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els and experimental measurements in the literature.14
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Abstract15

In the context of seismoelectric and self-potential surveying, the effective excess charge16

density and the electrokinetic coupling coefficient are key parameters relating the mea-17

sured electrical potential and the hydraulic characteristics of the explored porous me-18

dia. In this work, we present a novel flux averaging approach that permits to estimate19

the frequency-dependent effective excess charge density in partially saturated porous me-20

dia. For this, we conceptualize the porous medium as a partially saturated bundle of cap-21

illary tubes under oscillatory flux conditions. We account for the pore size distribution22

(PSD) to determine the capillary-pressure saturation relationship of the corresponding23

medium, which, in turn, permits to determine the pore scale saturation. We then solve24

the Navier-Stokes equations within the saturated capillaries and, by means of a flux-averaging25

procedure, obtain upscaled expressions for: (i) the effective excess charge density, (ii) the26

effective permeability, and (iii) the electrokinetic coupling coefficient, which are functions27

of the saturation and the probing frequency. We analyze and explain the characteristics28

of these functions for three different PSDs: fractal, lognormal, and double lognormal. It29

is shown that the PSD characteristics have a strong effect on the corresponding electroki-30

netic response. The proposed flux-averaging approach has an excellent capability for re-31

producing experimental measurements and models in the literature, which are otherwise32

based on well-known empirical relationships. The results of this work constitute a use-33

ful framework for the interpretation of electrokinetic signals in partially saturated me-34

dia.35

Plain Language Summary36

Seismic waves travel throughout the Earth deforming the rocks in their passage.37

If rocks are porous, permeable, and contain fluids in their pores, as is the case in many38

geological formations, the wave’s passage may induce oscillatory fluid flow. Minerals com-39

posing rocks are commonly electrically charged and, thus, the flowing fluid can result in40

an electrical field. Interestingly, measuring this electrical field at the Earth’s surface may41

permit to characterize the hydromechanical properties of geological formations of inter-42

est, motivating the so-called seismoelectric method. The effective excess charge that is43

mobilized by the fluid motion depends on the frequency content of the wave, and mod-44

els exist to estimate this dependence in terms of the rock and fluid properties. However,45

in many scenarios in Earth sciences, rocks contain two immiscible fluid phases, such as,46
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water and air, for which frequency-dependent effective excess charge density models based47

on pore-scale physics are missing in the literature. In this paper, we derive such a model48

and show that it is able to reproduce previous estimates and experimental data.49

1 Introduction50

The remote characterization of partially saturated geological formations using non-51

invasive techniques remains, to date, a challenging task within the field of applied and52

environmental geophysics. Given its inherent sensitivity to flow dynamics and pore fluid53

characteristics, the seismoelectric method can provide highly valuable information for54

studying this type of environments (Grobbe et al., 2020; Revil et al., 2015). The phys-55

ical principles upon which seismoelectric prospecting is based on have been used in con-56

text of groundwater management and remediation (e.g., Dupuis et al., 2007; Han et al.,57

2004; Monachesi et al., 2018), exploration and production of hydrocarbons (e.g., Revil58

& Jardani, 2010), and CO2 geosequestration operations (e.g., Zyserman et al., 2015). Novel59

approaches addressing the complex processes behind the seismic-to-electric conversion60

are of great interest, as they may help to better interpret seismoelectrical signatures in61

partially saturated environments.62

The seismic-to-electric conversion occurs when a seismic wave propagates through63

a fluid saturated and charged porous medium, generating fluid displacements relative to64

the pore walls (e.g., Pride, 1994). Given that, in general, the surfaces of wet minerals65

composing porous rocks are electrically charged, an electrical double layer (EDL) arises66

within the saturating pore fluid which counterbalances the net charge present in the min-67

erals. The EDL contains an excess of charge that is distributed in two layers: (i) the Stern68

layer, where charges are virtually immobile, and (ii) the diffuse layer, where charges have69

the capacity to move freely (e.g., Revil & Mahardika, 2013). Whenever a passing seis-70

mic wavefield induces flow, the excess charge located in the diffuse layer is dragged into71

motion, generating a streaming current which, in turn, results in an electrical potential72

distribution. The associated electrical field, which can be surveyed remotely, either at73

the Earth’s surface or at boreholes, contains valuable information regarding the hydrome-74

chanical properties of the probed geological formation. Laboratory and borehole mea-75

surements evidence that seismoelectric signals are sensitive to, for example, the poros-76

ity and permeability of porous media (e.g., Zhu et al., 2008; Wang et al., 2015), and to77

salt concentration and dielectric permittivity of the saturating fluid (e.g., Zhu & Tok-78
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soz, 2013; Garambois & Dietrich, 2001). Seismoelectric signals measured in surface sur-79

veying or borehole logging have been used, for example, to explore earthquake rupture80

characteristics (e.g., Gao et al., 2016), to identify formation boundaries associated with81

lithological changes (e.g., Butler, 1996; Garambois & Dietrich, 2001), and to detect sat-82

uration changes in permeable geological formations (e.g., Thompson & Gist, 1993).83

The seismoelectric conversion is traditionally modeled using of the electrokinetic84

coupling coefficient CEK(ω), which is a frequency-dependent parameter relating the elec-85

trical potential difference (i.e., the electrical field) and the pore fluid pressure gradient86

driving the fluid flow. In this context, the most frequently used models to estimate CEK(ω)87

are based on the works of: (i) Pride (1994) and (ii) Packard (1953). On the one hand,88

Pride’s (1994) model is based on volume averaging principles and on the dynamic per-89

meability model proposed by Johnson et al. (1987). On the other hand, the pioneering90

model of Packard (1953) considers a capillary tube of a unique radius and computes the91

streaming potential difference associated with an oscillatory flux. This model has been92

widely applied to porous media with a certain success (e.g., Reppert, 2001). Recently,93

Thanh et al. (2021) extended the work of Packard (1953) to take into account different94

pore size distributions (PSD), thus showing the effects of the porous structure on CEK(ω).95

An alternative approach for studying the seismoelectric conversion is to compute the ex-96

cess charges that are effectively dragged in the diffuse layer, that is, the effective excess97

charge density Q̂ν , which can be subsequently used to estimate CEK (e.g., Jackson, 2010;98

Jougnot et al., 2012; Revil & Mahardika, 2013). In the literature, many studies were per-99

formed considering this effective excess charge density but neglecting its frequency-dependence,100

that is, considering its low-frequency limit (e.g., Jougnot et al., 2013; Rosas-Carbajal et101

al., 2020). Recently, Jougnot and Solazzi (2021) extended the definition of Q̂ν to the en-102

tire frequency range Q̂ν(ω), thus allowing to compute CEK(ω). For this, the authors in-103

tegrated the charges that are effectively dragged along individual pores across the probed104

medium, accounting for inertial effects associated with the oscillatory pressure forcing105

generated by a passing seismic wavefield. We remark that the latter work reconciled both106

