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Chapter 15

AIRR Community Guide to Planning and Performing
AIRR-Seq Experiments

Anne Eugster , Magnolia L. Bostick , Nidhi Gupta ,
Encarnita Mariotti-Ferrandiz , Gloria Kraus, Wenzhao Meng,
Cinque Soto , Johannes Trück , Ulrik Stervbo ,
and Eline T. Luning Prak and on behalf of the AIRR Community

Abstract

The development of high-throughput sequencing of adaptive immune receptor repertoires (AIRR-seq of
IG and TR rearrangements) has provided a new frontier for in-depth analysis of the immune system. The
last decade has witnessed an explosion in protocols, experimental methodologies, and computational tools.
In this chapter, we discuss the major considerations in planning a successful AIRR-seq experiment together
with basic strategies for controlling and evaluating the outcome of the experiment. Members of the AIRR
Community have authored several chapters in this edition, which cover step-by-step instructions to
successfully conduct, analyze, and share an AIRR-seq project.

Key words AIRR-seq, Immunoglobulin, Antibody, T-cell receptor, Immune repertoire, V(D)J
recombination, Next-generation sequencing

1 Introduction

Next-generation sequencing of adaptive immune receptor reper-
toires (AIRR-seq of immunoglobulin, IG and T-cell receptor, TR
rearrangements) has provided a new frontier for in-depth analysis of
the immune system. The Adaptive Immune Receptor Repertoire
(AIRR) Community was founded with the goal of developing
standards for AIRR-seq studies to enable analysis and sharing of
AIRR-seq data. In this book, members of the AIRR Community
and colleagues have contributed sample methods for immune rep-
ertoire profiling studies. These AIRR Community chapters cover
experimental (wet lab) and computational (dry lab) methods and
encompass all of the many facets of the AIRR Community. While
much of our focus in these chapters is on how to adequately
control, standardize, annotate, and share data, we found it
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impossible to discuss these attributes of AIRR-seq data without also
describing the types of data sets that are generated and then inte-
grating those descriptions with data analysis for commonly encoun-
tered use cases. In the companion AIRR Community data analysis
chapters, information is provided about study design, data analysis,
data use, and the AIRR data commons and how data can be reused
and shared. In this chapter we describe how to plan and perform
AIRR-seq experiments.

2 Planning the Experiment

Understanding the dynamics, selection, and pathology of immune
responses has been aided greatly aided in recent years by next-
generation sequencing (NGS)-based approaches to studying the
adaptive immune receptor repertoire (AIRR) [1–3]. The AIRR
Community is focused on the standardization, sharing, and re-use
of these repertoire data [4]. The AIRR is the collection of distinct
B-cell and T-cell clones (cells that are derived from a common
progenitor cell) that are found in an individual. Each clone is
associated with a distinct antigen receptor, which is a B-cell receptor
(BCR or IG) or a TR. The DNA sequences that encode IG or TR
are very diverse. This diversity is achieved through the recombina-
tion of variable (V), diversity (D), and joining (J) gene segments
[5, 6]. Moreover, somatic hypermutation (SHM) provides further
diversification of IG repertoires through DNA mutation [7, 8]. In
addition to facilitating the sampling of diverse and complex
immune repertoires, AIRR-seq has opened the door for systematic
analysis and comparison of immune responses across different indi-
viduals and disease conditions [9–12]. The immune repertoire is
dynamic and changes in its composition and diversity with age
[13, 14], in different anatomic sites [15] and under diverse condi-
tions such as malignancy, autoimmunity, immunodeficiency, infec-
tion, or vaccination [9, 13, 16–21]. In addition to comparing
different individuals, AIRR-seq is also a powerful method for study-
ing the evolution of immune responses or tracking specific B- or
T-cell populations over time within individuals [22]. For example,
clonal expansions can be identified, quantified, and monitored
[23]. AIRR-seq studies not only enhance our ability to understand
how to diagnose and monitor diseases but also can inform thera-
peutic approaches [12, 24–31].

