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Abstract

Background: We aimed at predicting fatigue after breast cancer treatment using machine learning on clinical covariates and
germline genome-wide data. Methods: We accessed germline genome-wide data of 2799 early-stage breast cancer patients
from the Cancer Toxicity study (NCT01993498). The primary endpoint was defined as scoring zero at diagnosis and higher
than quartile 3 at 1 year after primary treatment completion on European Organization for Research and Treatment of Cancer
quality-of-life questionnaires for Overall Fatigue and on the multidimensional questionnaire for Physical, Emotional, and
Cognitive fatigue. First, we tested univariate associations of each endpoint with clinical variables and genome-wide variants.
Then, using preselected clinical (false discovery rate < 0.05) and genomic (P < .001) variables, a multivariable preconditioned
random-forest regression model was built and validated on a hold-out subset to predict fatigue. Gene set enrichment analysis
identified key biological correlates (MetaCore). All statistical tests were 2-sided. Results: Statistically significant clinical
associations were found only with Emotional and Cognitive Fatigue, including receipt of chemotherapy, anxiety, and pain.
Some single nucleotide polymorphisms had some degree of association (P < .001) with the different fatigue endpoints,
although there were no genome-wide statistically significant (P < 5.00 � 10�8) associations. Only for Cognitive Fatigue, the
predictive ability of the genomic multivariable model was statistically significantly better than random (area under the curve
¼ 0.59, P ¼ .01) and marginally improved with clinical variables (area under the curve ¼ 0.60, P ¼ .005). Single nucleotide poly-
morphisms found to be associated (P < .001) with Cognitive Fatigue belonged to genes linked to inflammation (false discovery
rate adjusted P ¼ .03), cognitive disorders (P ¼ 1.51 � 10�12), and synaptic transmission (P ¼ 6.28 � 10�8). Conclusions: Genomic
analyses in this large cohort of breast cancer survivors suggest a possible genetic role for severe Cognitive Fatigue that
warrants further exploration.

Fatigue is one of the most common and distressing long-term
side effects experienced by breast cancer survivors after treat-
ment (1). During active treatment, the vast majority of patients
experience some fatigue, which typically improves over the first

year after primary treatment completion, although around 30%
of patients continue to report severe fatigue for many years (2–
4). Several studies suggested that the intensity and duration of
fatigue experienced by cancer patients are statistically
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significantly greater than those of healthy controls, with sub-
stantial evidence that cancer-related fatigue affects patients’
social and work lives and has a substantial negative impact on
quality of life and daily activities (2,3,5–10).

Cancer-related fatigue is a complex, multidimensional, and
heterogeneous symptom, involving physical, emotional, and
cognitive dimensions (11). Previous research has pointed at age,
preexisting depression and fatigue, early stress, comorbidities,
physical inactivity, and specific treatment classes as clinical
risk factors for onset and persistence of cancer-related fatigue
(12,13). In addition, there is growing evidence for associations of
cancer-related fatigue and biological factors, including genetic
factors. Particularly, prior data suggested that activation of
chronic inflammation pathways might contribute to posttreat-
ment fatigue through central nervous system signaling. One of
the most solid hypotheses is that fatigue is associated with sin-
gle nucleotide polymorphisms (SNPs) related to genes coding
for proinflammatory cytokines, including polymorphisms in
TNFa, IL8, IL6, IL1b, and IL1RN (14,15). Other biological factors
that may be implicated in cancer-related fatigue include
hypothalamic-pituitary-adrenal axis deregulation, five-
hydroxyl-tryptophan deregulation, and alterations in adenosine
triphosphate and muscle metabolism (1,14–20). Nevertheless,
evidence supporting these associations is inconsistent, and
findings were not always validated because of several study
limitations, including the focus on the most acute effects of
cancer treatments, not accounting for different fatigue dimen-
sions, small sample sizes, or retrospective or cross-sectional
designs. Particularly, comprehensive genome-wide association
studies (GWAS) have not been previously performed, which lim-
its our understanding of fatigue after breast cancer treatment
(2,8,10,12).

Although conventional GWAS have provided insights for
many human complex traits (21), effect sizes of common SNPs
are usually small, and adjustment for multiplicity leads to un-
derpowered analyses (22). Machine learning methodologies
emerged as an alternative data-driven approach that seeks to
identify joint contributions of multiple SNPs to complex traits,
eventually aiming for a prediction model that can aid clinical
decision-making. Recently, preconditioned random forest re-
gression (PRFR), proposed by Oh et al. (23) as means to prioritize
the SNPs with predictive benefits, led to discovery of SNP panels
of high relevance to radiotherapy-related toxicities (24).