Pride (1994) and Packard (1953) approaches by integrating flux averaging principles and107

the dynamic permeability concept. All of the above described works deal with the frequency-108

dependence of the coupling coefficient CEK(ω) and/or the effective excess charge Q̂ν(ω)109

under fully saturated conditions and, thus, modifications are needed if one wishes to em-110

ploy the corresponding approaches in partially saturated porous media.111
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Evidence indicates conclusively that water content variations in porous media have112

preeminent effects on the associated seismoelectric signatures (e.g., Bordes et al., 2015;113

Zyserman et al., 2017). When exploring partially saturated media using the seismoelec-114

tric method, one can also use either the coupling coefficient CEK and/or the effective115

excess charge density Q̂ν to study the electro-kinetic process. Warden et al. (2013) ex-116

tended the electrokinetic coupling coefficient CEK(Sw) definition to address partially sat-117

urated conditions, highlighting the key influence of water content on the seismoelectric118

conversion. The coupling coefficient in partially saturated conditions is generally obtained119

by scaling its fully saturated counterpart by the wetting phase saturation (Bordes et al.,120

2015; Revil & Mahardika, 2013; Warden et al., 2013; Zyserman et al., 2017). Later on,121

Revil and Mahardika (2013) proposed a simple model to compute the saturation- and122

frequency-dependent effective excess charge density of partially saturated porous media123

Q̂ν(ω, Sw) and through it, to estimate CEK(ω, Sw). For this, Revil and Mahardika (2013)124

rely on concept of dynamic permeability, using a Debye approximation, and on empiric125

and broadly used scaling laws, thus extending the approach proposed by Pride (1994)126

to partially saturated media. As far as we know, to date, a model deriving the saturation-127

and frequency-dependent effective excess charge density Q̂ν(ω, Sw) from first principles,128

that is, from flux averaging the pore scale physics, is lacking in the specific literature.129

Such derivation is of fundamental importance, as it would permit to: (i) couple flux, elec-130

trokinetic properties, and the pore size distribution characteristics of porous media; (ii)131

validate the approach proposed by Revil and Mahardika (2013).132

In this work, we propose a novel flux averaging approach to estimate the effective133

excess charge density as a function of saturation and frequency Q̂ν(ω, Sw). The paper134

is structured as follows. First, we resume the theory behind the frequency-dependence135

of the effective excess charge density Q̂ν(ω) and other parameters, such as, the dynamic136

permeability κ(ω) and the electrokinetic coupling coefficient CEK(ω). Then, we propose137

a model to account for different saturation states in the latter. We evaluate the satu-138

ration and frequency response of the medium considering fractal, lognormal, and dou-139

ble lognormal PSDs. Finally, we compare the proposed approach with the model pro-140

posed by Revil and Mahardika (2013) and with published experimental data.141
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2 Theory142

In this section, we resume the theory of dynamic (frequency-dependent) permeabil-143

ity and effective excess charge density in fully saturated media. Then, we extend these144

definitions to the partially saturated state, considering that the pore fluids are immis-145

cible and that their distribution throughout the pore space is determined by capillary146

forces. In the case of the dynamic permeability, we follow the work of Solazzi et al. (2020),147

who derived frequency- and saturation-dependent effective permeability estimates in par-148

tially saturated porous media.149

2.1 Frequency-Dependent Effective Excess Charge Density in Fully Sat-150

urated Media151

2.1.1 Fluid Flow and Dynamic Permeability152

Let us consider a cylindrical representative elementary volume (REV) of a porous153

material of length L (m) and radius RREV (m). We conceptualize the fluid flow of a sin-154

gle phase across the REV using a bundle of aligned capillary tubes, oriented along the155

axis of the cylindrical REV, comprising radii R (m) whose sizes vary from Rmin to Rmax.156

The pore-size distribution (PSD) is such that the number of capillaries with radii between157

R and R+dR is given by f(R)dR. Note that this conceptualization of a porous medium158

under fluid flow is based on similar concepts as the classic model of Kozeny (1927), which159

is broadly used in permeable soils (e.g., Mavko et al., 2009). Let us also consider that160

an incompressible Newtonian fluid characterized by a shear viscosity η (Pa.s) and den-161

sity ρ (kg/m3) saturates the porous medium, whose solid matrix is assumed to be rigid162

(Johnson et al., 1987). Note that the fluid incompressibility assumption is valid at the163

pore scale as long as the wavelengths of possible acoustic waves traveling in the fluid are164

much larger than the characteristic pore size (Johnson et al., 1987; Zhou & Sheng, 1989).165

Finally, we consider that the fluid flow within the pore space is of laminar-type associ-166

ated with a small Reynold’s number (Auriault et al., 1985; Smeulders et al., 1992).167

The REV structure is then subjected to an oscillatory pore fluid pressure differ-168

ence ∆p̂ = ∆p e−iωt (Pa) along its axis., with ω denoting the angular frequency (rad/s).169

Solving the incompressible Navier-Stokes equations under the assumptions mentioned170

above, the fluid velocity vf (m/s) in a capillary of internal radius 0 ≤ r ≤ R responds171
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to (Solazzi et al., 2020)172

vf (r, ω) = − 1

τηk2

[
J0(kr)

J0(kR)
− 1

]
∆p

L
, (1)173

where k2 = iωρ/η and Jν are Bessel functions of the first kind of order ν. The tortu-174

osity is given by τ = l∗/L, where l∗ is the actual flow path length. Note that we have175

dropped the harmonic term e−iωt for ease of notation. Integrating equation (1) over the176

cross-sectional area of the pore, the corresponding volumetric flow rate (m3/s) through177

a single capillary is given by (e.g., Johnson et al., 1987)178

q(R,ω) = − πR
2

τηk2

[
2

kR

J1(kR)

J0(kR)
− 1

]
∆p

L
. (2)179

The volumetric flow rate Qsat
flow (m3/s) at the fully-saturated REV-scale can be obtained180

by integrating equation (2) over the entire range of pore sizes within the REV181

Qsat
flow =

∫ Rmax

Rmin

q(R,ω) f(R) dR. (3)182

The effective Darcy velocity at the REV scale vsat (m/s) is obtained by scaling the vol-183

umetric flow rate by the corresponding cross-sectional area, that is, vsat = Qsat
flow/πR

2
REV.184

If one increases the frequency of the oscillatory pressure forcing, a transition from185

viscous- to inertia-dominated flow occurs. For a given critical angular frequency ωc, the186

viscous skin depth δ =
√

2η/ρω (m) becomes comparable to the radii of the largest sat-187

urated pores (Johnson et al., 1987)188

ωc '
2η

R̆2ρ
, (4)189

with R̆ being the characteristic radius of the saturated porous medium. For frequencies190

higher than ωc the fluid motion becomes viscously decoupled. In this context, the fluid191

flow and the underlying fluid pressure forcing become out of phase and the fluid flow am-192

plitude decreases.193

The dynamic (frequency-dependent) permeability κ(ω) (m2) is then computed us-194

ing Darcy’s law, that is, relating the fluid flow and the pressure gradient along the REV195

