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A slow review of the AGT correspondence

Bruno Le Floch∗

January 2022

Abstract

Starting with a gentle approach to the Alday–Gaiotto–Tachikawa (AGT) corre-
spondence from its 6d origin, these notes provide a wide (albeit shallow) survey of
the literature on numerous extensions of the correspondence up to early 2020. This
is an extended writeup of the lectures given at the Winter School “YRISW 2020” to
appear in a special issue of JPhysA.

Class S is a wide class of 4d N = 2 supersymmetric gauge theories (ranging from
super-QCD to non-Lagrangian theories) obtained by twisted compactification of 6d
N = (2, 0) superconformal theories on a Riemann surface C. This 6d construction
yields the Coulomb branch and Seiberg–Witten geometry of class S theories, ge-
ometrizes S-duality, and leads to the AGT correspondence, which states that many
observables of class S theories are equal to 2d conformal field theory (CFT) correlators.
For instance, the four-sphere partition function of a 4d N = 2 SU(2) superconformal
quiver theory is equal to a Liouville CFT correlator of primary operators.

Extensions of the AGT correspondence abound: asymptotically-free gauge theories
and Argyres–Douglas theories correspond to irregular CFT operators, quivers with
higher-rank gauge groups and non-Lagrangian tinkertoys such as TN correspond
to Toda CFT correlators, and nonlocal operators (Wilson–’t Hooft loops, surface
operators, domain walls) correspond to Verlinde networks, degenerate primary
operators, braiding and fusion kernels, and Riemann surfaces with boundaries.

∗CNRS, Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Université, Paris, France
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1 Introduction and outline
quantum field theories (QFTs) arise from many different constructions, be it Lagrangian
descriptions, dimensional reduction or geometric engineering. The resulting building
blocks can then be further deformed (e.g. partially Higgsed), coupled (e.g. by gauging
symmetries), or reduced by decoupling a subsector. Theories living in different dimensions
can also be fruitfully coupled together.

We explore these constructions, and some computation techniques, in the world of 4d
N = 2 supersymmetric theories, specifically class S theories [1] which are dimensional
reduction of a 6d theory (“S” stands for “Six”). Class S includes the most commonly
studied 4d N = 2 Lagrangian gauge theories (super-Yang–Mills (SYM), super-QCD
(SQCD), quiver gauge theories, N = 4 SYM and its mass deformation) and non-Lagrangian
ones such as Argyres–Douglas (AD) theories [2], but also a plethora of previously unknown
ones that have considerably broadened the set of known 4d N = 2 theories.

To construct a class S theory we start from a 6d N = (2, 0) superconformal field
theory (SCFT) denoted by X (g), which is characterized by a simply-laced1 Lie algebra g,
for instance su(N). We then reduce X (g) on a Riemann surface C called the ultra-
violet (UV) curve2, while preserving 4d N = 2 supersymmetry thanks to a procedure
called partial topological twist. The Riemann surface can have punctures (removed
points, so that C = C \{z1, . . . , zn} with C being compact) at which boundary conditions
must be prescribed. Each choice of punctured Riemann surface, and data Di describing
the boundary condition at zi, leads to one 4d N = 2 class S theory T(g, C,D).

Due to their 6d origin, nonperturbative dynamics of class S theories are encoded
in the geometry of C. For example the Seiberg–Witten (SW) curve [3, 4] of a theory,
which determines the low-energy effective action in a given Coulomb branch vacuum, is
a branched cover of C. Strikingly, this idea extends to many observables of the class S
theory. The AGT correspondence [5] concerns the four-sphere (and ellipsoid) partition
function:

ZS4
b
(T(g, C,D)) =

〈
V̂D1(z1) . . . V̂Dn(zn)

〉Toda(g)

C
(1.1)

where the right-hand side is a correlator of vertex operators in the Liouville CFT (for
g = su(2)) or its generalization, Toda CFT. The vertex operators are inserted at each
puncture zi and depend on the data Di characterizing punctures.

The rest of the introduction summarizes this review quickly: the reader should feel
free to skip to the main text. Sections 2, 3, and 4 (summarized in subsection 1.1) describe
the theories T(g, C,D) and the puncture data Di. Sections 5 and 6 (summarized in
subsection 1.2) explain how to define and compute both sides of (1.1), namely ZS4

b
and

Liouville CFT correlators. Finally, sections 7, 8, 9, and 10 describe numerous extensions
of the correspondence, with pointers to the literature. In subsection 1.3 we present the
preexisting reviews on topics related to AGT.3

1A simple Lie algebra g is simply-laced if all its roots have the same length. Such algebras have an
ADE classification: concretely, g is one of su(N), so(2N), e6, e7, or e8.

2The two-dimensional Riemann surface C is a complex curve: it has complex dimension 1.
3References (out before January 31, 2020) and comments on more recent developments welcome.
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1.1 Class S theories

In the main text we study the 6d (2, 0) theory X (g) (section 2), its twisted dimensional
reductions to class S theories (section 3), and Lagrangian descriptions of some of these
4d N = 2 theories (section 4). Here we only give some outcomes of these discussions.
We often reduce to g = su(N) for simplicity, but extensions to g = so(2N) are also
well-understood [6, 7].