To address the limitations of the previous studies on fatigue
in breast cancer survivors, we applied a machine learning ap-
proach on data from the Cancer Toxicity (CANTO) cohort, con-
sisting of large prospective, longitudinal, clinical, patient-
reported outcomes and genomic data of survivors of early-stage
breast cancer, to search the genome for a panel of fatigue-
associated SNPs that could help predict severe fatigue 1 year af-
ter completion of primary breast cancer therapy and potentially
suggest putative biological mechanisms of cancer-related
fatigue.

Methods

Study Procedures

The CANTO study (NCT01993498) is a prospective cohort study
that enrolled 12 012 patients between 2012 and 2018.

Patients were evaluated at diagnosis (baseline) and then for
5 years following completion of primary treatment, including
surgery, adjuvant chemotherapy, or radiation therapy,

whichever came last. For this study, data on diagnosis and 1
year after completion of primary treatment were used. Clinical
data were prospectively collected by dedicated nurse practi-
tioners. Socioeconomic characteristics and validated patient-
reported outcome data including European Organization for
Research and Treatment of Cancer quality-of-life question-
naires (EORTC QLQ-C30 and EORTC-QLQ-FA12 [fatigue-specific
module]) (11,25), Global Physical Activity Questionnaire-16,12

and Hospital Anxiety and Depression Scale were also collected
(23). Blood samples were collected at diagnosis for the purpose
of DNA extraction from whole blood lymphocytes (26). The
study was approved by the National Regulatory Authorities and
Ethics Committee (ID-RCB: 2011-A01095-36, 11–039). All patients
enrolled in the study provided written informed consent, in-
cluding consent for the biological data collection.

Fatigue Endpoints

As a primary endpoint, severe fatigue was defined at 1 year after
the end of primary treatment using the EORTC QLQ-C30 Overall
Fatigue subscale and the EORTC QLQ-FA12 Physical, Emotional,
and Cognitive Fatigue subscales. The continuum of scores for
each endpoint was dichotomized into an event or nonevent
endpoint variable to define severe or nonsevere fatigue, respec-
tively. Patients were considered to have severe fatigue if they
reported a fatigue score higher than the quartile 3 in the fatigue
score distribution at 1 year after primary treatment completion.
This cutoff was determined qualitatively to isolate patients
with higher fatigue scores as seen from the distribution of score
changes (Supplementary Figure 1, available online).

Study Cohort

Clinical Cohort
We accessed clinical data from 5007 patients enrolled in CANTO
between March 2012 and December 2014. The main exclusion
criteria to define a study group for each fatigue domain included
absence of cancer-directed surgery to include only patients
treated with curative intent; death, secondary cancer, or breast
cancer recurrence to focus on a population disease free; with-
drawn consent; missing baseline or follow-up scores for each fa-
tigue endpoint; and nonzero baseline scores for the respective
fatigue domain, because we were interestedin isolating the fa-
tigue events that developed after breast cancer diagnosis and
therefore more likely associated with treatment (Figure 1). The
resulting clinical sample sizes were 989, 763, 1274, and 2128 for
Overall, Physical, Emotional, and Cognitive Fatigues, respec-
tively (Supplementary Tables 1 and 2, available online, detail co-
hort characteristics).

GWAS Data
By July 2018, 3895 patients from the entire CANTO cohort were
genotyped at study inclusion and had available information for
687 572 germline SNPs (Illumina InfiniumExome24 version 1.1
and Illumina GSA24 v1.0). Standard quality control (14) was ap-
plied, filtering 1) 68 individuals with high genetic similarity,
non-European origin, and low X chromosome heterozygosity
(<0.15); and 2) 177 746 SNPs due to minor allele frequency less
than 0.01, missing rate greater than 0.05, and Hardy-Weinberg
Equilibrium P less than 10–5. Finally, 2 patients with an SNP
missing rate greater than 0.05 were removed. Thus, 3825
patients with 509 826 SNPs passed the quality control. The geno-
mic study cohort was defined by an overlap between the 3825
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genotyped patients and the clinical overall cohorts as described
above (N ¼ 2799). The resulting sample size per fatigue endpoint
was 538, 404, 735, and 1171 for Overall, Physical, Emotional, and
Cognitive Fatigue, respectively (Figure 1; Supplementary Table
1, available online).