(Solazzi et al., 2020)196

κ(ω) =
1

τR2
REVk

2

∫ Rmax

Rmin

[
2

kR

J1(kR)

J0(kR)
− 1

]
R2f(R) dR. (5)197

Equation (5) can be solved numerically provided that f(R), Rmin, and Rmax are known.198

One of the consequences of equation (5) is that the pore size distribution has an impact199

on the dynamic permeability characteristics, such as, the value of ωc (Solazzi et al., 2020).200
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We remark that, following a different approach than the one proposed by Solazzi et al.201

(2020), Li et al. (2021) arrived to the very same conclusion.202

The low-frequency limit of equation (5) is the (Poiseuille-type) permeability of the203

medium (Blunt, 2017)204

κ0 =
1

τ8R2
REV

∫ Rmax

Rmin

R4f(R) dR. (6)205

2.1.2 Effective Excess Charge Density206

Let us now consider that the capillaries of the previously described porous medium207

are saturated by a binary symmetric electrolyte (e.g., NaCl) with ionic concentration Cwi208

(mol m−3) and valence zi = ±1, with i denoting the considered ion. Minerals compos-209

ing the pore walls of rocks normally exhibit surface charges when in contact with wa-210

ter. As an example, silicate and aluminosilicate minerals present negative charges un-211

der natural conditions. Let us then denote co-ions the ions that present the same charge212

as the minerals constituting the pore walls (e.g., Cl−) and, counter-ions those charged213

with an opposite valence (e.g., Na+). For the system to be electrically neutral, surface214

charges are balanced by an excess charge in the pore water. The latter are distributed215

in the EDL. Within the EDL, the diffuse layer comprises co-ions and counter-ions that216

are able to move and, also, is characterized by a net excess of charge. Hereafter we con-217

sider that the shear plane, that is, the plane that separates the stationary fluid and the218

moving fluid, corresponds to the interface between the Stern layer and the diffuse layer.219

The electrical potential along this plane is referred to as Zeta potential.220

The distribution of the excess charges in the diffuse layer within a single capillary221

is governed by the Poisson-Boltzmann equation222

∇2ϕ (r) = −Qν (r)

εrε0
, (7)223

where ϕ(r) (V) is the electric potential and Qν(r) (C m−3) is the excess charge density224

in the liquid at a distance 0 ≤ r ≤ R from the pore-centre. The relative permittivity225

of the fluid and the dielectric permittivity of vacuum are given by εr and ε0 = 8.854×226

10−12 F m−1, respectively. Under the above conditions, the effective charge density re-227

sponds to (e.g., Jougnot et al., 2012)228

Qν (r) = NAe0C
w
NaCl

[
e

(
− e0ϕ(r)

kBT

)
− e

(
e0ϕ(r)
kBT

)]
. (8)229
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Generally, equation (7) is solved assuming: (i) a Debye-Hückel linear approximation, that230

is, e0ϕ(r)/kBT << 1; (ii) that the pore size is considerably larger than thickness of the231

double layer. In this context, the two exponential terms in Eq. (8) can be expressed through232

the sinh function and, then, one can make use of the fact that for sufficiently small ar-233

guments the sinh function tends to its corresponding argument, that is, sinh [e0ϕ(r)/kBT ] '234

e0ϕ(r)/kBT . Consequently, the electric potential is given by235

ϕ(r) = ζe
r−R
lD , (9)236

where lD is the Debye length characterizing the electrical double layer thickness given237

by238

lD =

√
ε0εrkBT

2NAe2
0C

w
NaCl

. (10)239

The dependence of the ζ potential on the ionic concentration is hereby estimated follow-240

ing (Pride & Morgan, 1991)241

ζ(CwNaCl) = a+ b log10(CwNaCl). (11)242

The fitting parameters a and b are taken as a = −6.43 mV and b = 20.85 mV, as es-243

timated by (Jaafar et al., 2009) for NaCl brine and silicate-based materials.244

In this context, the effective excess charge density Q̂Rν carried by the water flow in245

a single capillary of radius R responds to (Jougnot & Solazzi, 2021)246

Q̂Rν (ω) =

∫ R
0
Qν(r)vf (r, ω)rdr∫ R
0
vf (r, ω)rdr

. (12)247

The effective excess charge density Q̂Rν is different from the simple excess charge den-248

sity Q̄ν , since Q̂Rν is the excess charge that is effectively dragged by the water flow, which249

is smaller than the total amount of excess charge present in the diffuse layer (Q̄ν : Q̄ν >>250

Q̂Rν ). For further details on this particular topic, we refer the readers to the discussion251

sections of Jougnot et al. (2019, 2020).252

The effective excess charge carried by the water flow in the fully saturated REV253

can be obtained by integrating Q̂Rν (ω), weighted by the corresponding fluxes, over the254

entire range of pore sizes255

Q̂sat,REV
ν (ω) =

∫ Rmax

Rmin
Q̂Rν (ω)q(R,ω)f(R) dR∫ Rmax

Rmin
q(R,ω)f(R) dR

, (13)256

where q(R,ω) is the volumetric flow rate through a single capillary of radius R given by257

equation (3). We remark that the supra-index “sat” denotes that the medium is fully258
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saturated and helps to discriminate this parameter from its partially saturated counter-259

part, defined in the next subsection of this paper.260

Finally, based on the above described expressions, it is possible to define a relative261

excess charge density (Jougnot & Solazzi, 2021),262

Q̂sat,rel
ν (ω) =

Q̂sat,REV
ν (ω)

Q̂sat, 0
ν

, (14)263

where Q̂sat, 0
ν = limω→0 Q̂

sat,REV
ν (ω) is the steady-state (low frequency) excess charge264

density of the fully saturated medium.265

2.1.3 Electrokinetic Coupling Coefficient266

At the REV scale, the electrokinetic coupling is usually quantified by means of the267

electrokinetic coupling coefficient (e.g., Jaafar et al., 2009)268

CEK(ω) =

(
∂ϕ

∂p

)
J=0, üs=0

=
∆V

∆p
, (15)269

which is the ratio of the electrical potential difference ∆V and the pressure difference270

∆p measured at the boundaries of a probed rock sample in the absence of total current271

densities J = 0 and solid frame accelerations üs = 0. Through a simple variable change,272

the frequency dependent coupling coefficient for a fully saturated medium can be expressed273

as (e.g., Jougnot et al., 2020; Jougnot & Solazzi, 2021; Revil & Mahardika, 2013)274

