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SUMMARY 51 

Accurate profiling of T-cell receptor (TCR) repertoires is key to monitoring adaptive immunity. 52 

We systematically compared TCR sequences obtained with 9 methods applied to aliquots of 53 

the same T-cell sample. We observed marked differences in accuracy and intra- and inter-54 

method reproducibility for alpha (TRA) and beta (TRB) TCR chains. Most methods showed lower 55 

ability to capture TRA than TRB diversity. Low RNA input generated non-representative 56 

repertoires. Results from 5’RACE-PCR methods were consistent among themselves, while 57 

differing from the RNA-based multiplex-PCR results. gDNA-based multiplex-PCR methods also 58 

differed from each other. Using an in silico meta-repertoire generated from 108 replicates, we 59 

found that one gDNA-based method and two non-UMI RNA-based methods were more 60 

sensitive than UMI methods in detecting rare clonotypes, despite the better clonotype 61 

quantification accuracy of the latter. This study delineates the advantages and limitations of 62 

different TCR sequencing methods, which should help the study, diagnosis and treatment of 63 

human diseases.  64 
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INTRODUCTION  65 

T-cell receptors (TCR), which drive T-cell activation by antigenic peptide recognition, are 66 

heterodimers formed by an a and a b chain1 produced by somatic V(D)J rearrangements during 67 

thymopoiesis2 of 47V and 61J functional TRA genes and 48V, 2D, 12J functional TRB genes3. The 68 

stochastic V(D)J recombination generates a combinatorial diversity that is further increased by 69 

random nucleotide excision and addition at the V(D)J junctions. The independent 70 

recombination and subsequent pairing of TRA and TRB chains add an additional level of 71 

combinatorial diversity. Recently, computational chain pairing experiments suggested that the 72 

potential diversity of the paired repertoire is ∼2x1019 TCRs4, while the number of different TRB 73 

clonotypes in an individual has been estimated to range from 106 to 108 5–7. The TCR repertoire 74 

is dynamic, as lymphocytes are continuously generated, die and expand in response to 75 

stimulation, and reflects both an individual’s immune potential and history.  76 

Analysis of the TCR repertoire by deep sequencing (TCRseq) is increasingly used to measure 77 

lymphocyte dynamics in health, in pathological contexts such as autoimmune disease, 78 

infections and cancer8–14, and following interventions such as vaccination11,15–18and 79 

immunotherapy19–22, with the goal of identifying TCR biomarkers of disease or of clinical 80 

response to treatment and to stratify patients for precision medicine23. These diverse 81 

applications have different requirements in terms of sensitivity, specificity and depth. 82 

Accurately capturing the TCR repertoire therefore presents great challenges. A large number 83 

of TCRseq methods have been developed. They are all complex multistep protocols, and each 84 

step may have a profound impact on the TCRseq data and hence on their interpretation24. 85 

Methods can be broadly classified as DNA- or RNA-based, and the latter can be categorized as 86 

using multiplex PCR (mPCR) with panels of V and J primers5,25,26 or using rapid amplification of 87 

cDNA-ends by PCR (RACE-PCR)14,27–29 optionally incorporating unique molecular identifiers 88 
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(UMI) to limit PCR amplification bias and sequencing errors14,29–31. Each method has potential 89 

advantages and limitations27,32–35. Specifically, DNA-based methods are believed to be more 90 

quantitative and can be used in situations where RNA quality may not be guaranteed. In 91 

contrast, RNA-based methods are believed to be more sensitive because of the presence of 92 

multiple mRNA copies per cell, and also are more amenable to UMI incorporation36. However, 93 

the relative robustness and accuracy of the different approaches have not been systematically 94 

compared. Here, we compared 9 different TCRseq library preparation protocols by analyzing 95 

the TCR repertoire of aliquots of the same T-cell sample. 96 

 97 

RESULTS 98 

Experimental design to evaluate the robustness of human T-cell receptor repertoire analysis 99 

We set out to compare 9 different academic or commercial protocols for library preparation 100 

and sequencing (Supplementary material and methods; Supplementary Table 1) based either 101 

on RACE-PCR (RACE-1 to RACE-6) or on multiplex-PCR (mPCR-1 to 3). We sequenced nucleic 102 

acids from CD4+CD25-CD127+ effector T-cells (Supplementary Fig.1a) sorted from two healthy 103 

donors (experiments A&B). In experiment A, we evaluated the accuracy and sensitivity of the 104 

different methods by spiking donor A T-cell RNA (RACE-1 to RACE-6 and mPCR-3) or DNA 105 

(mPCR-1 and mPCR-2) aliquots with different amounts of RNA or DNA from Jurkat cells 106 

(Supplementary Fig.1b). In experiment B, we analyzed the impact of decreasing amounts of the 107 

input material quantity by processing donor B RNA aliquots of 100 ng and 10 ng (Supplementary 108 

Fig.1c). In both experiments, the CD4+CD25-CD127+ T-cells were sorted, and the RNA and DNA 109 

were extracted and aliquoted in a single laboratory. Triplicates of aliquots were distributed to 110 

service providers and academic laboratories. Raw and/or pre-filtered sequences data were all 111 

processed using MiXCR37.  112 
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We obtained from 5.105 to 2.106 reads per aliquot depending on the method (Supplementary 113 

Fig.2a-b). Numbers of unique V, J and VJ sequences as well as UMI distribution for RACE-1 and 114 