Statistical Analysis

We hypothesized that fatigue has genetic determinants that dif-
fer by fatigue domain, and cancer-related fatigue can be best
predicted by combining genomic and clinical data.

Univariate Analyses of Clinical and Genomic Variables
First, we investigated univariate associations between each fa-
tigue endpoint and clinical variables selected on the basis of
clinical judgment. The Benjamini-Hochberg procedure was ap-
plied to the P values to identify statistically significantly associ-
ated variables (false discovery rate < 0.05) (27). Then a genome-
wide association scan was performed to test associations
between each SNP and the fatigue endpoints. The association
was tested using the v2 test under the additive model while
adjusting for the first 3 principal components for ancestry.

Multivariate Modeling of Fatigue Using Genetic and Clinical
Variables
Using machine-learning techniques, predictive modeling on se-
vere fatigue at 1 year after primary treatment completion was
built based on patterns in patients’ permutations of SNPs. To
this end, a multivariable prediction model, based on PRFR meth-
ods, was built as described by Oh et al. (23).

First, the data were randomly split into the training and vali-
dation setswith matching event rate and distribution for the
clinical variables with statistically significant univariate associ-
ations (Table 2). The PRFR model was built and validated sepa-
rately on these 2 disjoint subsets (a holdout approach) (28). To
reduce modeling computational complexity, an independent
screening (29,30) was performed on the GWAS training data to
filter likely irrelevant predictors: the SNPs with univariate corre-
lation (P < .001), as determined empirically by previous studies
(23,24), were selected for further predictive modeling. Missing
genotypes (<5%) in the training set were imputed with the most
frequent value.

The predictive performance of PRFR in the validation cohort
was measured using the area under the curve (AUC) metric.
Using Mason and Graham’s test (31), statistical significance of
the AUC was tested under the null hypothesis of AUC not higher
than random (0.5). For the endpoints that were predicted by ge-
nomic profiles with AUC greater than 0.5, contribution of the
clinical variables to predictive performance was also investi-
gated. The PRFR model was retrained with additional predictors
from the clinical domain with statistically significant univariate
association. The resulting risk model’s goodness of risk calibra-
tion was performed by 1) grouping the patients in the validation
set by 3 equally sized high, intermediate, and low predicted risk
bins and 2) calculating actual prevalence of fatigue within each
bin.

For comparison with other conventional multivariable
methods, least absolute shrinkage and selection operator and
conventional random forest models were also built using the
same training and validation sets as the PRFR model. Also, to
preclude the possibility that the genomic model merely reflects

Figure 1. Consolidated Standards of Reporting Trial (CONSORT) diagram of study population. Patients with no fatigue scores available had Overall more missing infor-

mation in most baseline characteristics and other patient-reported outcomes. In selected characteristics, we recorded statistically significant differences between the

2 groups of patients. Missing fatigue score correlated with education, income, and TNM stage (Supplementary Table 4, available online). CANTO ¼ Cancer Toxicity

study; EORTC-QLQ ¼ European Organization for Research and Treatment quality of life; GWAS ¼ genome-wide association studies.
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ancestry differences confounding the outcomes, the compari-
son included a logistic regression model using only the first 3
principal components of genotypes as predictors.

Biological Interpretation of the Prediction Models
We performed an additional statistical analysis on the predic-
tive modeling results to uncover the potential biomarkers and
biological processes that might contribute to posttherapy fa-
tigue. To this end, the PRFR ranked relative importance of pre-
dictors, also known as variable importance measure (VIM). To
control for the effects of the clinical variables, we used the VIM
from the PRFR model that was built with the genomic and clini-
cal variables combined. The SNPs with the highest 50% VIM
were taken to the following steps for biological interpretation.
The SNPs were mapped within 50 000 base pairs of proximity
according to the genome build 19 (hg19). The resulting gene list
was analyzed for enrichment of previously known biological
processes, pathways, or biomarker groups for certain diseases.
For comparison, the enrichment analysis was also done using
the initial SNP set with univariate correlation P less than .001
without the VIM-based filtering. In addition, an interactome
analysis searched for a network of genes that are connected
through previously known interactions. MetaCore (Thompson
Reuters, New York, NY) was used for the enrichment and inter-
actome analyses.

Analyses were performed using SAS (v.9.4) and R (v.3.6.0)
packages GenABEL (21). All statistical tests were 2-sided.

Results

Baseline clinical characteristics are represented in
Supplementary Table 2 (available online).