Csat
EK(ω) = − Q̂

sat,REV
ν (ω)κ(ω)

ηwσsat(ω)
, (16)275

where κw(ω) and Q̂sat,REV
ν (ω) respond to equations (5) and (13), respectively. We re-276

mark here that the electrical conductivity σsat(ω) may, as well, present a frequency de-277

pendence. For a detailed derivation of equation (16), we refer the reader to, for exam-278

ple, the work of Revil and Mahardika (2013) (specifically to equations 34 to 38). Note279

that, for steady-state conditions (low-frequency limit), Jougnot et al. (2019) showed that280

this equation is valid for any kind of pore space geometry (pore shape and connectiv-281

ity) and that the geometrical information is carried through the permeability. In this sense,282

as long as the thin double layer assumption is respected, permeability effects are can-283

celled in the coupling coefficient as the effective excess charge density depends on the284

inverse of the permeability (see discussion in Jougnot et al. (2019, 2020)). However, such285

simplification does not hold for the whole frequency range (e.g., Jougnot & Solazzi, 2021),286

as the relationship between permeability and effective excess charge density is more com-287

plex when considering frequency-dependent effects (see equation 13).288
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The relative electrokinetic coupling coefficient can be expressed as (Jougnot & So-289

lazzi, 2021)290

Csat, rel
EK (ω) =

Csat
EK(ω)

Csat, 0
EK

, (17)291

where Csat, 0
EK = limω→0 C

sat
EK(ω) is the steady-state electrokinetic coupling coefficient292

of the fully saturated medium.293

2.2 Frequency-Dependent Effective Excess Charge Density in Partially294

Saturated Media295

2.2.1 Fluid Flow and Effective Dynamic Permeability296

In the context of fluid flow in partially saturated porous media, the wetting phase297

flows through a fraction of the corresponding medium. Thus, Darcy’s equation in partially-298

saturated media is (e.g., Bear, 1972)299

vw = −κ
eff

ηw
∇pw. (18)300

In equation (18), vw is Darcy’s velocity of the wetting phase, κeff is the effective perme-301

ability of the wetting phase which responds to302

κeff(ω) = κ(ω)κrel
w (pc, ω), (19)303

with κrel
w (pc, ω) denoting the frequency dependent relative permeability of the wetting304

phase, and pc (Pa) the capillary pressure.305

The Young-Laplace equation permits us to obtain the capillary pressure in partially306

saturated capillary of radius Rp (e.g., Bear, 1972)307

pc =
2γ cos(β)

Rp
, (20)308

where γ (N/m) is the interfacial tension and β (rad) is the contact angle between the309

solid walls and the saturating immiscible fluid phases. At the REV scale, pc normally310

presents a functional relationship with the saturation of the medium (e.g., Van Genuchten,311

1980; Brooks & Corey, 1964). If the medium is at capillary pressure equilibrium, all cap-312

illaries presenting radii R > Rp(pc) = 2γ cos(β)
pc

are to be saturated by the non-wetting313

phase (e.g., Mualem, 1976) and those satisfying R ≤ Rp(pc) are to be saturated by the314

wetting phase. It is then straightforward to compute the associated effective wetting phase315

saturation Sew(pc), which yields (e.g., Blunt, 2017)316

Swe(pc) =

∫ Rp(pc)

Rmin
R2f(R) dR∫ Rmax

Rmin
R2f(R) dR

, with pc,min ≤ pc ≤ pc,max, (21)317
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with pc,max = 2γcosβ/Rmin and pc,min = 2γcosβ/Rmax. When capillary pressures are318

such that pc < pc,min we have Swe = 1 and, alternatively, when pc > pc,max we have319

Swe = 0. We remark that equation (21) assumes that the partially saturated porous320

medium is characterized by fully connected fluid phases, which saturate particular sub-321

sets of the probed porous medium (Blunt, 2017). The effective saturation Swe is related322

to the total Sw saturation by Sw = Swe(1−Swr)+Swr, with Swr denoting the wetting323

fluid residual saturation.324

The effective volumetric flow rates for the wetting phase can be obtained by inte-325

grating equation (3) between Rmin and Rp(pc), respectively. Then, employing equation326

(18), the frequency-dependent dynamic effective permeability for the wetting phase is327

(Solazzi et al., 2020)328

κeff(pc, ω) =
1

τR2
REVk

2
w

∫ Rp(pc)

Rmin

[
2

kwR

J1(kwR)

J0(kwR)
− 1

]
R2f(R) dR, (22)329

where k2
w = iωρw/ηw. Note that equation (22) is the extension of equation (5) to par-330

tially saturated media, as pc = pc(Sw). As expected, in the low-frequency limit, this331

expression converge to its Poiseuille-type counterpart (e.g., Blunt, 2017)332

κeff, 0
w (pc) =

1

τ8R2
REV

∫ Rp(pc)

Rmin

R4f(R) dR. (23)333

Please note that, in the derivation of equation (22), a no-slip condition is assumed334

to prevail at the interface between the saturating fluid and the pore walls. In presence335

of a non-negligible flow velocity at the fluid-pore wall boundary (slip condition), which336

may arise due to wettability effects, the dynamic permeability estimates (Li et al., 2020)337

and the electrokinetic response of the medium (Collini & Jackson, 2022) are expected338

to change. Such boundary effects are, however, beyond the scope of this work.339

2.2.2 Effective Excess Charge Density340

The effective excess charge carried by the water flow a the partially saturated medium341

is then obtained by integrating the excess charge along the pores that are effectively sat-342

urated with water for a given capillary pressure pc, weighted by the corresponding flow343

rates344

Q̂REV
ν (pc, ω) =

∫ Rp(pc)

Rmin
Q̂Rν (ω)q(R,ω)f(R) dR∫ Rp(pc)

Rmin
q(R,ω)f(R) dR

. (24)345

Note that since the capillary pressure pc is related to the water saturation Sw, we con-346

sider Q̂REV
ν (pc(Sw), ω) ≡ Q̂REV

ν (Sw, ω), without loss of generality.347
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Notably, it is possible to define a frequency- and saturation-dependent relative ex-348

cess charge density349

Q̂rel
ν (Sw, ω) =

Q̂REVν (Sw, ω)

Q̂0
ν(Sw)

, (25)350

where Q̂0
ν(Sw) = limω→0 Q̂ν(Sw, ω).351

2.2.3 Electrokinetic Coupling Coefficient352

By means of the above defined parameters, we extend the dynamic electrokinetic353

coupling definition to partially saturated conditions as (Revil & Mahardika, 2013)354

CEK(Sw, ω) = − Q̂
REV
ν (Sw, ω)κeff(Sw, ω)