When designing a study that leverages AIRR-seq data, there are
several considerations including the subjects, sample types, manner
in which the samples are processed, timeline and other considera-
tions. The types of samples, their numbers, and budget often drive
the types of questions that can be asked and answered using AIRR-
seq. Once a suitable question has been defined and appropriate
samples have been identified, the next major branch point in the
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decision-making process involves the selection of AIRR-seq meth-
ods. In this section, we provide a brief overview of the most
important considerations when selecting one or more AIRR-seq
methods for a research study or clinical evaluation.

2.1 Organisms This chapter focuses on samples from humans, but of course sam-
ples from other vertebrates or synthetic libraries (such as phage
display [32]) are possible. If one is planning an experiment with
nonhuman or synthetic samples, it is worth considering whether
there are established protocols (such as PCR primer sets) and
analysis pipelines (to include adequate libraries of validated germ-
line gene sequences for animal species that are not frequently
studied) for downstream analysis. With respect to samples derived
from humans, there are several considerations [4, 33]. First, are the
samples coming from individuals who have been consented for a
research study? If not, one should check with the local institutional
review board (IRB) or other regulatory body and/or with the
investigator who supplies the samples for guidance on whether
samples can be studied or if additional regulatory approvals may
be required for full analysis and/or sharing of the data. Second, the
study design will be impacted by the availability of samples from
individuals in different comparison groups or on the availability of
samples that are collected over time from the same individuals.
Depending on the research question, resources, and time horizon
for the project, study participants may be recruited who have a
particular disease (in which case the phase of the disease and prior
or current therapies may be important). If studying immune
responses, longitudinal collections from the same individual at
multiple time points and synchronization of those time points
across the study cohort may be important to study changes in
clonal abundance or, in the case of B cells, the level of SHM within
clonal lineages. Demographic characteristics of the individuals in
the group under study (including but not limited to age, geograph-
ical origin and sex, disease history) and the availability of one or
more appropriately matched control groups are additional consid-
erations. For TR-based sequencing, it is also useful to consider the
HLA type, as HLA can have a major impact on TRBV gene usage
[34]. Finally, if published data are going to be used for comparison,
compatibility of the assay platforms and sample types is important.

2.2 Samples and

Processing

Studies on humans are often limited by sample availability. The
most commonly used sample is peripheral blood, which serves as
starting material for a range of different sample types including
whole blood (drawn into a tube with an anticoagulant such as
EDTA), peripheral blood mononuclear cells (PBMCs, which are
typically isolated by centrifugation over a Ficoll gradient), or plasma
(the liquid portion of anticoagulated whole blood, which is typi-
cally prepared by centrifugation and stored in aliquots frozen for
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isolation of cell-free DNA). Samples from other body fluids such as
cerebrospinal fluid or bronchoalveolar lavage may also provide
important insights if sampled in certain disease states. Tissue sam-
ples can be obtained from fine-needle aspirations (where sample
quantities may be very limited, particularly if the same samples are
being used for both clinical and research purposes) or from biop-
sies, where larger amounts of tissue can be sampled. In the case of
the bone marrow, the aspirate is typically used for the evaluation of
clonally expanded populations. In some cases, it is possible to
obtain multiple tissues (surveillance biopsies for transplant rejec-
tion or bone marrow samples) as well as peripheral blood from the
same individual over time. Finally, different tissues can be accessed
from the same individual in organ donors or living individuals, as
has been described for studies of human tissue-based immunity
[35] and in certain disease states, such as type 1 diabetes, lupus,
or rheumatoid arthritis [36–43]. From most of these samples,
either total cells or isolated cell subsets (obtained after cell sorting
using flow cytometry or magnetic bead-based methods) can be
analyzed. The sample size and purity of the cell population of
interest are important to consider when designing the experiment
and interpreting the results.

How samples are processed is a critical consideration for the
design of AIRR-seq experiments. Bulk sequencing methods can use
samples that are formalin-fixed, lysed, or non-viably cryopreserved.
Fixation significantly reduces the quality of the input nucleic acid
and may require larger amounts of input DNA or RNA as well as
protocols that use shorter amplicons (such as primers that are
positioned in FR3 instead of FR1). The longer a sample sits in a
fixative or is stored as a formalin-fixed paraffin-embedded (FFPE)
tissue section, the poorer the template quality becomes. If it is
possible to obtain snap frozen tissues that are not fixed, this is
preferable. For certain cell types, such as diffuse large B-cell lym-
phoma, using tissue sections may provide a higher yield of cells of
interest than single-cell suspensions [44]. For single-cell-based
methods, viable cells are essential and typically consist of either
freshly isolated cells or cryopreserved cells. In the case of cryopre-
served cells, one needs to consider whether the method of initial
sample preparation has influenced the recovery or phenotype of the
cell population of interest.