Univariate Analyses of Clinical and Genomic Variables

No statistically significant clinical variables were found for
Overall and Physical fatigue endpoints. In contrast, anxiety
(P ¼ 4.34 � 10–6, odds ratio [OR] ¼ 1.90 and 95% confidence inter-
val [CI] ¼ 1.34 to 2.67; for doubtful, OR ¼ 2.22, 95% CI ¼ 1.45 to
3.35 for certain vs absent) and pain (P ¼ 7.78 � 10–5, OR ¼ 1.02,
95% CI ¼ 1.01 to 1.02 for unit pain score increase) were statisti-
cally significantly associated with increased risk for Emotional
Fatigue. For Cognitive Fatigue, anxiety (P ¼ 1.41 � 10–4, OR ¼
1.64, 95% CI ¼ 1.24 to 2.17 for doubtful, OR ¼ 1.62, 95% CI ¼ 1.19,
2.2 for certain vs absent), depression (P ¼ 4.29 � 10–4, OR ¼ 1.87,
95% CI ¼ 1.11 to 3.08, for doubtful, OR ¼ 3.07, 95% CI ¼ 1.31 to
6.86 for certain vs absent), and pain (P ¼ 2.98 � 10–8, OR ¼ 1.02,
95% CI ¼ 1.01 to 1.02 for unit score increase) were statistically
significantly associated (Table 1). No genome-wide significant
SNPs (P < 5.00 � 10–8) were found to be associated with any of
the endpoints. There was no notable genomic inflation for any
of the 4 endpoints (Supplementary Figure 2, available online).
These results were consistent for the genome-wide scan within
the training subcohorts. The number of SNPs from the genome-
wide scan within the training set with some degree of associa-
tion (P < .001) was 309 for Overall, 277 for Physical, 257 for
Emotional, and 299 for Cognitive Fatigue.

Predictive Performance of Genomic and Clinical Models

Only for the Cognitive Fatigue, the genomic-only model was val-
idated with an AUC statistically significantly larger than 0.5

(AUC ¼ 0.59, P ¼ .01) (Table 2), which was marginally (not statis-
tically significantly) improved to 0.60 (P ¼ .005) by adding the
aforementioned statistically significant clinical variables. The
resulting clinico-genomic model for the Cognitive Fatigue
showed good calibration (Figure 2); the predicted risk curve with
respect to the 3 risk bins did not statistically significantly devia-
tefrom the actual severe fatigue occurrence (Hosmer-Lemeshow
P ¼ .09). The predictive performance of other conventional
methods on the hold-out set was lower than for PRFR (Figure 3).

Biological Interpretation of the Genomic Models

Only the PRFR model for the Cognitive endpoint yielded an AUC
with a P less than .05 and thus was analyzed for biological inter-
pretability. The highest VIM was recorded for rs4742675 (VIM ¼
2.00 � 10–3, minor allele frequency ¼ 0.24), which is located in
an intergenic region in chromosome 9. In comparison, the clini-
cal variable with the highest VIM was pain (VIM ¼ 1.26 � 10–4,
ranking ¼ 101). The rest of the clinical variables scored relatively
low compared with genomic variables. Out of 200 SNPs with top
50% VIM, 137 SNPs were annotated with at least 1 gene. The
gene set enrichment analysis was performed using the 89 genes
that were annotated to the 137 SNPs. Statistically significant
enrichments in genes that are involved in cognitive and mood
disorders (false discovery rate, P ¼ 1.51 � 10�12) or inflammation
or complementary system(P ¼ .03) were observed from the se-
lected SNPs but not from the original SNP set without VIM filter-
ing (Table 3). Regardless of the filtering results, a biological
process pertinent to synaptic transmission (P ¼ 6.8 � 10�8)
showed a high degree of enrichment. From the selected SNP list,
Metacore analysis also identified a cluster of 4 gene products
(Supplementary Figure 3, available online) consisting of Insulin-
like Growth Factor (IGF)-1 receptor, Growth Factor Receptor
Bound Protein 14 (GRB14), Fibroblast Growth Factor Receptor 1
(FGFR1), and Dual Leucine zipper Kinase (DLK). Supplementary
Table 3 (available online) includes the VIM for all SNPs and clini-
cal predictors for the Cognitive Fatigue model as well as annota-
tion information for the SNP predictors.