ηwσ(Sw, ω)
, (26)355

where κeff(Sw, ω) and Q̂REV
ν (Sw, ω) respond to equations (22) and (24), respectively. The356

electrical conductivity (S/m), in its low-frequency limit, responds to (Waxman & Smits,357

1968)358

σ0(Sw) =
Snw
F

(
σw +

σs
Sw

)
, (27)359

where σs (S/m) is the surface conductivity, F = τ/φ is the formation factor, and n the360

second Archie’s coefficient. Even though the electrical conductivity can be considered361

as frequency dependent, for simplicity, we hereafter consider σ(Sw, ω) ≈ σ0(Sw). For362

more information about the frequency dependence of the electrical conductivity, we re-363

fer the readers to pertinent literature on the subject (e.g., Jougnot et al., 2010; Revil,364

2013).365

Finally, the relative electrokinetic coupling coefficient for partially saturated me-366

dia responds to367

Crel
EK(Sw, ω) =

CEK(Sw, ω)

C0
EK(Sw)

, (28)368

where C0
EK(Sw) = limω→0 CEK(Sw, ω).369

Equations (24) and (26) are the central methodological result of this paper, as they370

define the saturation- and frequency-dependent effective excess charge density and elec-371

trokinetic coupling coefficient at the REV scale by means of a flux-averaging upscaling372

procedure. We remark that both Q̂REV
ν (Sw, ω) and CEK(Sw, ω) depend on the PSD of373

the probed medium, a characteristic that is included in the corresponding expressions374

via the f(R) function.375
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3 Results376

In this section, we analyze the effects of frequency and saturation on the effective377

excess charge density Q̂REV
ν (Sw, ω) and the electrokinetic coupling coefficient CEK(Sw, ω)378

in porous media. We assess the effects of the pore size distribution in the correspond-379

ing response by considering: (i) fractal, (ii) lognormal, and (iii) double-lognormal pore380

size distributions.381

3.1 Pore Size Distribution382

3.1.1 Fractal Distribution Function383

As a first case, we consider a cumulative size distribution of pores whose radii are384

greater than or equal to R that obeys the following fractal law (e.g., Guarracino et al.,385

2014; Tyler & Wheatcraft, 1990; Yu et al., 2003)386

N(R) =

(
Rmax

R

)D
, (29)387

where D is the fractal dimension of the pore size with 1 < D < 2 and Rmin < R <388

Rmax. The total number of pores, from Rmin to Rmax, is given by389

Nt(Rmin) =

(
Rmax

Rmin

)D
. (30)390

On the other hand, differentiating N(R) with respect to R, we obtain the number of pores391

whose radii are between R and R+ dR:392

−dN = DRDmaxR
−D−1dR = f(R)dR. (31)393

Dividing equations (31) and (30), we obtain the probability density function fr(R)394

−dN

Nt
= DRDminR

−D−1dR = fr(R)dR, (32)395

such that,396 ∫ Rmax

Rmin

fr(R)dR = 1−
(
Rmin

Rmax

)D
≡1, (33)397

which clearly holds if (Rmin/Rmax)
D ' 0. In this sense, the condition Rmax >> Rmin398

must be satisfied for fractal analysis of porous media. Please note that, f(R) = Ntfr(R).399

3.1.2 Lognormal Distribution Function400

The lognormal distribution probability density function responds to401

fr(R) =
1

sR
√

2π
exp

(
− (logR− x)

2

2s2

)
. (34)402
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Figure 1. Probability density functions associated with the pore size distributions used in this

work: (a) fractal (D = 1.5), (b) lognormal (R∗ = 10µm and s = 0.46), and (c) double lognormal

(R∗
1 = 3.1µm, R∗

2 = 31µm, sd = s/2, β1 = 0.09, and β2 = 0.91).

where x = logR∗ and s denote the scale and shape parameters. Again, we consider that403

f(R) = Ntfr(R), where Nt is the total number of pores in the medium.404

3.1.3 Double Lognormal Distribution Function405

The double lognormal distribution can be regarded as the sum of two lognormal406

distributions with the same shape parameter sd and responds to407

fr(R) = β1
1

sdR
√

2π
exp

(
− (logR− x1)

2

2s2
d

)
+ β2

1

sdR
√

2π
exp

(
− (logR− x2)

2

2s2
d

)
, (35)408

where x1 = logR∗1 and x2 = logR∗2, and β1 + β2 = 1. Again, we consider that f(R) =409

Ntfr(R).410

Figure 1 shows the representative PSDs considered in this work with pore radius411

ranging from 1 µm to 100 µm: (a) fractal (D = 1.5), (b) lognormal (R∗ = 10µm and412

s = 0.46), and (c) double lognormal (R∗1 = 3.1µm, R∗2 = 31µm, sd = s/2, β1 = 0.09,413

and β2 = 0.91). We remark that smaller pore radii dominate the response of the medium414

for fractal PSD, while pores distribute more evenly throughout the given radii for the415

lognormal and double lognormal PSDs. As shown below, the PSD characteristics result416

in significantly different responses for the effective permeability, the effective excess charge417

density, and, consequently, the electrokinetic coupling in porous media.418
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Figure 2. Absolute value of the effective dynamic permeability κeff
w , effective excess charge

density Q̂REV
ν , and effective electrokinetic coupling coefficient CEK as functions of frequency for

different saturation states. Each row illustrates the result for a different PSD: (a, d, g) fractal

(D = 1.5), (b, e, h) lognormal (R∗ = 10µm and s = 0.46), and (c, f, i) double lognormal

(R∗
1 = 3.1µm, R∗

2 = 31µm, sd = s/2, β1 = 0.09, and β2 = 0.91).
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3.2 Numerical Analysis of the Proposed Model419

Let us consider three porous media represented by: (i) a fractal PSD with a dimen-420

sion D = 1.5, (ii) a lognormal PSD characterized by R∗ = 10µm and s = 0.46, and421

(iii) a double lognormal PSD characterized by R∗1 = 3.1µm, R∗2 = 31µm, sd = s/2,422

β1 = 0.09, and β2 = 0.91. We assume that they all have τ ' 1, Rmin = 1 µm, and423

Rmax = 100 µm and, also, the same total number of pores Nt, which is taken from the424

fractal distribution characteristics (equation 30). The pore fluid properties that satu-425

rate these probed media are summarized in Table 1.426

Following Solazzi et al. (2020), we numerically solve equation (22) and obtain the427

saturation- and frequency-dependent effective permeability for the above described porous428

media. Figures 2a, 2b, and 2c illustrate the magnitude of κeff(Sw, ω) as a function of fre-429

quency for the three PSDs described above. Note that each column of Figure 2 is asso-430

ciated with one particular PSD. In this context, we plot different effective saturation states,431

identified by different colored lines. We observe that the absolute value of κeff decreases432

with frequency for f > fc, with fc = ωc/2π denoting the critical frequency (Figures433