RACE-2 (Supplementary Fig.2a-c) were comparable between all the methods. Numbers of TCR 115 

sequences and clonotypes were correlated in a method-dependent manner, but not globally, 116 

suggesting that the sequencing depth required for a given number of clonotypes is method-117 

dependent (Supplementary Fig.2d).  118 

 119 

Replicability and reproducibility differ among methods 120 

For each method, we first analyzed the proportion of reads that were identified as TCRs (Fig.1a 121 

and Supplementary Fig.2). For 7/9 methods, we observed 20 to 60% of non-aligned reads, 122 

which were mainly explained by no V and/or J sequence identification. TCR sequences had a 123 

high-quality score (phred > 30, Fig.1b) and contained less than 1% PCR errors (Fig.1c), except 124 

for RACE-2, RACE-6, mPCR-2 and mPCR-3. Note that these parameters could not be assessed 125 

Fig. 1: Performance statistics and VDJ rearrangement model of each method for experiments A and B.
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for one of the commercialized mPCR-1 for which undisclosed proprietary pre-processing of the 126 

data is performed.  127 

Using a VDJ rearrangement model (Methods), we computed 17 rearrangement parameters for 128 

TRA and TRB sequences from experiments A&B (Supplementary Fig.3) and calculated Jensen-129 

Shannon Divergence (JSD) distances between samples per parameter. Multi-Dimensional 130 

Scaling (MDS, Fig.1d) showed that, within each experiment, samples obtained with the same 131 

method clustered together, suggesting that each method imposed its methodological imprint 132 

on the repertoire profile.  133 

We further compared the different library methods’ replicability (i.e. the similarity among data 134 

obtained with the same method) and reproducibility (i.e. the similarity among data obtained 135 

with different methods) using JSD as a measure of the distance between datasets38. Figure 1e 136 

showed that for TRB, both the replicability and reproducibility of RACE-6 and mPCR-2 are lower 137 

than for all the other methods tested. However, when considering TRA, replicability is higher 138 

for RACE-3 and RACE-5 and reproducibility is higher for RACE-3, RACE-5 and RACE-2 (with and 139 

without UMI). Since RACE-6 showed extremely low replicability for TRB samples and was not 140 

reproduced by any other methods, we excluded it from further analysis. Altogether, our results 141 

showed that many fundamental parameters of the TCR repertoire, as well as inter-sample 142 

replicability and reproducibility, vary between the different methods tested. 143 

 144 

The observed TRBV gene usage varies between RACE- and multiplex-PCR RNA-based methods.  145 
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We compared the TRBV usage obtained from the sequencing data with the percentage of TRBV 146 

protein expression quantified by flow cytometry (FC) (Fig.2a and Supplementary Figs.4a-b). 147 

mPCR-1 data were highly correlated with FC data (Fig.2b, R2>0.9, P < 5.10-12), which likely 148 

reflects the undisclosed proprietary filtering by the provider. All other methods also showed a 149 

significant R2 Pearson correlation score ranging from 0.4 to 0.8, P < 0.05) with TRBV protein 150 

expression (Fig.2a-b), except for mPCR-3 (R2<0.2, P > 0.05). The Pearson correlation of TRBV 151 

gene usage within replicates prepared with the same method (Fig.2c) was high (R2>0.9). 152 

However, clustering showed that mPCR-3 formed a distinct cluster with a low correlation score 153 

(R2<0.5) with other methods. The RACE methods data were highly correlated between each 154 

other (R2>0.8), except RACE-1 and RACE-1_U, which had a lower correlation (0.6<R2<0.7). 155 

mPCR-1 and mPCR-2 formed an independent “DNA cluster” with an R2>0.6 when compared to 156 

RACE replicates and a low correlation with mPCR-3 (R2<0.4). This low correlation with mPCR-3 157 

could in part be explained by a skewed TRBV9, TRBV29-1 and TRBV20-1 usage (Supplementary 158 

Fig.4c). Spearman correlation scores were higher between FC data and mPCR-3 as well as RACE-159 

1, and globally between the methods (Supplementary Fig.4d-e). In summary, RACE-PCR 160 

Fig. 2: TRBV usage comparison between flow cytometry and TCRseq.
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methods and gDNA-based mPCR methods showed comparable TRBV usage results, in contrast 161 

with the mPCR-3 RNA based method. 162 

 163 

Robustness of TRA and TRB detection is method-dependent 164 

We compared the similarity and composition of the 1% most predominant clonotypes 165 

(1%_MPC) detected by each method. The Morisita-Horn similarity index (MH) was calculated 166 

for each replicate across all the methods for both TRA (Fig.3a-left) and TRB sequences (Fig.3a-167 

right). TRA repertoires from RACE-3 and RACE-5 clustered together, inter- and intra-replicates 168 

having a high degree of similarity (MH≈0.8). RACE-1, RACE-2 and RACE-4 have a lower inter- 169 

and intra-method similarity (0.2<MH<0.5), but a higher similarity with RACE-3 and RACE-5. 170 

Comparable clustering was obtained with the Jaccard similarity index (JSI), a measure 171 

independent of clonotype frequency (Supplementary Fig.5a). For the TRB repertoires, MH 172 

scores were low when comparing RACE and mPCR protocols (MH≈0.36), but high within the 173 

RACE cluster (0.6>MH>0.9). There was poor similarity between the results of the three mPCR 174 

methods, regardless of the template. Differences between RACE and mPCR methods 175 

disappeared when calculating the JSI, suggesting a bias in clonotype frequency, as expected 176 

when comparing RNA- with DNA-based methods, but less when comparing RNA-based 177 

methods. Similar results were obtained by iteratively increasing the percentage of clonotypes 178 

(Supplementary Fig.5b). Rényi diversity profiles (Supplementary Fig.5c) showed comparable 179 

results for TRB with all the methods, but the diversity of TRA varied depending on the method. 180 