Discussion

In this large multicentric, prospective, clinico-genomic longitu-
dinal dataset of breast cancer survivors, we deployed machine
learning techniques to investigate if high-dimensional genomic
data could be used to build and validate a predictive model for
the different known dimensions of fatigue. Although the ability
of our models to identify clinic and genomic contributors of fa-
tigue differed by fatigue domain, a group of SNPs and clinical
variables was suggested to be associated with the cognitive
domain.

Cancer-related fatigue is known to be complex in etiology,
with possibly many clinical, bio-behavioral, and genetic contrib-
utors (1). Prior studies had several limitations. First, comprehen-
sive integration of clinical, behavioral, and genetic information
was lacking. Second, prior studies focused on candidate gene
approaches mostly targeting proinflammatory cytokine activity
that were largely not independently validated. Moreover, longi-
tudinal design that follows patients from pretreatment into the
survivorship period has not been implemented. Last, there has
been lack of evaluation of the different dimensions of fatigue
(1). In this study we tried to address all these limitations.

Our approach used machine learning to identify a group of
SNPs and clinical information that may be associated with
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Table 1. Statistical significance of association between clinical covariates and 4 fatigue endpoints

Variable

Fatigue categories/endpoints

Overall (N ¼ 989) Physical (N ¼ 763) Emotional (N ¼ 1274) Cognitive (N ¼ 2128)

Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P

Sociodemographic
Age, continuous 0.99 (0.97 to 1.01) .16 0.99 (0.97 to 1) .14 0.99 (0.98 to 1) .06 0.98 (0.97 to 0.99) .003
Education

College or higher (referent) 1.00 (Ref) .79 1.00 (Ref) .70 1.00 (Ref) .38 1.00 (Ref) .02
High school 0.86 (0.55 to 1.35) 1.15 (0.74 to 1.78) 1.24 (0.9 to 1.71) 1.36 (1.04 to 1.77)
Primary school 0.93 (0.52 to 1.63) 1.24 (0.69 to 2.19) 1.21 (0.78 to 1.85) 1.55 (1.07 to 2.23)

Monthly household
incomeb (euros)
1500 (Referent) 1.00 (Ref) .50 1.00 (Ref) .21 1.00 (Ref) .35 1.00 (Ref) .22
1500-3000 0.7 (0.37 to 1.39) 0.61 (0.35 to 1.12) 0.83 (0.53 to 1.33) 0.77 (0.52 to 1.14)
3000 0.72 (0.39 to 1.43) 0.67 (0.37 to 1.23) 1.03 (0.66 to 1.64) 0.92 (0.63 to 1.38)

Employment statusb

Nonactive (Referent) 1.00 (Ref) .03 1.00 (Ref) .05 1.00 (Ref) .03 1.00 (Ref) 6.95x10�4

Active 1.54 (1.04 to 2.3) 1.48 (1.01 to 2.17) 1.37 (1.03 to 1.82) 1.5 (1.18 to 1.91)
Marital statusb

Not married (Referent) 1.00 (Ref) .80 1.00 (Ref) .51 1.00 (Ref) .82 1.00 (Ref) .65
Married 0.83 (0.53 to 1.34) 0.85 (0.54 to 1.34) 0.95 (0.68 to 1.34) 1.08 (0.81 to 1.46)

Clinical
Hormonal statusb

Premenopause (Referent) 1.00 (Ref) .83 1.00 (Ref) .29 1.00 (Ref) .08 1.00 (Ref) .004
Postmenopause 0.93 (0.61 to 1.47) 0.79 (0.53 to 1.2) 0.76 (0.57 to 1.03) 0.7 (0.55 to 0.89)
Smoking statusb

Smoker (Referent) 1.00 (Ref) .26 1.00 (Ref) .58 1.00 (Ref) .16 1.00 (Ref) .005
Ex-smoker 0.97 (0.49 to 1.97) 0.74 (0.37 to 1.48) 0.82 (0.5 to 1.34) 0.74 (0.5 to 1.09)

Nonsmoker 0.71 (0.4 to 1.32) 0.77 (0.44 to 1.39) 0.69 (0.46 to 1.06) 0.6 (0.44 to 0.84)
Alcohol statusb,d

No (Referent) 1.00 (Ref) 1.00 1.00 (Ref) .49 1.00 (Ref) .08 1.00 (Ref) .10
Yes 1.01 (0.52 to 1.82) 1.24 (0.71 to 2.11) 1.43 (0.95 to 2.13) 0.72 (0.48 to 1.05)