Cell sorting or enrichment with magnetic beads can be used to
selectively recover larger numbers of cells of interest, as, for exam-
ple, with antigen-specific T cells identified by multimer staining,
but these methods can also result in significant loss of sample.
Sorting time should be kept to a minimum for plate-based single-
cell methods, as cell viability decreases rapidly in the plate; ideally,
the time from the addition of a life/dead staining solution to the
end of the sort should not exceed 30 min. If longer sorting times
are necessary, as is often the case for rare cells, cells can be sorted
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into PCR strips instead. For droplet sequencing-based single-cell
methods, batches of 1000–20,000 cells are usually collected in
PCR tubes that need to be coated to ensure complete recovery of
the cells for further processing.

2.3 Bulk vs. Single-

Cell Sequencing

There are two complementary approaches to analyze the AIRR by
sequencing that are usually driven by the number of cells available
and the research question. On the one hand, bulk AIRR-seq meth-
ods allow systematic and global analysis of TR and IG repertoires
from as few as 1000 cells to hundreds of thousands of cells or more.
Bulk methods provide information about the TR (usually alpha +
beta) or IG (heavy + light) rearrangements, although the pairing
information is lost during the cell lysis step. On the other hand,
single-cell AIRR-seq offers the possibility to reconstruct paired
chain information for each TR or IG. However, most single-cell
methods use lower cell input numbers (usually <20,000 cells, due
to constraints in costs associated with kits and sequencing). Hence
single-cell approaches, when used on bulk populations, generally
tend to be focused on specific cell subsets or antigen-enriched cells
to ensure sufficient sampling of the population of interest. In some
cases, for example, when multiple samples with different amounts
of cell inputs are available from the same individual, it may be
preferable to use a tiered approach. For example, one might rely
on bulk sequencing to get a view of the overall clonal landscape and
then leverage single-cell sequencing to gain detailed insights into
the association of specific clones (with paired chain information)
and cell phenotypes (either through flow cytometry or by single-
cell RNA-seq). The single-cell approach is discussed in detail in the
AIRR Community chapter (Chapter 20)

2.4 Template

Amplification from

DNA vs. RNA

Bulk AIRR-seq can be performed on libraries that have been gen-
erated from either genomic DNA (gDNA) or RNA. gDNA-based
methods are exclusively based on multiplex PCR approaches, where
primers targeting the different V genes (or leader regions) and J
genes are combined in the same reaction. Advantages of
DNA-based sequencing are the stability of the template and its
parsimonious nature (one template per cell), which allows for stud-
ies in which large numbers of cells are studied at modest cost.
Disadvantages include the potential for primer bias, as PCR primers
are usually positioned in the V gene and J gene (due to constraints
on sequence length) and the potential loss of amplification in
heavily mutated IG sequences. The bulk DNA approach is dis-
cussed in the AIRR Community chapter (Chapter 18).

Messenger RNA-based methods can be based on multiplex
PCR (with either V and J primer combinations or V and constant
region (C) primer combinations), or they can use rapid amplifica-
tion of cDNA Ends (RACE)-PCR. Advantages of RNA-based
sequencing are (1) more “shots on goal” with RNA than DNA
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(with individual B/Tcells harboring multiple RNA copies vs. only a
single DNA copy), allowing for higher yield of amplicons when
there are low cell numbers; (2) reduced PCR bias with primers that
are in the constant region, (3) the incorporation of unique molec-
ular identifiers (UMI) at the cDNA synthesis step (allowing for the
generation of high-fidelity consensus sequences); and (4) the ability
to generate data on the constant region usage for isotyping. Dis-
advantages of RNA-based sequencing methods include greater cost
associated with the higher sequencing depths that are required
(particularly if UMIs are used) and biases introduced by differences
in transcript abundance in different cell types (if mixed rather than
sorted populations are used for input). In the AIRR Community
chapter (Chapter 19), we focus on the mRNA-based approach to
AIRR-seq.