However, the potential diversity estimated using Chao extrapolation was variable between 181 

methods (Supplementary Fig.5d).  182 

To test a possible bias in capturing the TRA diversity for some methods, we pooled and 183 

compared the three spiking replicates per method from experiment A, as suggested by Greiff 184 
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et al.24. The MH similarity significantly increased for all the RACE-based methods for TRA 185 

(Fig.3b-top) (except RACE-3) and for TRB (Fig.3b-bottom), with the TRA MH similarity remaining 186 

lower than that of TRB. Similar observations were made for mPCR replicates. This suggests that 187 

for a given depth of sequencing, the TRB diversity is better captured than that of TRA. 188 

 189 

Detection sensitivity of rare TCRs depends on the method  190 

To determine the accuracy of the different library amplifications for different clonotype 191 

frequencies, we compared the observed frequencies of the TCR from the Jurkat spike-in to their 192 

theoretical frequencies of 1/10, 1/100 and 1/1000. (Supplementary Fig.1b). TRA observed 193 

frequencies were on average 3 times lower than expected (Fig.4a-top; Supplementary Table 2 194 

Fig. 3: The reproducibility of detection of major TCR clonotypes by different methods.
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and Supplementary Fig.6a). In contrast, TRB frequencies were on average 3 times higher than 195 

the theoretical percentage, except for mPCR-1 (Fig.4a-bottom; Supplementary Table 2 and 196 

Supplementary Fig.6a). For most of the methods, except RACE-1_U, RACE-4 and mPCR-3, the 197 

ratio between the different dilutions was maintained, as shown by the mean slope values close 198 

to 1 (Fig.4b).  199 

We then compared the inter-sample variation in clonal frequency for those TCR sequences 200 

shared between all replicates of an individual method (excluding the Jurkat clone). Figure 4c 201 

represents the standard deviation of the frequency of each shared clonotype (dots) per method 202 

(see details in Supplementary Fig.6b-d). For TRA, RACE-3 and RACE-5 had the highest number 203 

of clonotypes shared between the 9 replicates and the lowest standard deviation. For TRB, all 204 

the methods captured a high number of shared clonotypes, and mPCR-1 and RACE-3 had the 205 

lowest standard deviation. Finally, pooling all the clonotypes from all the replicates, we 206 

identified 9 TRA and 31 TRB clonotypes shared by all the replicates of all methods, 207 

corresponding to the most predominant clonotypes (Supplementary Fig.7). RACE-3, RACE-5 208 

(both RNA-based) and mPCR-1 (DNA_based) showed the lowest inter-sample variability in TCR 209 

frequency. 210 

Fig. 4: Sensitivity of TCR sequence detection by different methods. 
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 211 

The quantity of starting material impacts TCR diversity capture 212 

One major limitation when analyzing TCR repertoire is the number of T-cells that can be 213 

analyzed. Focusing on 4 RNA-based methods, we analyzed the influence of input RNA quantity 214 

on TRA and TRB repertoires (Supplementary Fig.1c). We compared two sets of samples, one 215 

containing 10 ng or 100 ng (corresponding to 104 and 105 cells, respectively). For all the 216 

methods, the richness was higher with large (100 ng) than small (10 ng) samples 217 

(Supplementary Fig.8a). Rényi diversity profiles (Supplementary Fig.8b) showed that when 218 

alpha < 2 (i.e. when the diversity metric is influenced by rare clones), the diversity of small 219 

samples is less than that of larger ones. In contrast, at alpha = 2 (Simpson index) or above, 220 

diversity profiles of both samples overlap. Thus, a low RNA input influences the number of rare 221 

TCR sequences detected, but not the distribution of the more abundant TCRs.  222 

Finally, we evaluated the inter-sample similarity as a function of RNA input quantity by 223 

calculating the MH index with either the TRVJ combination usage (VJ_usage), all clonotype 224 

frequencies (Overall), or with the frequencies of the 1% most predominant clonotype 225 

(1%_MPC) (Supplementary Fig.8c-middle). For TRA, the similarity between 10 ng replicates was 226 

lower at the level of VJ usage and of all clonotypes compared with that between 100 ng 227 

replicates (Supplementary Fig.8c-top&bottom). For TRB, the results were comparable 228 

regardless of the quantity (MH>0.5). When focusing on the 1% MPC, the similarity was 229 

comparable regardless of the quantity for both TRA and TRB. These results indicated that RNA 230 

quantity impacts rare clonotype detection. 231 

 232 
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Reliability and sensitivity of each method highlighted using an in silico meta-repertoire  233 

One unavoidable issue when aiming at capturing the diversity of a repertoire is sampling, i.e. 234 

only a fraction of the cells are analyzed and then a fraction of their nucleic acids24. To better 235 

assess the ability of each method robustly to capture rare and frequent clonotypes, we took 236 

advantage of the fact that altogether we generated 45 TRA and 63 TRB replicates of the same 237 

cell sample. We aggregated these results to generate an in silico meta-repertoire. To ensure 238 

the accuracy of the TCR sequences composing this meta-repertoire, we removed singletons 239 

and kept clonotypes found by at least 3 methods.  240 

We first analyzed how many of the clonotypes present in this meta-repertoire were detected 241 

by each method. For TRA (Fig.5a-left), RACE-3 and RACE-5 datasets included up to 50% of the 242 

meta-repertoire clonotypes (MRC) compared to 10 to 20% for the other RACE method datasets. 243 

Similar results were found for TRB (Fig.5a-right). We then computed for each method the 244 

fraction of MRC found in 0, 1, 2, 3 etc. up to 9 replicates. The dot-heatmaps (Fig.5b) showed 245 

that for TRA, RACE-3 and RACE-5 clearly outperformed the other methods, capturing up to 40% 246 

of the MRC in all 9 replicates (Fig.5b-left; Replicate number=9) and missing (i.e. never captured 247 

in any of the 9 replicates) less than 1% of the MRC (Fig.5b-left; Replicate number=0). The other 248 