Physical activity (GPAQ 16)a

Q1 (Referent) 1.00 (Ref) .20 1.00 (Ref) .06 1.00 (Ref) .03 1.00 (Ref) .36
Q2 1.47 (0.84 to 2.58) 1.19 (0.67 to 2.13) 0.9 (0.61 to 1.32) 0.77 (0.55 to 1.07)
Q3 0.96 (0.54 to 1.7) 0.83 (0.47 to 1.45) 0.68 (0.45 to 1.01) 0.85 (0.61 to 1.18)
Q4 0.87 (0.49 to 1.55) 0.98 (0.57 to 1.69) 0.59 (0.39 to 0.89) 0.79 (0.57 to 1.11)

Charlson comorbidity
score, continuous

1.17 (0.98 to 1.4) .09 1 (0.83 to 1.22) .97 0.97 (0.83 to 1.14) .82 0.96 (0.83 to 1.11) .59

Depression (HADS)b

Absent (Referent) 1.00 (Ref) .59 1.00 (Ref) .06 1.00 (Ref) .06 1.00 (Ref) 4.29 x 10�4c

Doubtful 1.4 (0.51 to 3.29) 0.87 (0.21 to 2.65) 2.33 (0.94 to 5.45) 1.87 (1.11 to 3.08)c

Certain 1.47 (0.36 to 4.53) 6.48 (0.74 to 78.18) NA 3.07 (1.31 to 6.86)c

Anxiety (HADS)b

Absent (Referent) 1.00 (Ref) .86 1.00 (Ref) .31 1.00 (Ref) 4.34 x 10�6c 1.00 (Ref) 1.41 x 10�4c

Doubtful 0.88 (0.53 to 1.43) 1.39 (0.88 to 2.18) 1.9 (1.34 to 2.67)c 1.64 (1.24 to 2.17)c

Certain 0.93 (0.56 to 1.53) 1.18 (0.7 to 1.97) 2.22 (1.45 to 3.35)c 1.62 (1.19 to 2.2)c

Symptoms and quality of life
Hot flashesb

No (Referent) 1.00 (Ref) .27 1.00 (Ref) .12 1.00 (Ref) .006 1.00 (Ref) .003
Yes 1.28 (0.84 to 1.94) 1.4 (0.91 to 2.12) 1.53 (1.13 to 2.06) 1.46 (1.14 to 1.88)
Pain (EORTC QLQ-C30),b

continuous
1.02 (1.01 to 1.04) .006 1.02 (1 to 1.03) .008 1.02 (1.01 to 1.02)c 7.78 x 10�5c 1.02 (1.01 to 1.02)c 2.98 x 10�8c

Insomnia (EORTC QLQ-C30,)b

continuous
1.01 (1 to 1.01) .11 1 (1 to 1.01) .49 1 (1 to 1.01) .07 1.01 (1 to 1.01) 6.71 x 10�4

Tumor characteristics
Tumor grade

1 (Referent) 1.00 (Ref) .29 1.00 (Ref) .25 1.00 (Ref) .09 1.00 (Ref) .70
2 1.49 (0.87 to 2.67) 1.06 (0.64 to 1.79) 1.47 (0.98 to 2.24) 1.13 (0.81 to 1.58)
3 1.5 (0.82 to 2.84) 1.45 (0.84 to 2.55) 1.59 (1.02 to 2.53) 1.15 (0.8 to 1.67)

Tumor subtype
HRþHER2þ(Referent) 1.00 (Ref) .71 1.00 (Ref) .02 1.00 (Ref) .31 1.00 (Ref) .29
HRþHER2- 0.95 (0.49 to 1.98) 0.43 (0.25 to 0.78) 0.95 (0.59 to 1.56) 0.74 (0.52 to 1.07)

(continued)
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breast cancer–related Cognitive Fatigue. Several genes that were
associated with the identified SNP were in alignment with prior
knowledge of cancer-related fatigue. In the same way, the

clinical predictors found in this data, including anxiety, depres-
sion, and pain, were previously shown to be associated with fa-
tigue and cognitive dysfunction (12,13).

