUSz,170,171 and elevated serum 
levels of soluble MCP have been reported in one study for SLE pa-
tients,172 indicating how the lost ability to regulate complement by 
C3b binding at the host cell surface is detrimental for the host.

7.3  | Decay-­accelerating factor of C3 and C5 
convertases

The C3 and C5 convertases can be dissociated by a decay-
accelerating factor (DAF or CD55). DAF is a GPI-anchored recep-
tor part of the RCA protein family. The ectodomain is composed of 
four CCP domains arranged in a rod-like fashion.173 It is expressed 
by all blood cells and cells in contact with blood and tissue fluid 
(Table 4). It exerts its function by binding to C3b in the C3 and C5 
convertases, and it induces the decay of the complexes without act-
ing as a cofactor for FI activity. The DAF inhibitory activity of the 
generation of C3a and C5a fragments by complement convertases is 
crucial in the response to vascular injury, preventing excessive leu-
kocyte accumulation and thickening of the vascular lining by neovas-
cularization.174 In addition to its homeostatic regulatory functions, 
preventing undesired complement activation, DAF is a negative 
modulator of T-cell immunity, inhibiting the costimulatory activity 
exerted by the AP through inhibition of products of AP activation on 
antigen-presenting cells and on T cells.175 New research found that 
DAF expression is downregulated during germinal center (GC) for-
mation. In this context, augmented C3a:C3aR signaling is necessary 
for sustaining GC formation; concomitantly, the MAC inhibitor CD59 
is upregulated so that B cells are protected from lysis by the terminal 
pathway of complement.176 Paralleling its role in normal physiology, 
DAF is involved in the rare genetic disease PNH, where a mutation in 
the PIGA gene leads to loss of the GPI anchor, and DAF can no longer 
protect host cells from complement attack.177

7.4  |  C3b and iC3b interact with the CRIg receptor 
on tissue-­resident macrophages

The early complement opsonin C3b has a pivotal role in si-
lent phagocytosis, and the key receptor for this process is the 
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10  |    ZARANTONELLO et al.

complement receptor of the immunoglobulin superfamily (CRIg 
or V-set and Ig domain-containing 4 [VSIG4]). The N-terminal 
C3b/iC3b-binding domain of CRIg belongs to the IgV family of 
immunoglobulin-like domains,178,179 and the binding site is located 
between the MG3 and MG4 domains of C3b/iC3b.180 As predicted 
by the location of its binding site and its structure, CRIg does not 
act as a cofactor for FI-mediated C3b degradation; however, it 
acts as a potent inhibitor of the AP C3 convertase by prevent-
ing the C3b molecule in the convertase from binding to the C3 
substrate molecule (Figure 3). CRIg is expressed by tissue-resident 
macrophages, in particular Kupffer cells in the liver, and other 
macrophages in the digestive organs, as well as by neutrophils and 
DCs (Table 5). Subsets of these macrophages also express C3 and/
or C1q, but the functional link is unknown.181 CRIg participates in 
the phagocytosis of microbes, but it is also important to restrain 
T-cell responses, and it is upregulated in mouse autoimmune tis-
sue.182 Its expression also inhibits macrophage activation by 

reprogramming mitochondrial pyruvate metabolism and inhibiting 
reactive oxygen species secretion.183 The mechanisms for these 
processes have not yet been elucidated, and whether they are 
mediated by C3b binding is unknown. The binding of complement 
fragments triggers the recycling of CRIg on endosomes, depleting 
the inhibitory activity of the receptor at the surface and promot-
ing inflammation. However, silent phagocytosis not only of patho-
gens but also of cell debris is important for host homeostasis, as 
it ensures continuous removal of potential complement activators 
from circulation.178 Thus, CRIg is another way in which the innate 
immune system contributes to host homeostasis and fine-tunes 
adaptive immune responses. The binding site on C3b/iC3b of CRIg 
between MG3 and MG4 is shared by the inhibitory nanobody 
hC3Nb2.184,185 The nanobody blocks all complement pathways 
at the C3 cleavage event, indicating how natural receptor binding 
sites are an inspiration for complement-targeting molecules and 
potential therapeutics.