RACE protocols detected only 1% of MRC in all 9 replicates and missed 15 to 20% of the MRC 249 
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(Fig.5b-left). In contrast, there was much less difference between the methods for TRB (Fig.5b-250 

right).  251 

Finally, we analyzed the frequency of MRC TCRs that were detected or not by each method 252 

(Fig.5c and Supplementary Fig.9). For TRA (Fig.5c-left), the frequency of MRC found in 9 253 

replicates (red boxplots) ranged from 1% to 0.001% for RACE-3 and RACE-5 and from 1% to 254 

0.05% for the other methods. In contrast, clonotypes not detected in any replicates (black 255 

boxplots) were present at 10- to 100-fold lower abundance. A similar overall pattern was seen 256 

for TRB, although the frequencies were shifted to a lower range. This analysis suggested that 257 

RACE-3 and RACE-5 had increased sensitivity, and hence were able to detect a larger proportion 258 

of clonotypes at lower abundances. These differences were more evident for TRA than for TRB 259 

(Fig.5c-right). The other methods compared behaved very similarly to each other. Importantly, 260 

those results were independent of sample size (Supplementary Fig.10). 261 

Fig. 5: Sharing with robust and representative meta-repertoire.
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 262 

DISCUSSION 263 

Interpreting the TCR repertoire is an increasingly important tool in understanding the 264 

underlying causes of immune-mediated diseases and in assisting the development of new 265 

immunotherapeutic strategies. However, despite hundreds of TCRseq studies in the last decade 266 

using a variety of different methodologies, there has been no systematic study comparing 267 

them. 268 

In this work, we compared methods developed by academics, at a time when there was little 269 

or no reliable commercial service provision, with some currently available commercial 270 

methods. Both RNA- and gDNA-based methods were included. To avoid mis-implementation of 271 

protocols, each method (including appropriate pre-processing of sequence data) was 272 

performed by the laboratory or commercial provider (except for kit providers) that developed 273 

them.  274 

Unexpectedly, some consistent differences were observed in TRBV usage when compared to 275 

FC measurement of TRBV-encoded proteins, especially for RNA-based profiling. This might 276 

reflect bias in amplification of RNA transcripts according to their expression levels, more 277 

efficient transcription of some V genes, or differences in nonsense-mediated decay39. Further 278 

studies, using single-cell RNAseq may shed light on this phenomenon.  279 

Working with human samples often imposes limits on the number of available T-cells. Notably, 280 

lymphopenia is a common feature in people undergoing treatment (transplantation, 281 

immunosuppressive therapy) or with autoimmune disease40 and infections. Additionally, T-cell 282 

subsets of interest, as well as available counts of tumor-infiltrating T-cells, may be limited. 283 

Therefore, it is important to identify which methods provide reliable TCRseq profiles for small 284 

numbers of T-cells. In this context, we observed that, regardless of the method, starting from 285 
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a highly polyclonal population, the initial amount of material is critical to obtaining 286 

representative results, notably in terms of diversity and rare clone detection. 287 

Although our study focused on polyclonal CD4 T-cells from healthy repertoires, we analyzed a 288 

wide range of global and sequence-specific repertoire parameters, including V(D)J gene usage, 289 

junctional diversity, repertoire diversity and sequence sharing. These parameters are all 290 

relevant to any other alpha/beta T-cell populations, as indeed are all parameters routinely used 291 

to analyze repertoires of samples from pathological and clinical human samples41. 292 

Because our study incorporated multiple replicates tested with each method, we were able to 293 

explore method replicability, i.e. the ability of each method to reproduce the same repertoire 294 

from different sub-samples from the same individual. Our results showed that, except mPCR-295 

3, all the methods provided consistent results among replicates. We also evaluated the 296 

reproducibility, i.e. the extent to which different methods record the same results when applied 297 

to the same sample. We observed a low degree of TRB clonotype overlap between repertoires 298 

amplified from gDNA and RNA (cDNA), perhaps reflecting differences in gDNA and RNA copy 299 

numbers. The four RACE methods produced relatively similar repertoires as revealed by the 300 

Morisita-Horn index. The mPCR on gDNA showed low reproducibility between methods, 301 

suggesting that the choice of multiplexing primers might bias the amplification of some 302 

clonotypes, as suggested previously34. However, most RACE methods (not tested for mPCR) 303 

had a lower efficiency in capturing TRA rather than TRB diversity, which may reflect the 2- to 3-304 

fold lower number of TRA transcripts than TRB transcripts31. 305 

Finally, sensitivity is important for the study of circulating blood T-cells, especially when the 306 

goal is to track a few expanded clones associated with infection or autoimmunity, or in 307 

response to treatment. However, assessing sensitivity based on sample overlap is a complex 308 

performance metric, since it is impacted by experimental variability, but also by sampling. In 309 
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order to tackle this problem directly, we generated an in silico meta-repertoire which provided 310 

a more robust platform with which to directly compare the sensitivity performance of the 311 

different methods. Interestingly, using this standard, we found that two non-UMI methods 312 