Table 1. (continued)

Variable

Fatigue categories/endpoints

Overall (N ¼ 989) Physical (N ¼ 763) Emotional (N ¼ 1274) Cognitive (N ¼ 2128)

Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P Odds ratio (95% CI) P

HR-HER2þ 1.49 (0.42 to 4.85) 0.64 (0.19 to 1.95) 1.61 (0.69 to 3.67) 0.71 (0.33 to 1.44)
HR-HER2- 0.77 (0.26 to 2.18) 0.62 (0.26 to 1.44) 0.75 (0.34 to 1.59) 0.91 (0.53 to 1.56)

Tumor stage, AJCC
I (Referent) 1.00 (Ref) .02 1.00 (Ref) .31 1.00 (Ref) .31 1.00 (Ref) .01
II 1.77 (1.17 to 2.67) 1.34 (0.9 to 2) 1.21 (0.89 to 1.63) 1.36 (1.06 to 1.75)
III 1.26 (0.55 to 2.64) 1.21 (0.54 to 2.53) 1.33 (0.78 to 2.21) 1.57 (1.04 to 2.33)

Treatment
Chemotherapye

No (Referent) 1.00 (Ref) .22 1.00 (Ref) .04 1.00 (Ref) .002 1.00 (Ref) .002
Yes 1.28 (0.87 to 1.9) 1.5 (1.02 to 2.2) 1.56 (1.18 to 2.08) 1.45 (1.14 to 1.84)

Trastuzumab
No (Referent) 1.00 (Ref) .14 1.00 (Ref) .004 1.00 (Ref) .05 1.00 (Ref) .34
Yes 1.59 (0.85 to 2.84) 2.3 (1.26 to 4.07) 1.55 (0.99 to 2.4) 1.2 (0.83 to 1.7)

Endocrine therapy
No (Referent) 1.00 (Ref) .16 1.00 (Ref) .59 1.00 (Ref) .40 1.00 (Ref) .81
Yes 1.52 (0.88 to 2.78) 1.17 (0.72 to 1.96) 1.2 (0.82 to 1.78) 1.05 (0.77 to 1.45)

Breast surgery
Breast conservation

(Referent)
1.00 (Ref) .59 1.00 (Ref) .05 1.00 (Ref) .03 1.00 (Ref) .44

Mastectomy 1.16 (0.72 to 1.81) 1.55 (0.99 to 2.41) 1.46 (1.05 to 2.01) 1.12 (0.85 to 1.47)
Lymphadenectomy

No (Referent) 1.00 (Ref) .01 1.00 (Ref) .04 1.00 (Ref) .40 1.00 (Ref) .006
Axillary 0.33 (0.05 to 3.78) 1.91 (0.23 to 88.67) Inf (0.87 to Inf)
Sentinel lymph node biopsy 0.26 (0.04 to 2.95) 1.36 (0.16 to 63.1) Inf (0.62 to Inf)

Radiotherapy
No (Referent) 1.00 (Ref) .78 1.00 (Ref) 1.00 1.00 (Ref) .55 1.00 (Ref) .10
Yes 1.17 (0.58 to 2.6) 1.04 (0.52 to 2.28) 0.84 (0.51 to 1.43) 1.53 (0.94 to 2.61)

aAJCC ¼ American Joint Committee on Cancer; CI ¼ confidence interval; EORTC QLQ ¼ European Organization for Research and Treatment of Cancer Quality of Life;

GPAQ 16 ¼ Global Physical Activity Questionnaire 16; HADS ¼ Hospital Anxiety and Depression Scale; HER2 ¼ human epidermal growth factor receptor 2; HR ¼ hor-

mone receptor; Q ¼ quartile; Referent ¼ reference level.
bAssessed at baseline.
cStatistical significance at Benjamini-Hochberg false discovery rate of 5%.
dAt least 1 drink per day.
eIn each subcohort, at least 86% of patients who received chemotherapy were treated with anthracycline and taxane combinations, mainly fluorouracil plus epirubicin

plus cyclophosphamide followed by a taxane (docetaxel or paclitaxel) (see Supplementary Table 2, available online). In this setting, most patients received 6 cycles ev-

ery 3 weeks with standard dose.

Table 2. Predictive performance of PRFR in the validation dataset with respect to the Overall, Physical, Emotional, and Cognitive fatiguea

Fatigue category or endpoint No. of samples (train/test) Event rate, % No. of SNPs with P < .001

PRFR performance

SNP only SNP þ clinical

AUC Pb AUC Pb

Overall (EORTC-QLQ-C30) 377/161 12.5 309 0.42 .89 NA —
Fatigue domains (EORTC-QLQ-12)

Physical 283/121 19.1 277 0.44 .78 NA —
Emotional 515/220 20.8 257 0.42 .96 0.42 .96
Cognitive 820/351 17.0 299 0.59 .01 .60 .005

aEORTC QLQ ¼ European Organization for Research and Treatment of Cancer Quality of Life; NA ¼ not applicable; PRFR ¼ preconditioned random forest regression;