2.5 Commercial Kit

vs. Homebrew Bulk

Methods

Several commercial kits are now available to generate AIRR-seq
data. Currently available commercial kits include gDNA-based
methods (e.g., Adaptive Biotechnologies, iRepertoire) as well as
mRNA-based methods (e.g., Illumina, Takara Bio, iRepertoire,
MiLaboratory). Advantages of commercial-grade AIRR-seq assays
are that kit reagents are produced following standards and rigorous
quality controls such as qualifying primers, controlling for contam-
ination, and verifying yield and amplification standards. Some ven-
dors obtain certification in meeting rigorous quality standards in
their laboratories that manufacture reagents, such as those set forth
by the International Organization for Standardization (e.g., ISO
9001). In addition, service providers such as Adaptive Biotechnol-
ogies and iRepertoire offer large data sets for comparison and a
series of user-friendly data analysis tools. Some disadvantages of
commercial methods are that kits are expensive and sometimes
these assays are not easily adapted to specific experimental needs.
On the other hand, with homebrew assays, there is considerable
variation in assay linearity and reproducibility (e.g., see ref. 45), and
it can take months or even years to set up robust, well-validated
assays that are then also not easy to adjust. The use of commercially
available kits for in-house experiments can be a compromise to
ensure reliability of the reagents and protocol customization.

2.6 Single Cell: Index

Sorting and Bead-

Based Emulsion

Approaches

Single-cell AIRR-seq (scAIRR-seq), as any other single-cell
sequencing technology, relies on partitioning each cell. In early
protocols, cells were index sorted into plates, and multiplex PCR
was used to amplify both chains of immune receptors of a cell
concomitantly [46, 47]. The emergence of single-cell RNA-seq
(scRNA-seq) has provided another tool for AIRR-seq. Many pro-
tocols to recover and sequence mRNA from single cells have been
developed and differ in their approaches for cell capture, cDNA
synthesis (full-length or tag-based) and amplification (only PCR or
PCR following reverse transcription), and library preparation steps
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[48]. Probably the most frequently used current commercial pro-
tocol for sequencing small cell numbers leverages the scSMARTer
technology. With this approach, paired IG/TR information
became accessible by combining full-length scRNA-seq amplifica-
tion approaches with the development of the de novo assembly-
based bioinformatics tools (TraCer, scTCR Seq, TRAPes, VDJ
Puzzle) [49–52]. Unfortunately, these approaches remain compu-
tationally intensive, relatively costly, and are constrained with
respect to cell throughput. More recently, bead-based emulsion
methods have been developed for higher-throughput single-cell
sequencing, allowing access to repertoires of tens of thousands of
cells [53]. The formation of droplets in an oil-water emulsion using
microfluidics allows single-cell encapsulation, barcoding, and the
production of cDNA from each cell and culminates in parallel
sequencing of the transcriptomes of thousands of cells
[54]. These approaches have been adapted to sequence both TR
or IG chains in parallel [55] and are available commercially, via the
10� Genomics platform (Chromium 10�), thereby allowing the
processing of samples of 5 � 102 to 1.5 � 104 cells. In addition to
paired immune receptor data, it is also possible to obtain scRNA-
seq data. Similar approaches are also commercially available includ-
ing the BD Rhapsody VDJ CDR3 protocol, which relies on cell
compartmentation by microwells and allows processing of 1 � 103

to 4 � 104 cells, and the Takara Bio ICELL8 Single-Cell System,
which can process ~1 � 103 cells. Recent progress on the through-
put of single-cell sorting has been described with CelliGO, which
combines cell encapsulation in droplets through microfluidics [56],
but sequencing costs are still limiting the widespread adoption of
these approaches.

2.7 Cost Finally, cost may influence the choice of a particular protocol. There
are many factors that contribute to the cost of AIRR-seq data
generation. For example, the number of samples, the cost of
sequencing, the sequencing depth, and the number of cells ana-
lyzed per sample are all important considerations. Furthermore, the
choice between service providers, commercial kits, and “home-
brew” methods will influence costs. In general, gDNA analysis is
the most cost-effective method, because it usually requires the
lowest-sequencing depth with the largest representation of cells
per sample, whereas single-cell analysis is on the opposite end of
the spectrum, with bulk cDNA sequencing in the middle [45].