2a, 2b, and 2c). Recall that fc is determined by the PSD characteristics, specifically by434

the largest saturated pores of the distribution. The frequency-dependent behavior of |κeff(Sw, ω)|435

is explained by the onset of the inertia effects for f ≥ fc. When inertia effects prevail,436

the amplitude of the dynamic permeability drops and its phase increases (e.g., Zhou &437

Sheng, 1989). As previously observed by Solazzi et al. (2020), the critical frequency fc438

increases with decreasing saturation, as water retreats to increasingly smaller pores. We439

also note that |κeff | increases with water saturation. The corresponding response is mod-440

ulated by the PSD of the probed porous medium. The reason behind this behavior is441

that the overall number of pores saturated by water decreases with decreasing Sw, as is442

the case in the classic relative permeability functions (e.g., Brooks & Corey, 1964; Mualem,443

1976). Evidently, this saturation- and frequency-dependent behavior also affects Q̂REV
ν444

and CEK at the REV scale. Note that, as expressed in equation (26), CEK(Sw, ω) de-445

pends on κeff(Sw, ω) (equation 22), which includes both the effects of κ(ω) (equation 5)446

and κrel(Sw, ω) (equation 19).447

Figures 2d, 2e, and 2f, illustrate the frequency dependence of the absolute value448

of the effective excess charge density |Q̂REV
ν (Sw, ω)| at different effective saturation states449

(equation 24). The parameters of the PSDs and the physical properties of the wetting450
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Table 1. Fluid properties employed in this study.

Definition Variable Value Units

Fluid shear viscosity (wetting phase) ηw 1× 10−3 Pa.s

Fluid density (wetting phase) ρw 1000 kg/m3

Interfacial tension (water-air) γ 72× 10−3 N/m

Contact angle β 0 rad

Dielectric permittivity of vacuum ε0 8.854× 10−12 F/m

Relative permittivity of the fluid εr 80.1 -

Boltzmann constant kB 1.381× 10−23 J/K

Avogadro number NA 6.022× 1023 1/Mol

Elementary charge e0 1.6× 10−19 C

Ionic concentration CwNaCl 10−4 Mol/L

Temperature T 293.15 K

fluid are the same as those employed in panels 2a-2c of the corresponding figure. We ob-451

serve that |Q̂REV
ν (Sw, ω)| increases with f for f > fc irrespective of the saturation. (Jougnot452

& Solazzi, 2021) explored the behavior of Q̂ν(ω) in fully saturated conditions, and ob-453

served a corresponding increase for f > fc. By comparing panels 2a to 2c with pan-454

els 2d to 2f, we observe identical shifts in the characteristic frequency fc(Sw), which moves455

towards higher frequencies for decreasing saturation. Again, this fc-shift is different for456

each PSD, evidencing larger change of fc with saturation for the fractal PSD than for457

the double lognormal PSD. Note that, as shown in previous works in fully saturated me-458

dia (e.g., Jougnot & Solazzi, 2021; Guarracino & Jougnot, 2018; Soldi et al., 2019), the459

magnitude of the effective excess charge density increases when the characteristic cap-460

illary size decreases. Consequently, the magnitude of Q̂REV
ν (Sw, ω) increases with decreas-461

ing Sw, as water retreats towards relatively small pores. Both the fractal and the log-462

normal distribution characteristics, as considered in this section, present a larger num-463

ber of small pores when compared with the double lognormal PSD. This is precisely the464

reason for a larger relative variation in Q̂REV
ν (Sw, ω) values for the fractal and lognor-465

mal PSDs for decreasing saturations as compared with those associated with the dou-466

ble lognormal PSD.467
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Finally, using equations (21) to (27), we predict the frequency dependence of the468

electrokinetic coupling coefficient CEK at different saturation states (Figs 2g, 2h, and469

2i). We consider the previously described PSDs and pore fluid properties, together with470

representative values of σs = 3 × 10−3 S/m, Swr = 0.2, n = 1.7 and F = 5 to model471

the variation of electrical conductivity of porous media as a function of water saturation472

Sw. To infer the electrical conductivity σw from Cw, we employ the relation σw = 10×473

Cw for a NaCl solution (Sen & Goode, 1992). The results show that the magnitude of474

CEK decreases with increasing frequency for f > fc irrespective of Sw (Figs 2g, 2h, and475

2i). This behavior is in good match with published works for the case of full saturation476

(e.g., Jougnot & Solazzi, 2021; Pride, 1994; Revil & Mahardika, 2013). Even though the477

amplitude of CEK appears to decrease with decreasing Sw for lognormal (Fig. 2h) and478

double lognormal PSDs (Fig. 2i), this is not the case for the fractal PSD (Fig. 2g). In479

the latter case, we note that the amplitude of CEK increases and, then, decreases with480

saturation, a behavior that is more clearly illustrated below (Figure 3).481

For completeness, we illustrate the behavior of κeff
w , Q̂REV

ν , and CEK as functions482

of the effective saturation Swe, for different frequencies (Figure 3). Black circled lines483

denote the so-called low frequency limit for κeff , Q̂REV
ν , and CEK, while colored lines de-484

pict the responses for f = 102 Hz, f = 103 Hz, and f = 104 Hz. We observe that all485

curves tend to the same value for sufficiently small Swe values, irrespective of the prob-486

ing frequency. This is expected, as fc shifts towards higher frequencies for decreasing sat-487

urations (see Figure 2). Hence, the probing frequencies became smaller than fc for suf-488

ficiently low saturations and κeff
w , Q̂REV

ν , and CEK tend to their low-frequency counter-489

parts. Conversely, for increasing Swe, the overall responses experience a departure from490

the low-frequency behavior. Figure 3 evidences the control that the PSD has on κeff
w (Sw),491

Q̂REV
ν (Sw), and CEK(Sw) for different probing frequencies, as we note different slopes492

and inflections for different PSDs.493

4 Discussion494

In this section, we compare the Q̂REV
ν (ω, Sw) estimates obtained by means of the495

proposed flux-averaging approach with respect to those predicted by the pioneering model496

of Revil and Mahardika (2013). Then, we address the capability of the proposed model497

to predict experimental measurements of CrelEK(ω, Sw) which, to date, have been only per-498

formed under fully saturated conditions (Sw = 1).499
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Figure 3. Absolute value of the effective dynamic permeability κeff
w , effective excess charge

density Q̂REV
ν , and effective electrokinetic coupling coefficient CEK as functions of saturation for

different frequencies. Each row illustrates the result for a different PSD: (a, d, g) fractal (D =

1.5); (b, e, h) lognormal (R∗ = 10µm and s = 0.46); and (c, f, i) double lognormal (R∗
1 = 3.1µm,

R∗
2 = 31µm, sd = s/2, β1 = 0.09, and β2 = 0.91).
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4.1 Comparison with Previous Models500