SNP ¼ single-nucleotide polymorphism.
bP value was estimated using Mason and Graham’s test and was 2-sided.
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In the last decade, several studies highlighted a possible role
of inflammation in cancer-related fatigue (14,15). In this con-
text, our study suggested a link between enrichment in inflam-
matory complement system and onset of severe fatigue, which
supports prior findings by Rajeevan et al. (32), who had reported
associations between single nucleotide variations in comple-
ment activation pathway genes and chronic fatigue
syndrome. Moreover, our interactome analysis uncovered the 4
gene products that are connected via previously known interac-
tions or associations. The cluster included 2 growth-related pro-
teins, IGF)-IR and FGFR1, which were previously named as
potential biomarkers for cancer-related fatigue (33–35). In addi-
tion, the PRFR approach revealed new mechanisms that have
not been previously explored in the scope of cancer-related fa-
tigue. Among these, alteration of synaptic activity through glu-
tamate was consistently discovered regardless of VIM filtering,
which has been shown as an important pathway to chronic fa-
tigue (36).

The predictive performance of the cognitive fatigue model
was modest, only marginally improved by adding clinical varia-
bles, and was not statistically significantly different from the

SNP-only model. The PRFR model made prediction predomi-
nantly using the genomic information, which was also reflected
in the VIM distribution where baseline pain was the only vari-
able in the top 50% of VIM. This could indicate information over-
lap: both SNPs and statistically significant clinical variables
including pain, anxiety, and depression pertain to cognitive
functions and behaviors. Notably, the agreement between the
clinical and genomic factors might stress the close relation be-
tween a neurocognitive domain and cancer-related fatigue,
which was also suggested by Van Dyk et al. (13). Also, there
might exist a complex interplay between the genomic and base-
line clinical characteristics that may have not been fully cap-
tured by the current algorithm.

Our study has important strengths, including its prospective
and longitudinal design and the use of validated fatigue
multidimensional questionnaires. In addition, patients in our
study were treated with contemporary therapy protocols, and
our models accounted for a number of sociodemographic, clini-
cal, tumor, and treatment variables with low missing rates.
Nevertheless, this study has some limitations. First, we set
cutoffs to define our fatigue endpoint that we acknowledge as
arbitrary. Second, limited sample size might have led to subop-
timal predictive performance for the majority of the endpoints.
This was partially due to exclusion of patients with nonzero
baseline fatigue. However, this minimized confounding effects
of heterogeneous baseline characteristics. Without this exclu-
sion, the prediction would be dominated by clinical variables
with minimal genomic impact (data not shown). Third, we ex-
cluded patients with missing fatigue questionnaires at baseline
and follow-up. Specific populations with less education, lower
income, or greater tumor stage might be underrepresented in
this study (Supplementary Table 4, available online), which
deserves future research. Fourth, aggressive filtering of genomic
predictors was necessary in the attempt to reduce bias in
permutation-based VIM in high dimensionality (37). Fifth, the
study included individuals only of European origin, and thus
the results are generalizable only to this population. Last, we ac-
knowledge that the methodology and results reported in this ar-
ticle are mainly exploratory. Particularly, it is important to
stress that the predictive power of the genomic variants identi-
fied as associated with fatigue is not sufficient to justify their
use in clinical decision-making. Importantly, although our data
point at pathways that may be worthy of further investigation,
external validation of our findings is needed.

This study analyzed combined clinical and GWAS data from
a large group of breast cancer survivors, suggesting a small ge-
netic role for development of Cognitive Fatigue. This study
broadens our understanding of cancer-related cognitive fatigue
and informs further studies focused on identifying those
patients with high risk of cognitive fatigue. Also, it explores the
feasibility of machine learning techniques in predicting cancer-
related fatigue, which deserves further investigation.
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Figure 2. Risk calibration curve for the clinico-genomic Cognitive Fatigue predic-

tion model.

Figure 3. Comparison of the area under curve (AUC) in predicting Cognitive

Fatigue between the preconditioned random forest regression (PRFR) method

and other conventional multivariable regression methods. Confidence intervals

on validation AUC were obtained by repeating the training process using ran-

domly selected 80% of the training data. Dotted line ¼ prediction AUC when the

first 3 principal components for ancestry were used as the only predictors.

LASSO ¼ least absolute shrinkage and selection operator.
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