(RACE-3 and RACE-5) had greater sensitivity than UMI-based methods (RACE-1 and RACE-2) 313 

and were able to detect clonotypes at a 10-fold lower frequency. In part, this results from the 314 

reads-per-UMI cutoff, which may lead to a decrease in observed TCR diversity if sequencing 315 

coverage is not sufficient. For example, introducing a hard cutoff which discards all UMIs with 316 

less than 5 reads leads to a decrease in observed TCR diversity. UMI-based methods may be 317 

more accurate for assessing clonotype frequency, in line with their use to quantify and correct 318 

for PCR errors and bias42,43. Furthermore, a threshold of 2-4 reads per UMI efficiently protects 319 

against artefacts and cross-sample contamination44, which becomes critical with tighter cluster 320 

density on modern Illumina machines. UMI-based methods may require several replicates or 321 

higher sequencing coverage to consistently and unambiguously identify rare TCR sequence 322 

clonotypes. Noteworthy, both RACE-1 and RACE-2 methods performed better after UMI 323 

correction (see Table 1).  324 

Such in silico standards may be of value in further comparative TCRseq method evaluation, 325 

although ideally synthetic repertoires recapitulating at least the extent of the TRAVJ and TRBVJ 326 

combinations and distributions may provide an even more robust alternative. Two such 327 

approaches have been proposed for specific clone detection in Minimal Residual Diseases45,46 328 

as well as for the BCR, but not TCR, repertoire47, still at a very low diversity level. The 329 

construction of such gold standard repertoires is currently very costly and remains a major 330 

challenge that the Adaptive Immune Receptor Repertoire Community (AIRR-C)48, engaged in 331 

AIRR-seq standardization49–51, may tackle in the future. Finally, in this study some data were 332 

pre-processed using proprietary (mPCR-1, mPCR-3) or published30,52 (RACE-1_U and RACE-2_U) 333 



18 
 

tools and then aligned and error-corrected using MiXCR (v2.1.10)37. To further optimize TCR 334 

data accuracy, it would also be interesting to benchmark available software analysis tools, 335 

especially regarding UMI analysis and sequence alignment. Our datasets generated using 336 

different methods should be a valuable complement to using datasets generated purely in 337 

vitro53,54. 338 

In conclusion, the take-home messages from this work are the following. Firstly, there are 339 

satisfactory TCRseq methods based on either DNA or RNA input, and in both cases the amount 340 

of material impacts both diversity and the detection of rare clones. Secondly, various methods 341 

are optimal for detecting maximal diversity, while others most accurately quantify the 342 

abundance of specific clonotypes. For the latter, UMI-based methods are potentially more 343 

accurate, although they could miss relevant but rare clones. In contrast, non-UMI RACE 344 

methods are more sensitive in capturing rare clones, especially for TRA. Thirdly, the availability 345 

of raw data is crucial in allowing reliable and reproducible in-depth analyses of TCR repertoires; 346 

the mPCR-1 service provider does not provide access to raw sequence data, while mPCR-1 and 347 

mPCR-3 do not disclose the proprietary pre-processing filters. In contrast, the RACE-2 provider 348 

provides raw data and all preprocessing algorithms. We summarized our results as well as 349 

practical aspects in Table 1. Regarding the results, we calculated for each method a rank value 350 

for Replicability, reliability and sensitivity based on various measures (Table 1 and 351 

Supplementary file). We also summarized cost per sample, presence of controls or standards, 352 

format of the method and raw data availability. The Table 1 highlight the advantages and 353 

disadvantages of the different methods which could serve as guidance for end-users. Improved 354 

and more sophisticated data analyses are essential to extract the full power of TCR repertoire 355 

data. We anticipate that now that TCR sequencing has come of age, the next key developments 356 
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in the field will come from novel methods of data analysis, as has been the case in the related 357 

field of global transcriptomics.  358 

Table 1: Comparative performance of the nine TCRseq molecular methods.  359 

TR chain Method Replicability Reliability Sensitivity Cost per 
sample

Controls & 
standards Format type fastq data 

availability
RACE-1 7 4 4 ~230 - lab protocol YES
RACE-1_U 4 5 4 ~230 UMI lab protocol YES
RACE-2 5 4 5 230-280 - service or kit YES
RACE-2_U 4 5 5 230-280 UMI service or kit YES
RACE-3 3 2 3 ~150 - kit YES
RACE-4 5 6 4 ~150 - lab protocol YES
RACE-5 2 3 3 ~300 - lab protocol YES
mPCR-1 3 3 3 ~350-550* synthetic TCRs service or kit NO
mPCR-2 6 7 7 ~230 - lab protocol YES
mPCR-3 5 5 3 ~350-550* - service or kit YES
RACE-1 6 5 4 ~230 - lab protocol YES
RACE-1_U 4 6 5 ~230 UMI lab protocol YES
RACE-2 6 6 6 230-280 - service or kit YES
RACE-2_U 6 6 7 230-280 UMI service or kit YES
RACE-3 2 2 3 ~150 - kit YES
RACE-4 3 5 4 ~150 - lab protocol YES

TRB

TRA
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MATERIAL AND METHODS  360 

Blood effector T cell isolation  361 

Peripheral blood mononuclear cells (PBMC) from two healthy blood donors (Etablissement 362 

Français du sang; French Blood Center) were obtained with written informed consent for 363 

biomedical research. The experiments carried out were in conformity with the Helsinki 364 

Declaration on Biomedical Research. Donors A (experiment A) and B (experiment B) were both 365 

men, 36 and 54 years old, respectively. CD3+CD4+CD127+CD25- cells (CD4+ T effector cells) were 366 

sorted at the Sorbonne Université laboratory as follows: CD4+ cells were isolated by 367 

Lymphoprep (Stemcell®) density gradient and positive selection using the Dynabeads™ CD4 368 

Positive Isolation Kit (Invitrogen®). Enriched CD4+ T-cells were then labeled with anti-CD3+, 369 

CD4+, CD127+ and CD25+ antibodies and effector T-cells were sorted on a FACS ARIA II with a 370 

purity > 95% (Supplementary Fig.1a). 371 

 372 

Jurkat cell culture 373 

The Jurkat cell line with a known TCR (TRAV8-4-CAVSDLEPNSSASKIIF-TRAJ3; TRBV12-3-374 