2.8 Overview of

Companion AIRR

Community Method

Chapters

The correct choice of method for a given experimental question is
crucial and has to be carefully evaluated. The companion AIRR
Community method chapters concern (1) “Bulk gDNA Sequenc-
ing of Antibody Heavy-Chain Gene Rearrangements for Detection
and Analysis of B-Cell Clone Distribution” (Chapter 18), (2) “Bulk
Sequencing from mRNA with UMI for Evaluation of B-Cell
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Isotype and Clonal Evolution” (Chapter 19), (3) “Single-Cell
Analysis and Tracking of Antigen-Specific T Cells: Integrating
Paired-Chain AIRR-Seq and Transcriptome Sequencing”
(Chapter 20), and (4) “Quality Control: Chain Pairing Precision
and Monitoring of Cross-Sample Contamination” (Chapter 21).
These chapters illustrate four basic workflows for AIRR-seq, with a
focus on IG for bulk sequencing, TR for single-cell sequencing, and
IG and TR replicate analyses for quality control. The four methods
are summarized in Table 1 and are discussed further below.

Table 1
Overview of highlighted use cases in associated chapters

Highlighted use case Major steps

Bulk gDNA Sequencing of Antibody Heavy Chain Gene Rearrangements for Detection and Analysis of
B-Cell Clone Distribution; a method by the AIRR Community

Analysis of the clonal landscape in different samples
from the same individual

Bulk gDNA
FR1 + JH primers (BIOMED2 adapted)
2 � 300 bp reads
Multiple replicates per sample

Bulk Sequencing from mRNA with UMI for Evaluation of B-Cell Isotype and Clonal Evolution;
a method by the AIRR Community

Evaluation of an antibody response to viral
infection with clonal evolution

Antigen-enriched cells
Bulk RNA (SMARTer Kit)
UMI at cDNA synthesis step
Amplification of isotypes

Single-Cell Analysis and Tracking of Antigen-Specific T Cells: Integrating Paired-Chain AIRR-Seq and
Transcriptome Sequencing; a method by the AIRR Community

Part A
Single-cell-paired TCR chain and/or mRNA
sequencing of memory and/or whole CD8+ T
cells from COVID-19 patients

Bulk memory CD8+ T cells
Feature barcode and sample hashtagging possible
Template amplification and size fractionation
Paired TCR chain data
Single-cell RNA-seq data, feature barcode data

Part B
Sequencing of activated and/or SARS-CoV-
2 antigen-specific CD8+ T-cell populations to
map to whole repertoires

T-cells (sorted from PBMCs) binding to antigen or
with activation marker expressionIndex sort
possible

Single-cell mRNA sequencing (SMART-Seq)
Paired TCR chain data
Single-cell RNA-seq data

Quality Control: Chain Pairing Precision and Monitoring of Cross-Sample Contamination; a method by
the AIRR Community

Chain pairing reference data and estimation of
within sample AIRR-seq reproducibility