Expressing cell type Function References

Erythrocytes Immune complex clearance [149]

Monocytes Promotes IL1β secretion [154]

B cells Inhibition of differentiation [156–158]

T cells Inhibition of proliferation, infection with C3 
fragment opsonized HIV

[159,160]

TABLE  2 Cells expressing CR1 and the 
known functions triggered by C3b binding

Expressing cell type Function References

Nucleated cells Regulation of AP activation [166,167]

CD4+ T cells Promotes effector functions, restrains 
autoimmunity,

Regulates metabolism: glycolysis

[4]

CD8+ T cells Regulates metabolism: fatty acid metabolism [168]

TABLE  3 Cells expressing MCP and the 
known functions triggered by C3b binding

Expressing cell type Function References

Blood cells and cells in 
contact with blood 
and tissue

Decay acceleration of C3 and C5 convertases [174]

T cells Inhibitory [175]

Germinal center B cells Unwanted decay acceleration of C3 and C5 
convertases

[176]

TABLE  4 Cells expressing DAF and the 
known functions triggered by C3b binding

Expressing cell type Function References

Kupffer cells Phagocytosis [178]

T cells Restrains autoimmunity, may be mediated by C3b 
binding

[182]

Macrophages Inhibits proinflammatory phenotype, may be 
mediated by C3b binding

[183]

TABLE  5 Cells expressing CRIg and the 
known functions triggered by C3b and 
iC3b binding
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    | 11ZARANTONELLO et al.

8  |  RECEPTORS MEDIATING 
COMPLEMENT EFFECTOR FUNCTIONS, 
WITHOUT COMPLEMENT REGULATORY 
ACTIVITY:  CR2 ,  CR3,  AND CR4

8.1  |  iC3b and C3d interaction with CR2

iC3b and C3d regulate immune cell activation via interaction with 
complement receptor 2 (CR2, CD21). CR2 has a modular architecture 
similar to that of CR1; however, it possesses 15 or 16 CCP domains. 
CR2 mediates the effector functions of iC3b and C3d on B cells, folli-
cular dendritic cells in lymphoid organs, and epithelial cells (Table 6), 
and the binding site for C3d is at the first two CCP domains.186–188 
In mice, CR1 and CR2 are products of the same gene (Cr2), and al-
ternative splicing leads to the shorter form of the receptor CR2. In 
humans, they are encoded by separate genes (CR1 and CR2), giv-
ing rise to two different proteins with distinct functions.189 While in 
mice CR2 acts as a coreceptor for the B-cell receptor, amplifying the 
B-cell response, in human B cells, the costimulatory effect of CR2 is 
much less pronounced. In mice, the opsonized antigen binds to the 
B-cell receptor, while the bound C3d simultaneously binds to CR2 
expressed on the same B cell. This coligation lowers the threshold 
for B-cell activation by 10 000-fold.190 These functions have been 
extensively studied in mice; however, in humans, C3d-mediated co-
engagement of CR2 with the B-cell receptor has an inhibitory effect. 
In particular, it suppresses the expression of the activation marker 
CD69, IL-6 secretion, proliferation, and antibody production of B 
cells.191 Another important function of CR2 is mediating antigen 
transport to follicular dendritic cells and antigen presentation during 
GC formation and the generation of high-affinity antibodies.192,193 
CP activation by IgG clustering leads to the decoration of the anti-
gen with iC3b molecules and the formation of ICs. These molecules 
interact with CR3 (see Section  8.2) on the surface of subcapsular 
sinus macrophages, which carry ICs to the lymph nodes. Here, the 
ICs are relayed to B cells through CR2 interaction with C3d and are 
transported to follicular dendritic cells, where the antigen is retained 
through CR2:iC3b interaction during GC formation and B-cell affin-
ity maturation.194 Decreased CR2 expression leads to the develop-
ment of SLE and rheumatoid arthritis.195,196 In the context of lupus, 
CR2 binds to IFNα with the same CCP1-2 domains used for the iC3b, 
C3d interaction,197 and this could be involved in lupus pathogenesis 
since the receptor would no longer be able to bind opsonized ICs and 
carry out its function.