CASSFSTCSANYGYTF-TRBJ1-2) (clone E6-1), from ATCC, was grown in 5% CO2, in RPMI 1640 375 

medium, supplemented with 10% (v/v) fetal bovine serum (FBS), 2 mM L-glutamine, 50 U/mL 376 

penicillin, and 50 µg/mL streptomycin at the Sorbonne Université laboratory. 377 

 378 

RNA and DNA extraction  379 

In experiment A, DNA and RNA were both extracted using TRIzol Reagent (Invitrogen®) from 5 380 

million Jurkat cells and 20 million CD4+ T effector cells and, in experiment B, only RNA was 381 

extracted using the RNAqueous-Kit (Invitrogen®) from 7.2 million CD4+ T effector cells following 382 

the manufacturer's recommendations. DNA concentration and RNA concentration were 383 
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measured on a NanoDrop1000 (Thermo ScientificTM) and RNA integrity was determined on a 384 

Bioanalyzer (Agilent®) with measurements higher than 8. RNA and DNA extraction and 385 

validation were performed at the Sorbonne Université laboratory. 386 

 387 

Aliquot preparation for method comparison 388 

In experiment A, 100 ng of RNA or DNA from the CD4+ effector T-cells sorted from donor A was 389 

split into 3 aliquots that were spiked with different amounts of RNA or DNA from the Jurkat cell 390 

line, at ratios of 1/10, 1/100 and 1/1000. Each spiked aliquot was further split into 3 and all 391 

replicates were processed by all methods tested (7 for RNA and 2 for DNA; Supplementary 392 

Fig.1b). With experiment B, we analyzed the impact of the input material quantity. RNA from 393 

sorted CD4+ effector T-cells of donor B was extracted, split into 15 aliquots of 100 ng each and 394 

15 aliquots of 10 ng each and processed in triplicate using 5 of the RNA-based methods 395 

(Supplementary Fig.1c). Aliquots were prepared at the Sorbonne Université laboratory and sent 396 

to the partners. 397 

 398 

Flow Cytometry  399 

Vβ identification was performed on enriched CD4+ effector T-cells from experiment A (see 400 

Blood effector T cell isolation for enrichment procedure) stained with the IOTest Beta Mark TR 401 

Repertoire Kit (Beckman Coulter®) according to the manufacturer's protocol as well as with 402 

CD4-APC, CD127-BV421, CD25-PECy7. Data acquisition was performed on a Cytoflex® 403 

(Beckman Coulter®) using CytExpert® software. FlowJo® was used for data analysis. Vb 404 

frequencies were calculated on CD4+CD25-CD127+ gated cells (Supplementary Fig.4a-b). 405 

Staining was performed at the Sorbonne Université laboratory. 406 

 407 
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TCR library preparation and sequencing 408 

The nine protocols for TCR library preparation compared in this study were selected according 409 

to at least one the following criteria: published use by groups other than the one who 410 

developed it (mPCR-1, mPCR-3, RACE-1, RACE-2, RACE-4 and RACE-5), (ii) their association with 411 

well-known analysis tools (RACE-1, RACE-2, mPCR-2) and (iii) commercially available (RACE-2, 412 

RACE-3, mPCR-1, mPCR-3). Sequencing protocols were harmonized taking into account 413 

published recommendations or recommendations provided by the manufacturer of 414 

commercial kits or by the owner or users of the protocol. All protocols are detailed in 415 

Supplementary material and methods. 416 

TCR deep sequencing data processing 417 

FASTQ raw data files were obtained from each method, except for Multiplex-1 & 2, for which 418 

we obtained, respectively, FASTA file and FASTQ files following proprietary pre-processing. For 419 

RACE-1 and RACE-2, UMI pre-processing was performed following protocols published 420 

elsewhere30,31,52. FASTQ and FASTA files were then processed for TRB and TRA sequence 421 

annotation using the MiXCR software37 (v2.1.10) with RNA-Seq default parameters (-p rna-seq 422 

–s hsa) as available online.MiXCR extracts TRA and TRB repertoire providing correction of PCR 423 

and sequencing errors. 424 

 425 

Data analysis 426 

Statistical comparisons and multivariate analyses were performed using R software version 427 

3.5.0 (www.r-project.org). We used the ggplot2 package to generate figures55, except 428 

heatmaps. More complex analyses are detailed in the next section. 429 

 430 
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Comparing VDJ rearrangement statistics 431 

An empirical VDJ rearrangement model for each method was built as follows. We analyzed 432 

clonotype tables to obtain comprehensive statistics of VDJ rearrangements including the 433 

frequencies of V/D/J segment usage, number of added N Bases (namely “insert profile”, i.e. the 434 

probability distribution of having A/T/G/C inserted in the N-region of CDR3 given that we 435 

observe a certain base inserted before it) and V/J segment trimming bases, with the IGoR 436 

package56. This model is built in a 'greedy' way in the sense that it uses best alignments provided 437 

by MiXCR rather than running expectation maximization procedures as described in Murugan 438 

et al.57. We utilized the Jensen-Shannon divergence (JSD) between distributions of VDJ usage 439 

to define the following two statistics that we use for comparative analysis of different TCRseq 440 

methods: 1) replicability measured as the distance between different samples produced by the 441 

same protocol and 2) reproducibility measured as the distance between samples produced by 442 

two different protocols. MDS used for sample mapping was performed on rank-transformed 443 

distances to avoid the distorting effect of outliers. All the analyses involve VDJ usage inferred 444 

from weighted data (TCR clonotype is weighted by its frequency in the sample) to account for 445 