Isolation of memory B cells or CD8+ T cells
Establishment of replicate stimulation cultures
prior to single-cell sequencing
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In Chapter 18, we illustrate, using a homebrew method with
primer sequences adapted for NGS from the BIOMED2 immuno-
globulin heavy-chain (IGH) PCR assays [57], how to evaluate the
clonal landscape, including clone size distributions, clonal lineage
analysis, and tracking of clones in different samples from the same
individual. This method uses multiplex PCR and can be scaled to
very high cell inputs as described [15]. The method shown uses
long reads that are adequate for robust IGHV gene alignment and
SHM evaluation but can also be performed with shorter reads,
depending upon the sample type and DNA quality. In
Chapter 19, IGH rearrangements are amplified from bulk RNA
with UMIs incorporated at the cDNA synthesis step for the gener-
ation of high-fidelity consensus sequences using a commercial kit
from Takara Bio. This method can be used for low to moderate
throughput analysis of antigen-enriched cell populations, for eval-
uation of SHM, selection, and isotype usage. In Chapter 20, two
different but parallel workflows are used to analyze single cells,
both for paired TR transcripts as well as for their transcriptome,
using two commercial kits, one from Takara Bio and one from 10�
Genomics. Single-cell technologies can use a multiplex or RACE-
based amplification and can generate long high-quality reads that
can be mapped to individual cells but can also be based on AIRR
target enrichment. One kit allows for the analysis of small numbers
of antigen-enriched, index-sorted cells, useful in the case the cells of
interest are present at very low frequencies in the overall sample,
while the other kit allows for the analysis of larger cell numbers,
providing insights into the overall T-cell repertoire as well as into
other immune cell populations, if desired. The combination of
paired-chain information and RNA-seq data can provide insights
into the nature of the different T-cell populations that are found
among expanded clones in various disease settings. Furthermore,
through clonal overlap analysis, the data from the antigen-enriched
cells can be integrated with the larger data set to further character-
ize the populations with respect to antigen-binding. In Chapter 21,
two workflows are presented. The first is for the isolation of CD27+
memory B cells and their expansion in replicate cultures in vitro,
using a cell line that expresses CD40L and a cocktail of cytokines.
The second workflow is for the isolation of CD8+ T cells and their
expansion using CD3/CD28 and IL-2 stimulation. The genera-
tion of these expanded cell cultures provides a larger input of more
readily resampled cells that can be used as reference libraries for IG-
or TR-paired chain combinations, respectively, as well as providing
diverse libraries for the evaluation of within-sample reproducibility.
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3 Interpreting the Results

3.1 Overview Immune repertoire profiling experiments are affected by numerous
pre-analytical, experimental, and post-analytical variables.
Pre-analytical variables include the quality, quantity, and purity of
the target cell population(s) in the sample. Experimental variables
include the quality and length of the template for amplification,
contamination at the level of the sample or PCR, hybrid PCR
products, and PCR jackpots. The sequencing run can be affected
by the concentration of the library, which can influence the cluster-
ing density; there can be cross-clustering in the flow cell, poor
quality or short reads, and issues with controlling for sequencing
depth (reads per template). Many technical problems with experi-
ments can be evaluated during data analysis (please see the compan-
ion AIRR Community commentaries on “TR and IG Gene
Annotation” (Chapter 16) and “Repertoire Analysis”
(Chapter 17), so here we will limit our comments to basic strategies
for controlling and evaluating the adequacy of the experiment on
the wet bench side.

3.2 General QC

Considerations and

Controls

For sample and amplification QC, spectroscopy, agarose gel elec-
trophoresis, or capillary electrophoresis can be used for the evalua-
tion of nucleic acid purity and size distribution. Standardized
samples that are put through the same workflow can be used to
compare the entire AIRR-seq procedure in one assay run to another
run, to help identify and control for batch effects. Bead purification
and/or further gel purification can be performed to remove primer
dimers, which can swamp sequencing runs and reduce the fraction
of informative reads. Capillary electropherograms (e.g., Bioanaly-
zer) can be used to evaluate library quality, while KAPA quantita-
tion and real-time PCR can be performed to quantify the library.
For the sequencing run, the clustering density is important
(as described in the individual protocol chapters). Another helpful
metric is the fraction of reads that have quality scores of 30 or
higher (projected sequencing error rates below 1 per 1000
nucleotides).