In addition to its function in IC transport, C3d has a novel role 
in anti-tumor immunity, mediated by its interaction with CR2, as it 

amplifies anti-tumor T-cell responses. In fact, C3d deposition on 
irradiated tumor cells, or its recombinant expression inside tumor 
cells, resulted in the recruitment of CD8+ cytotoxic T cells, deple-
tion of Tregs, and suppression of T-cell PD-1 expression in a mouse 
model.198 Recent research has demonstrated that the C3d:CR2 in-
teraction plays a role in marginal zone B cells (MZ B cells), which 
can acquire dendritic cell (DC) functions. Namely, CR2 on MZ B cells 
interacts with C3d deposited by tick-over of C3 on MHC II molecules 
on the DC surface, and MZ B cells acquire the antigen-presenting 
ability by trogocytosis.199 This cooperation between DCs and MZ 
B cells allows a broader antigen repertoire presentation to CD4+ T 
cells. From this discussion on the findings related to the CR2 func-
tions, it emerges that careful consideration has to be given to results 
obtained only in mouse models, and the findings should be repro-
duced in human-derived material.

8.2  |  iC3b and C3d trigger phagocytosis by 
interacting with their integrin-­like receptors 
CR3 and CR4

The late opsonins iC3b and C3d have the specialized functions of 
inducing phagocytosis and clearance of targets through interac-
tions with complement receptors 3 and 4 (CR3, CD11b/CD18, or 
αMβ2 and CR4, CD11c/CD18, or αXβ2). CR3 and CR4 belong to the 
β2 family of integrins and hence to a structurally different fam-
ily of receptors. Integrins are heterodimeric adhesion molecules 
formed by α and β subunits. They are organized into an extracel-
lular ligand-binding region, a transmembrane domain, and a cyto-
plasmic tail. Ligand binding dependent on the chelation of an Mg2+ 
ion triggers a conformational change that propagates a mechani-
cal signal through the actin cytoskeleton.200,201 In CR3 and CR4, 
the α subunit is an alpha-I domain, which has the peculiarity of 
increased flexibility, allowing binding to more rigid and less acces-
sible ligands on cell surfaces.202 CR3 and CR4 are expressed on 
all leukocytes (Table 7), and their structures allow them to carry 
out specific functions. Generally, CR3 binds preferentially to posi-
tively charged ligands, while CR4 binds preferentially to negatively 
charged ligands.203 iC3b is the main ligand for CR3 and CR4; how-
ever, the two receptors target different domains.204–207 CR3 can 
bind to MG1-MG2, MG6-MG7, and the TE domain, while available 
evidence suggests that CR4 binds iC3b at the MG3-MG4 interface. 
The interaction of iC3b with CR3 on macrophages and granulocytes 
promotes the phagocytosis of ICs.208 Moreover, CR3 is important 
for the intracellular degradation of the phagocytized target.209 An 

Expressing cell type Function References

B cells and follicular 
dendritic cells

Inhibits B cell activation, proliferation, and antibody 
production in humans, sustains germinal center 
formation

[190–193]

Tumor cells Reactivates the immune response to tumor [198]

Marginal zone B cells MZ B cells acquire DC functions [199]

TABLE  6 Cells expressing CR2 and 
the known functions triggered by C3dg 
binding
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established function of complement and the phagocytic receptor 
CR3 is at play during brain development and in neurodegenerative 
diseases. First, in the developing brain, complement contributes 
to the sculpting of synaptic circuits. Weak synapses, opsonized 
by iC3b, are eliminated through interaction with CR3 on the sur-
face of microglia, the brain-resident macrophages.20,210 Second, 
the iC3b:CR3 receptor interaction is important for the removal 
of amyloid plaques in brains affected by Alzheimer's disease.27 
Recent findings contributed to further differentiation of the func-
tions of CR3 and CR4. While it was confirmed that the iC3b:CR3 
interaction is prevalent for the phagocytic response, the iC3b:CR4 
interaction is dominant in the adhesion of monocytes, monocyte-
derived macrophages, and monocyte-derived dendritic cells to 
fibrinogen on podosomes, thus facilitating cell migration.211,212 
Notably, CR3 and CR4 deficiency results in life-threatening recur-
rent infections, as these receptors are important for leukocyte ex-
travasation and migration to the inflammatory site.213

The iC3b:CR3 interaction contributes to both pathogen removal 
and maintenance of immune tolerance,214 as apoptotic cells are also 
opsonized by iC3b. Their uptake by marginal zone dendritic cells 
is mediated in part via CR3 and to a lesser extent by CR4, and it 
causes decreased secretion of proinflammatory cytokines without 
any effect on the anti-inflammatory cytokines, thus contributing to 
the maintenance of peripheral T-cell tolerance.215 In vitro studies 
suggest that the iC3b interaction with CR3 inhibits T-cell prolifer-
ation and IL-2 release, in line with the hypothesis of a complement-
mediated regulatory function of the iC3b:CR3 interaction on T 
cells.216 In the eye, the iC3b:CR3 interaction is key for the devel-
opment of antigen-specific tolerance. CR3 stimulation of antigen-
presenting cells results in the sequential production of transforming 
growth factor-β2 and interleukin-10, the latter being essential for 
the induction of tolerance.217 At the same time, low-grade com-
plement activation generates enough C3b to sustain the defense 
against pathogens in this immune-privileged site.