TCRseq method amplification biases. 446 

 447 

Similarity analysis 448 

Pearson and Spearman correlations, the Morisita-Horn index58 (MH) and the Jaccard similarity 449 

index59 (JSI) were used to assess the similarity between samples. The MH index takes into 450 

account the relative abundance of species in the sample, while the JSI is a measure of the 451 

intersection between two populations relative to the size of their union, and is independent of 452 

relative abundances. Both indices vary between 0 (no overlap) and 1 (perfect overlap). JSI and 453 

MH were calculated using the DIVO package60 on R. In order to discriminate indices represented 454 
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by a heatmap with the pheatmap package61, we used a different set of colors. The Pearson and 455 

Spearman correlations are presented as yellow/white/orange (Fig.2c and Supplementary 456 

Fig.4e), MH is presented as blue/white/red (Fig.3a) and JSI is presented as purple/yellow/green 457 

(Supplementary Fig.5a). 458 

 459 

Diversity profiling 460 

The diversity was analyzed using two indices. Rényi entropy62 is a generalization of Shannon 461 

entropy, which increases when both species richness and evenness are high. Rényi entropy is 462 

a function of a parameter α spanning from (i) the species richness (α = 0), which corresponds to 463 

the number of clonotypes regardless of their abundance, to (ii) the clonal dominance (α→ + ∞), 464 

corresponding to the frequency of the most predominant clonotype. For α = 1, the Shannon 465 

diversity index is computed. The exponential of the Rényi entropy corresponds to the actual 466 

number of clonotypes in the datasets63 and is used to build a diversity profile64. It was 467 

computed using the entropy package65 on R. ChaoE66 index was calculated with the iNEXT 468 

package67 as a measure of extrapolation of the possible number of clonotypes based on the 469 

observed clonotypes. Rarefaction curves were interpolated from 0 to the current sample size 470 

and then extrapolated to the size of the largest of samples, allowing comparison of diversity 471 

estimates. Interpolation and extrapolation were based on ChaoE multinomial models68. 472 

 473 

Meta-repertoire construction 474 

We generated an in silico meta-repertoire from the sequences obtained from the 108 475 

replicates (45 for TRA and 63 for TRB). This meta-repertoire, for each chain, was designed to 476 

minimize biases by (i) pooling all clonotypes from the 9 datasets and removed singletons to 477 

avoid introducing noise due to PCR errors, (ii) Selecting non-reprocessed datasets, meaning 478 
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before UMI, (iii) keeping only clonotypes found by at least 3 different methods to avoid bias 479 

toward one particular method. The threshold was defined to reach a dataset size as close as 480 

possible to the original datasets to avoid additional sampling, (iv) normalizing the size of each 481 

dataset to the lowest dataset to ensure the same weighting for each method. Completion of 482 

the representative meta-repertoire was achieved by pooling all the datasets. This generated a 483 

pooled dataset of 14 458 TRA and 18 735 TRB clonotypes. 484 

 485 

Data Availability 486 

All the fastq data obtained in this study, including the Jurkat Clone E6-1 (ATCC®TIB-152™) cell 487 

line TCR alpha and beta sequences, were deposited in the NCBI Sequence Read Archive 488 

repository following MiAIRR standard recommendations47 under the BioProject ID 489 

PRJNA548335. Source data for TCRVb flow cytometry data are provided as Supplementary 490 

Fig.4a-b. All other data are available from the corresponding author upon request. 491 

 492 

Code Availability 493 

All software packages and programs are publicly available and open source. Scripts used to 494 

analyze the data with MiXCR are available from https://mixcr.milaboratory.com ; Decombinator 495 

from https://github.com/innate2adaptive/Decombinator; MiGEC from 496 

https://github.com/mikessh/migec; detailed VDJ rearrangement statistics scripts are available 497 

from https://github.com/antigenomics/repseq-protocol-comparison. There is no restriction on 498 

the use of the code or data.  499 
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 655 

 656 

FIGURE LEGENDS 657 

Fig. 1: Performance statistics and VDJ rearrangement model of each method for experiments 658 

A and B. 659 

a, The proportion of sequence reads aligned for TRA or TRB genes for each TCRseq replicate 660 

per experiment (Experiment A, top, Experiment B, bottom). The bars represent the percentage 661 

of TRA and TRB alignment, and the reason for alignment failure is color coded. b, Distribution 662 

of the reads quality control (QC) for each method over all datasets, computed with fastQC 663 

software (www.bioinformatics.babraham.ac.uk/projects/fastqc). c, Percentage of reads 664 
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collapsed after PCR error correction for all samples in the study. For each method, the MiXCR 665 

clustering strategy was applied to correct for PCR errors and collapse reads. Each box-plot 666 

represents the percentage of clustered reads. d, Multi-dimensional scaling (MDS) of V(D)J 667 

recombination parameters. MDS was performed based on the Jensen-Shannon Divergence 668 

(JSD) calculated between replicates on weighted VDJ segment usage (Segment usage), non-669 

template nucleotide insert size distributions (Insert size), V/D/J segment trimming distributions 670 

(Deletion size), and nucleotide frequencies in N-inserts (Insert profile). JSD values were 671 

transformed to rank for better visualization. Solid and dotted polygons outline samples from 672 

experiments A and B, respectively. Colors represents the different methods as in B (only 673 

methods used in both experiments are presented). e, Replicability and reproducibility of the 674 