3.3 Clonal Recovery The quality and type of sample have significant effects on the
efficiency of amplification and clonal yield. FFPE tissue samples
yield ~10-fold fewer clones than the same tissue snap frozen with-
out fixation. Furthermore, the longer a tissue sits in FFPE, the
poorer the sample quality becomes. For FFPE samples, using larger
amounts of input DNA or RNA into the initial amplification can
improve clonal recovery, as can the use of primers that target
shorter amplicons (e.g., primers that flank the CDR3 sequence
such as FR3 and JH [58]). Another reason for low numbers of
clones is if the initial amplification uses primers that do not capture
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a high enough fraction of the rearrangements in the sample. With
RNA as the starting material, there is bias toward recovering more
templates from cells that are activated. Plasma cells, for example,
can produce ~100 times as much IG RNA as naive B cells [59]. Pri-
mers that amplify DNA are not subject to this problem, but can
have other issues, such as the potential for nonuniform amplifica-
tion of different templates. To correct for PCR bias, some assays use
internal calibrators [60, 61]. Amplification of IG rearrangements
has an additional challenge if these are highly somatically hypermu-
tated. One hint that this may be occurring is if there is an elevated
frequency of nonproductive rearrangements (from a bulk gDNA
amplification). Alternative approaches in this situation are to
amplify templates that are less prone to SHM such as the leader
region in the VH genes or focus on RNA-based sequencing with
primers that extend from the constant region [15]. Another
approach is to amplify alternative loci (such as light chains, which
have about half the level of SHM of heavy chains [62], RS (recom-
bining sequence also known as kappa deleting element) rearrange-
ments [63], or DJ rearrangements [58]).

3.4 PCR Cycle

Number

For RNA-based protocols, the gene expression of each IG/TR
chains can vary significantly from one cell to another. Therefore,
it is challenging to predict how many cycles of PCR will amplify
sufficient material for downstream sequencing without overampli-
fication such that there are significant off-target PCR products.
One approach is to focus on sorted cell populations to control for
the effects of different transcript levels. In addition, one can amplify
each chain of interest (e.g., IgH, IgK, IgL, etc.) separately, with
different library index combinations for each chain. This can allow
for separate optimization of cycling conditions for each chain, as
discussed in Chapter 19. It is also possible that the suggested
number of cycles will not generate enough material for downstream
sequencing. If there is insufficient material for sequencing, we
recommend increasing the number of cycles. Conversely, if the
library yield is too high, the number of cycles in the library PCR
amplification (e.g., PCR2 in Chapter 19) can be decreased.

3.5 Sensitivity The sensitivity of an AIRR-seq experiment can be determined by
titrating spike-ins, such as mixing cells with a known gene rear-
rangement into a diverse sample at different ratios, as described by
Barennes and colleagues [45]. The linearity of the titration also
reveals the range of clone concentrations where the method is
quantitative or semiquantitative. The threshold of detection of
the assay depends upon the biological question being asked, but if
rare clonotypes need to be detected (as is the case for detection of
minimal residual disease), then it is important to power the analysis
on clone sizes. This can be accomplished experimentally by running
multiple biological replicates (independent PCR amplifications) on
the same sample and determining the fraction of rearrangements
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that can be repeatedly sampled in two, three, four, or more repli-
cates, as described previously [15, 64]. Using within-sample clonal
overlap as a maximal estimate, one can then evaluate (with greater
rigor) the expected overlap between one sample and a different
sample [15]. If sensitivity falls below the level required, there are
several potential reasons for this including poor-quality sample, too
few cells (of the relevant type) in the sample, too small a sample, or a
clone size that is too small to be detected. The depth of sequencing
can also influence the detection of clones, particularly if one uses
rigorous cutoffs for clone size or requires a minimum number of
UMIs per clone.

3.6 Amplification

Bias

As discussed in the amplification section in Chapter 18, DNA-based
amplification methods can exhibit bias in the form of preferential
amplification of certain genes over others. RNA-based amplifica-
tion methods can be biased by transcript abundance, which is
higher in certain cell types than others. To evaluate an AIRR-seq
experiment for amplification bias, one can use an alternative
method, such as flow cytometry with antibodies against known
TCR Vβ chains, as a basis for comparison, as described in [45]. In
single-cell experiments, one can quantify the recovery of receptors
in different cell subsets using RNA-seq profiles to assign cells to
different subsets. In addition, spike-in controls and cell mixtures
with defined rearrangements can be used during protocol develop-
ment to quantify bias. Primers with conserved sequence tags can
also be used to evaluate bias, as described by Reddy and colleagues
[61]. Bias can also occur during the sequencing step. For example,
a higher depth of sequencing can result in greater coverage and the
detection of smaller clones. However, in samples with few clones, a
higher-depth sequencing can also create more sequencing errors
which, depending on the bioinformatic pipeline, can result in
skewed clone size or SHM profiles. If samples from different
sequencing runs are being compared, it is important to consider
potential batch effects due to differences in depth of sequencing,
clustering density, and sequence quality. To minimize problems
associated with batch effects, it is useful to include samples that
are being compared to each other in the same run, whenever this is
possible. One way to potentially control for (or at least recognize)
batch effects is to include an external reference sample (such as
pooled spleen or PBMCs) in each run.