8.3  |  iC3b and C3d as regulators of the immune 
response and promoters of immune tolerance

The interplay between the opsonins iC3b and C3d with CR2, CR3, 
and CR4 is key in the balance between triggering the immune 

response and maintaining immune tolerance. Despite the progress 
in understanding this process described above, the exact mecha-
nisms at play are still not fully understood and are likely context 
and organ-dependent. It has been suggested that iC3b and C3d 
may have opposite functions in immune regulation in the tumor 
microenvironment, as they can engage CR3 in two receptor con-
formations: upon iC3b binding, CR3 adopts the extended trans 
conformation, while it binds C3d in the closed cis conformation.218 
In this configuration, binding to C3d would occur on the surface of 
CR3-expressing cells, activating immune cells. iC3b binding would 
instead take place on a neighboring cell, extending up to 150  Å 
distance, thereby inhibiting immune responses. Competition be-
tween these two responses is actively taking place in the tumor 
microenvironment at the synapse between tumor and immune 
cells. Targeted delivery of C3d to the surface of tumor cells could 
boost the immune activation induced by C3d binding to CR3.218 
Moreover, C3d associated with tumor cells, or even free C3d, 
recruits, accelerates, and amplifies anti-tumor T-cell responses, 
allowing reactivation of immunity, up to the point of preventing 
tumor growth in mouse models.198 C3d stimulates the increase in 
tumor-infiltrating CD8+ T cells by depleting Tregs and suppress-
ing the T-cell expression of PD-1 through its interaction with CR2. 
Therefore, modulating the iC3b/C3d balance in tissue could either 
help maintain tolerance or stimulate immune responses, a process 
that, if disrupted, could result in autoimmunity, which is now being 
explored in anti-cancer therapy.

9  |  CONCLUSION

Herein, we have illustrated the central role of complement C3 
in the realization of complement effector functions. In particu-
lar, C3 can be seen as a basket that is opened upon complement 
activation, releasing the multitasking mediators of complement 
functions. Early opsonin C3b contributes to further complement 
activation and phagocytosis, while anaphylatoxin C3a and the 
late opsonins iC3b and C3d have multiple immune-related func-
tions. We have outlined, with structural explanations, how the 
different fragments carry out specific functions, mainly driven by 
three synergistic events: (a) release of a bioactive fragment in the 
fluid phase, (b) conformational changes brought by complement 

TABLE  7 Cells expressing CR3 and CR4 and the known functions triggered by iC3b and C3dg binding

Interaction Expressing cell type Function References

iC3b:CR3 Macrophages and granulocytes Phagocytosis, degradation of phagocytized target [208,209]

iC3b:CR4 Monocytes, monocytes derived macrophages 
and dendritic cells

Adhesion [212,213]

iC3b:CR3, iC3b:CR4 Leukocytes Extravasation and migration to the inflammatory site [214]

iC3b:CR3 Microglia Phagocytosis [20,210,211]

iC3b:CR3 T cells Inhibition of T cell proliferation [217]

C3dg:CR3 Immune cells in the tumor microenvironment Activation of immune responses [218]

iC3b:CR3 Immune cells in the tumor microenvironment Inhibition of immune responses [218]
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activation that reveal new binding sites and add flexibility, and (c) 
the exposed binding sites bear differential specificity for the re-
ceptors belonging to the structural families of G-protein-coupled 
receptors, RCA, immunoglobulin superfamily, and β2 integrins, 
thus enabling a multitude of unrelated functions. Furthermore, 
the expression patterns of the receptors on different cell types 
add a layer of complexity to the differentiation of the responses 
triggered by the binding of the C3 fragments.

We can now understand how C3 activation has elegantly reg-
ulated context-dependent functions and how a tip of this balance 
is a hallmark of many diseases. Thanks to the precise knowledge of 
C3-dependent effector functions, an open avenue is available for 
the development of C3-targeting therapeutics tailored to the spe-
cific disease context.
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