In their classical work, Revil and Mahardika (2013) proposed the following empir-501

ical model for the frequency- and saturation-dependent effective excess charge density502

Q̂REV
ν (Sw, ω) ' Q̂0

ν(Sw)
√

1− iωτk (Sw), (36)503

where Q̂0
ν(Sw) denotes the low-frequency value of the effective excess charge density and504

τk denotes the relaxation time of the frequency-dependent behavior, which is given by505

τk(Sw) = κeff(Sw)
ρwFS

1−n
w

ηw
. (37)506

In order to compute equation (36) , Revil and Mahardika (2013) use the volume507

averaging model of Linde et al. (2007)508

Q̂0
ν(Sw) ' Q̂sat, 0

ν

Sw
. (38)509

where Q̂sat, 0
ν is the low-frequency effective excess charge density in fully saturated con-510

ditions. To estimate κeff(Sw), the authors take the Brooks and Corey (1964) model511

κeff(Sw) = κ0S
2+3λ
λ

w , (39)512

with λ a fitting parameter that is determined by the pore space characteristics of the probed513

medium.514

It is important to remark that equation (36) is based on a linear and low-frequency515

approximation of the dynamic permeability, which is commonly used to deal with κ(ω)516

in the space-time domain (e.g., Revil & Mahardika, 2013). Given that the proposed flux-517

averaging approach (equation 24) is developed in the space-frequency domain, our es-518

timates are not limited by such assumption. More importantly, in equation (36), Revil519

and Mahardika (2013) assume that equations (38) and (39) hold for the probed medium.520

If we wish to compare our approach with such model, it is important to analyze first the521

validity of equations (38) and (39) for the considered PSDs.522

Figure 4 shows a comparison between equations (38) and (39) with the correspond-523

ing ones considered in this work, which respond to equations (6) and (24) (in the low524

frequency). We observe that equation (39) correctly reproduces the tendencies of the ef-525

fective permeability associated with the fractal PSD (Figure 4a), which is in agreement526

with the observations of Soldi et al. (2017) for fractal media. Considering typical λ val-527

ues, we note that equation (39) tends to underestimate κeff,0(Sw) for lognormal and dou-528

ble lognormal PSDs (Figures 4b and 4c). We remark that the considered pore-structure529
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Figure 4. (a, b, c) Effective permeability and effective excess charge density as a function

of the effective saturation in the low-frequency limit for: (a, d) fractal (D = 1.8, Rmin = 23 nm

and Rmax = 4.7 µm), (b, e) lognormal (R∗ = 1.4µm and s = 0.15), and (c, d) double lognormal

(R∗
1 = 1.0µm, R∗

2 = 1.5µm, sd = s/2, β1 = 0.4, and β2 = 0.6) PSDs. Panels (a, b, c) illustrate

the behavior of equation (39) for λ = {1, 4} (magenta solid lines) and that of equation (6) (black

circled lines). Panels (d, e, c) illustrate the behavior predicted by equation (38) (magenta solid

lines) compared with that of (24) in the low-frequency range (black circled lines).
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is highly idealized and these differences can be a source of mismatch, as equation (39)530

is known to provide reliable predictions of κeff,0(Sw) in siliciclastic rocks. On the other531

hand, Figures 4d to 4f allow us to test the assumption expressed in equation (38). In-532

terestingly, we note that this equation provides with a fair representation of limω→0 |Q̂REV
ν |533

when considering a lognormal PSD. However, it tends to give biased representations of534

the corresponding variable for fractal and double lognormal PSDs. Particularly, equa-535

tion (38) results in estimations that significantly differ from those predicted by the low-536

frequency limit of equation (24) for low saturations. We conclude that, when compar-537

ing the proposed approach with that of Revil and Mahardika (2013) (equation 36), dif-538

ferences associated with the estimates given by equations (38) and (39) may be a source539

of mismatch. In order to circumvent this issue and, also, given that performing low-frequency540

measurements of κeff,0(Sw) and Q̂REV,0
ν (Sw) is feasible in laboratory setups, in the fol-541

lowing, we propose to perform the comparison of equations (24) and (36) assuming that542

κeff,0(Sw) and Q̂REV,0
ν (Sw) are known and, in this case, given by those resulting from543

the flux-averaging approach proposed in this work. As such, below, we concentrate solely544

on comparing the frequency-dependent response predicted by our model and that of Revil545

and Mahardika (2013).546

Figure 5 shows a comparison between the results from equation (24) (solid lines)547

and (36) (dashed lines) for the proposed PSDs, at each column. The first row depicts548

the absolute value of |Q̂REV
ν (Sw, ω)| as a function of frequency (for different saturation549

states) and the second row the corresponding behavior as a function of saturation (for550

different probing frequencies). We observe that, in general, the proposed flux-averaging551

model and the model of Revil and Mahardika (2013) provide with similar tendencies. In552

particular, estimates are largely similar for saturations approaching unity (Figures 5a553

to 5c) and at relatively low frequencies (Figures 5d to 5f). Given that the proposed model554

obtained the corresponding estimates, for the first time in the literature, averaging the555

physical processes from the pore to the REV scale, we are thus validating the model of556

Revil and Mahardika (2013) and proving its consistency and robustness despite its sim-557

plicity.558

4.2 Comparison with Experimental Data559

To date, measurements of CrelEK(ω) for different probing frequencies have been per-560

formed only under fully saturated conditions. The proposed model should have the ca-561
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Figure 5. Effective excess charge density as a function of (a, b, c) frequency and (d, e, f)

of the effective saturation. We consider: (a, d) a fractal PSD (D = 1.8, Rmin = 23µm and

Rmax = 4.7µm, m = 1.19); (b, e) a lognormal PSD (R∗ = 1.4µm and s = 0.15, m = 1.06), and (c,

d) a double lognormal PSD (R∗
1 = 1.0µm, R∗

2 = 1.5µm, sd = s/2, β1 = 0.4, and β2 = 0.6, m = 1)

PSDs. Solid lines illustrate the behavior of the proposed flux-averaging model (equation 24) and

dashed lines illustrate the behavior predicted by Revil and Mahardika (2013) model (equation

36).
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Figure 6. (a) Real and (b) imaginary parts of the relative electrokinetic coupling coefficient

as functions of frequency. We illustrate results of the proposed model for different saturations

(solid lines) using a lognormal PSD. Red squares depict the experimental measurements of

Glover, Walker, and Jackson (2012) for an Ottawa sand at full saturation. We also illustrate the

predictions of the proposed model for other saturations (colored lines). The dashed blue arrows

indicate the direction in which saturation decreases.

pability of representing experimental measurements in such end-member scenario of sat-562

uration and, also, to predict the partially saturated response of the corresponding me-563

dia.564

Figure 6 shows the frequency dependence of the real and imaginary parts of CrelEK(ω)565

at fully saturated conditions as reported by Glover, Walker, Ruel, and Tardif (2012) for566

an Ottawa sand sample. The Ottawa sand is characterized by a mean grain radius of 235567