TRA and TRB repertoires for each method. The average JSD calculated in D (rows) for TRA (left) 675 

and TRB (right) measured between replicates produced by the same method (Replicability, top) 676 

or replicates of a given method and all other protocols (Reproducibility, bottom) was used as 677 

distance metric to compare different protocols (columns). Columns are sorted according to the 678 

mean scaled distance (averaged over all rows) from the lowest (best 679 

replicability/reproducibility) to the highest (worst replicability/reproducibility). Distance values 680 

are shown using a color scale. Jurkat TCR sequences were removed from datasets for this 681 

analysis. 682 

 683 

Fig. 2: TRBV usage comparison between flow cytometry and TCRseq. 684 

a, Flow cytometry and TCRseq TRBV frequencies. Bar plots represent the TRBV frequencies 685 

calculated from flow cytometry stained CD4+ T effector cells for the 24 TRBV for which 686 

antibodies are available and from the TCRseq data, considering only clonotypes annotated for 687 

the same 24 TRBV (original TRBV frequencies were used accordingly). Histograms of the 24 688 
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TRBV frequencies are organized by decreasing order using frequencies obtained by flow 689 

cytometry as a reference reference (TRBV20-1, TRBV19, TRBV12-3/4, TRBV28, TRBV2, TRBV3-690 

1, TRBV30, TRBV6-5/9, TRBV9, TRBV5-1, TRBV4-1/2, TRBV27, TRBV29-1, TRBV6-6, TRBV11-2, 691 

TRBV10-3, TRBV25-1, TRBV6-2, TRBV18, TRBV5-5, TRBV14, TRBV5-6, TRBV13, TRBV4-3). b, 692 

TRBV usage correlation between flow cytometry and TCRseq. Pearson’s correlation of the TRBV 693 

frequencies between the 5 flow cytometry datasets and the 9 TCRseq replicates was calculated 694 

for each method. The plot is represented by the correlation score (y-axis) and the P-value (x-695 

axis) of the correlation, allowing the classification of the methods. c, Heatmap of the Pearson 696 

correlations between each replicate for the distribution of TRBV gene usage (n=62). The 697 

Euclidean distance was used for hierarchical clustering as a color-coded matrix ranging from 0 698 

(yellow, maximum dissimilarity) to 1 (orange, maximum similarity). Jurkat TCR sequences were 699 

removed from datasets for this analysis. 700 

 701 

Fig. 3: The reproducibility of detection of major TCR clonotypes by different methods.  702 

a, Heatmaps of the Morisita-Horn similarity index (MH). MH scores were calculated between 703 

each replicate across all methods for the top 1% of most predominant clonotypes (MPC) for 704 

TRA (left) and TRB (right). The Euclidean distance was used for hierarchical clustering as a color-705 

coded matrix ranging from 0 (blue, maximum dissimilarity) to 1 (red, maximum similarity). b, 706 

Comparison between individual replicates (Single) and pooled replicates (Pool) by the MH 707 

similarity index. Datasets from replicates of the same dilution were pooled for each method to 708 

get 1 pooled sample per dilution. Singletons (count=1) were removed; MH similarity scores 709 

were calculated for the top 1% of most predominant clonotypes for TRA (left) and TRB (right). 710 

Jurkat TCR sequences were removed from datasets for this analysis.  711 

 712 
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Fig. 4: Sensitivity of TCR sequence detection by different methods.  713 

a, Jurkat clone percentage. Jurkat TRA (top) and TRB (bottom) clonotype percentages were 714 

calculated for each experiment per dilution (1/10, 1/100 and 1/1000 spike-in) and are 715 

represented by the blue dots. The blue line represents linear regression and the black dashed 716 

line represents the theoretically expected percentage. b, Slope of the Jurkat tracking linear 717 

regression. Slope was computed between dilution with standard deviation by method for TRA 718 

(top) and TRB (bottom). c, Standard deviation of the clonotypes shared among the 9 replicates 719 

(except Jurkat clone) per method, for TRA (left) and TRB (right).  720 

 721 

Fig. 5: Sharing with robust and representative meta-repertoire. 722 

a, Replicate sharing fraction in meta-repertoire repertoire (focus on meta-repertoire 723 

clonotypes) for TRA (left) and TRB (right). The values represented correspond to the percentage 724 

of clonotypes from each replicate per method found in the meta-repertoire, median and the 725 

1st and 3rd quartiles are shown. b, Replicability of replicate methods with meta-repertoire for 726 

TRA (left) and TRB (right). By chain, heatmaps on the left represent the fraction, which 727 

corresponds to the percentage of meta-repertoire clonotypes found in 1 to 9 replicates per 728 

method (0: unseen in any of the replicates). c, Distribution of meta-repertoire clonotypes in the 729 

replicates by methods for TRA (left) and TRB (right). Each dot represents a meta-repertoire 730 

clonotype and the boxplot represents the average frequencies. Black boxplots with 731 

corresponding gray dots represent the unseen clonotypes (0) and red boxplots with 732 

corresponding gray dots represent the clonotypes found by the 9 replicates (9). Each method 733 

is represented independently. Jurkat TCR sequences were removed from datasets for this 734 

analysis. 735 

 736 
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Table 1: Comparative performance of the nine TCRseq molecular methods. For each method, 737 

an average rank score for TRA (top) and TRB (bottom) sequencing has been calculated for 738 

Replicability, Reliability, and Sensitivity (three first column) and practical information have been 739 

summarized (4 last columns). Ranks have been calculated as the average of the ranks for results 740 

from Fig. 1e, 2c, 3b, 4c for “Replicability”; Fig. 1e, 2b, 4b, 5a, 5b for “Reliability”; Fig. 4c, 5b & 741 

Supplementary Fig. 2a, 5c for “Sensitivity”. Rank values are comprised between 2 (best) and 7 742 

(worst) and represented as bars with their values. Details are provided as Supplementary 743 

information. Cost per sample” is expressed in USD as per current prices for a depth of 1 million 744 

TCR sequences per sample on a 25 million reads sequencing format. The costs cover reagents 745 

for library preparation to sequencing. *mPCR1 and mPCR3 price ranges correspond to the cost 746 

for either purchasing kits (lowest price) or service up to sequencing and basic data analyses 747 

from the provider. 748 