3.7 Contamination During data analysis, one can check for contamination by comput-
ing clonal overlap between different samples in the same experi-
ment. Samples from the same individual will exhibit numerous
overlapping clones, depending upon the level of sampling, whereas
samples between individuals have far fewer overlapping clones.
Overlapping clones or identical CDR3 sequences between different
individuals cause concern for contamination if they have identical
nucleotide sequences and if there are multiple shared sequences
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(which is nearly impossible to achieve by chance, particularly for IG
sequences, [65]). Spurious clonal overlap between different indivi-
duals can arise through mixing of samples prior to nucleic acid
amplification, by erroneous assignment of sample barcodes, by
PCR contamination, by cross-clustering of samples in the same
flow cell, or some combination of these difficulties. Sample mixing
can occur during flow cytometry if the instrument is not rigorously
flushed between samples. Samples that are assigned the wrong
barcode will associate with the “wrong” individual, or if samples
come from different species, processing with the wrong pipeline
(including the wrong database for reference germline genes) will
result in sequences that have very low levels of sequence homology
to the (incorrect) germline genes. If this occurs, an IgBLAST [66]
search with a few sequences will quickly resolve to which species the
genes correspond. With PCR contamination, one may see spurious
amplification in the negative control samples (such as water or
fibroblast DNA). PCR contamination can also often result in
high-copy sequences that are shared by multiple subjects in the
same experiment. In contrast, with cross-clustering, there is often
a very-high-copy sequence and then a low number of copies of that
same sequence in an unrelated individual. There are several process
controls that can reduce the risk of contamination. First, there
should be physically separate areas for pre- and post-PCR work-
stations. Second, primers with different barcodes can be used for
diagnostic samples (where high-copy clones might be
present) vs. MRD samples. Unique dual indices can be used to
control for sequencing barcode crosstalk [67]. Third, when in
doubt and if more samples are available, repeat the experiment to
confirm the results.

3.8 Spurious

Amplification Products

Sometimes one obtains unexpected sequences due to technical
artifacts. Large clonal expansions can appear with PCR jackpots.
In the case of gDNA, independent PCR amplifications of the same
sample are sampling different gene rearrangements. If the same
expanded clone is present in both biological replicates, it is far
more likely to be due to a bona fide expansion instead of a PCR
jackpot. Another artifact is a hybrid PCR product. With hybrid
PCR products, templates with partial sequence homology can
cross-amplify [68]. Hybrid products will tend to share sequences
at either the 50 or 30 end and then exhibit a sharp boundary where
the templates crossed over into the other sequence. One way to
distinguish hybrid products from gene conversion events or
biological variants in V gene sequences or potential convergence
(with sharing of CDR3 sequences) is to amplify sequences with
TRBV or IGHV gene specific primers and see if the same products
can be recreated. In addition, using protocols with fewer PCR cycle
numbers can sometimes be helpful in reducing spurious amplifica-
tion products.
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3.9 Data Reporting The AIRR Community has published a series of data and experi-
mental metadata sharing standards called MiAIRR [33]. The
MiAIRR data standards guide the publication, curation, and shar-
ing of AIRR-seq data and metadata and consist of six high-level
data sets for study and subject, sample collection, sample processing
and sequencing, raw sequences, processing of sequence data, and
processed AIRR sequences. All current data fields in the MiAIRR
standard can be accessed here: https://docs.airr-community.org/
en/stable/miairr/data_elements.html.

More details on how to annotate and report AIRR-seq data and
metadata are provided in the AIRR Community companion
method chapter “Data sharing and re-use” (Chapter 23).

4 Conclusion

In this chapter, we have given an overview of the considerations
needed to plan and execute a successful AIRR-seq experiment. We
have also broadly discussed basic strategies for controlling and
evaluating the adequacy of the experiment. Each topic touched
upon in this chapter is explored in depth in the corresponding
AIRR Community companion chapters.
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