µm. Glover, Walker, Ruel, and Tardif (2012) used a 10−3 mol/L NaCl electrolyte. We568

employed a lognormal PSD in combination with equation (17), that is equation (28) with569

Sw=1, to model the behavior of the measured data. We take Rmin = 1.05µm and Rmin =570

105µm, as well as R∗ = 60 µm and s = 0.15. Note that R∗ is close to the effective pore571

radii of rp = 67 µm, as reported by Glover, Walker, Ruel, and Tardif (2012) for the cor-572

responding sample. The pore fluid properties are summarized in Table 1. We observe573

that the proposed model is able to reproduce experimental data (Figure 6, black lines).574

We also illustrate variations predicted by the proposed model for CrelEK for saturations575

of Sw = 0.6, 0.3 and 0.1 (Figure 6, colored lines). The dashed blue arrows indicate the576

direction in which saturation decreases in Figures 6a and 6b, evidencing an increase of577
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Figure 7. Amplitude of the electrokinetic coupling coefficient as function of frequency for

different saturations. Each column displays the results for a different PSDs: (a) fractal (D = 1.8,

Rmin = 23 nm and Rmax = 4.7 µm), (b) lognormal (R∗ = 1.4µm and s = 0.15), and (c) double

lognormal (R∗
1 = 1.0µm, R∗

2 = 1.5µm, sd = s/2, β1 = 0.4, and β2 = 0.6). Red squares depict

the experimental measurements of Peng et al. (2020) for a fully saturated sandstone. We also

illustrate the predictions of the proposed model for other saturations (colored lines). The dotted

blue arrows indicate the direction in which saturation decreases.

fc with decreasing Sw, a fact that is also observed in the effective permeability curves578

for lognormal distributions (Figure 2b).579

Figures 7 shows the frequency dependence of |CrelEK | at full saturation for a sand-580

stone sample, as measured by Peng et al. (2020) (red squares). We show that the pro-581

posed model is capable of fitting the main trend of experimental data by means of the582

three PSD described in this study, by using: (a) fractal (D = 1.8, Rmin = 23 nm and583

Rmax = 4.7 µm), (b) lognormal (R∗ = 1.4µm and s = 0.15), and (c) double lognor-584

mal (R∗1 = 1.0µm, R∗2 = 1.5µm, sd = s/2, β1 = 0.4, and β2 = 0.6). We remark that,585

because of computational restrictions involved with the numerical integrations performed586

in this work, we do not carry out a full inversion of the parameters but empirically find587

those which provide a relatively good fit with experimental data. Nevertheless, these pa-588

rameters are similar to those reported by Thanh et al. (2021) for the same sample to model589

the frequency dependence of the electrokinetic coupling coefficient, that is directly ex-590

pressed via the Zeta potential rather than the effective excess charge density. Once again,591

we illustrate the predicted variations of |CrelEK | for different saturations (colored lines).592

Finally, Figure 8 shows the frequency dependence of |CEK | measured by Zhu and593

Toksoz (2013) for a sample of Berea sandstone (squared curves) for different electrical594

conductivities. We employ the proposed model considering Rmin = 0.13µm and Rmax =595
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Figure 8. Amplitude of the electrokinetic coupling coefficient as functions of frequency under

saturated conditions for different electrical conductivities. Colored squares denote measurements

taken by Zhu and Toksoz (2013) for a Berea sandstone. We illustrate the predictions of the pro-

posed model for three different PSDs: (a) fractal (D = 1.65, Rmin = 0.13 µm and Rmax = 30

µm), (b) lognormal (R∗ = 6.3µm and s = 0.15, Rmin = 0.13 µm and Rmax = 30 µm), and (c)

double lognormal (R∗
1 = 1.0µm, R∗

2 = 3.0µm, sd = s/2, β1 = 0.4, and β2 = 0.6).

30µm for the different PSD (see solid lines), that is, (a) fractal (D = 1.65), (b) lognor-596

mal (R∗ = 6.3µm and s = 0.15) and (c) double lognormal (R∗1 = 1.0µm, R∗2 = 3.0µm,597

sd = s/2, β1 = 0.4, and β2 = 0.6). The values of C0
EK are reported to be 0.3×10−6,598

0.15×10−6, 0.065×10−6, 0.035×10−6 and 0.024×10−6 V/Pa for 0.012, 0.048, 0.095, 0.18599

and 0.32 S/m, respectively (Zhu & Toksoz, 2013). Using equation (17), we are able to600

obtain CrelEK and, hence, CEK . It is seen that the proposed approach using three con-601

sidered PSDs is capable of reproducing the experimental data very well.602
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5 Conclusions603

We proposed a flux averaging approach to compute the frequency- and saturation-604

dependent effective excess charge density in partially saturated porous media. For this,605

we conceptualized the pore space as a bundle of capillary tubes with a given pore size606

distribution (PSD). We modeled the frequency dependence of the effective excess charge607

density by solving the Navier-Stokes equations under oscillatory flow conditions within608

the capillaries that are effectively saturated for a given capillary pressure state. Over-609

all, we derived expressions for: (i) the capillary pressure–saturation relationship of the610

probed medium; and for the saturation- and frequency-dependent (ii) effective perme-611

ability κeff(Sw, ω), (iii) effective excess charge density Q̂REVν (Sw, ω), and (iv) electroki-612

netic coupling coefficient CEK(Sw, ω).613

The variation of κeff , Q̂REV
ν and CEK with frequency at different saturation states614

are analyzed and explained for three different PSDs (fractal, lognormal and double log-615

normal PSDs). It is shown that the PSD has strong effect on the critical frequency ωc616

and the characteristics of κeff , Q̂REV
ν and CEK as functions of frequency and saturation.617

Namely, the critical frequency ωc increases with decreasing water saturation Sw for a given618

PSD. The reason is that when the water saturation decreases, only the smaller radius619

pores are saturated by water, leading to a decrease of the characteristic radius represen-620

tative R̃ of the saturated pores. This process affects the effective excess charge density621

at the REV scale. The proposed model is compared with previous models in the liter-622

ature and, in the case of full saturation, it is also compared with published data. We found623

that the proposed model is capable of reproducing the frequency-dependence of Q̂REV
ν624

as predicted by previous models, which do not rely in a flux-averaging approach, pro-625

vided that the low-frequency estimates of the effective excess charge and effective per-626

meability are correct. On the other hand, our approach was able to represent experimen-627

tal measurements of the coupling coefficient CEK for different frequencies, conductivi-628

ties, and rock properties. The proposed approach is valid for practically any PSD and629

constitutes a practical framework for the interpretation of seismoelectric signatures of630

partially saturated media.631
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