Building blocks for T(g, C,D). A Riemann surface C of genus g with n punctures
can be cut into 2g − 2 + n three-punctured spheres, also called trinions or pairs of
pants4 glued together by tubes that connect pairs of punctures. Such a description is
often called a pants decomposition of C. Correspondingly, the general class S theory
T(g, C,D) can be decomposed into class S theories called tinkertoys that correspond to
each three-punctured sphere (tinkertoys range in complexity from free hypermultiplets to
previously unknown non-Lagrangian isolated SCFTs). Each puncture is associated to a
flavour symmetry, and connecting two punctures by a tube amounts to identifying the
two associated flavour symmetries and gauging them using the same 4d N = 2 vector
multiplet. For instance a four-punctured sphere can be split into two three-punctured
spheres (for suitable groups G1, . . . , G5):

T
(

G1

G2 G3

G4

)
= T

(
G1

G2

G5

)
⊗

gauge G5
T
(

G5

G3

G4

)
. (1.2)

In simple cases where tinkertoys are collections of hypermultiplets, this results in gauge
theories with an explicit Lagrangian made of hypermultiplets and vector multiplets.
Thanks to the partial topological twist, the 4d theory does not depend on the metric
of C [8, 9] but only on the complex structure of C, which can be described by the “length”
and “angle” of each tube. These two parameters control the complexified gauge coupling
(q = e2πiτ with τ = θ

2π + 4πi
g2 ) that combines the Yang–Mills coupling g with the theta

angle θ of the 4d vector multiplet corresponding to the tube. Weak coupling g → 0
corresponds to a very long tube.

Of course, C can be decomposed in many ways into three-punctured spheres: cor-
respondingly, T(g, C,D) has many equivalent dual descriptions involving completely
different sets of fields and gauge groups. The weak gauge coupling regime of these
descriptions correspond to regimes where the complex structure on C is well-described
by one pants decomposition where three-punctured spheres are joined by very long tubes.
These regimes, which are different cusps of the space of complex structures on C, are
continuously connected by varying the gauge couplings. In this way, gauge theories at
strong coupling in one description may admit a different weakly-coupled description.
This phenomenon [1] generalizes S-duality of the SU(2) Nf = 4 theory and of N = 4
SYM. The 6d construction thus makes these S-dualities manifest through C.

4That number is zero or negative for the sphere with 0, 1 or 2 punctures and the torus with no punctures:
these Riemann surfaces cannot be cut into three-punctured spheres, and the class S construction does
not give a 4d theory, see [8].
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In the 6d construction, the punctures at zi ∈ C are codimension 2 defects that wrap
the 4d spacetime on which the class S theory is defined. To preserve supersymmetry
of the 4d theory the defects should be half-BPS, namely preserve half of the original
supersymmetry. One must classify such defects (typically by moving along the Coulomb
branch), and then the tinkertoys corresponding to three-punctured spheres. Incidentally,
the 6d theory also admits interesting half-BPS codimension 4 operators supported on 2d
subspaces, which enrich the correspondence.

Coulomb branch and Seiberg–Witten curve. One way to get a handle on the
theory T(g, C,D) is to describe its supersymmetric vacua, especially its Coulomb branch,
and give the low-energy behaviour of the theory near each vacuum. This branch is
spanned by Coulomb branch operators, namely local operators annihilated by all 4d
antichiral supercharges.

Semiclassically, vacua of the 6d (2, 0) theory X (g) are parametrized modulo gauge
transformations by some (commuting, diagonalizable) adjoint-valued scalars ΦI , where
I = 6, . . . , 10 is an index for the so(5) R-symmetry5. Alternatively they are parametrized
by (consistent) values for gauge-invariant polynomials (Casimirs) such as Tr(ΦIΦJ).
Coulomb branch vacua of the 4d theory are then configurations of the ΦI (or rather of the
invariant polynomials) allowed to vary along the curve C. More precisely, tracking down
how 4d N = 2 antichiral supercharges embed into 6d N = (2, 0), we find two restrictions:
the Casimirs depend holomorphically on the coordinate z ∈ C, and among all the ΦI

only Φz := Φ6 + iΦ7 is non-zero. Because the partial topological twist mixes a subalgebra
so(2) of R-symmetry (under which Φz is charged) into the rotation group on C, Φzdz is
tensorial (specifically a one-form) on C. Roughly speaking, then, the 4d Coulomb branch
is parametrized by the adjoint-valued holomorphic one-form Φzdz on C modulo gauge
transformations, and more invariantly by vacuum expectation values (VEVs) ⟨Pk(Φz)⟩dzk
of Casimir polynomials.

In the g = su(N) case we repackage them as ϕk(z) = uk(z)dzk, k = 2, . . . , N , defined
in local coordinates z ∈ C by expanding

⟨det(x− Φz)⟩ = xN +
N∑
k=2

uk(z)xN−k. (1.3)

It is then useful to consider the zeros of this determinant

Σ =
{

(z, x)
∣∣∣∣ xN +

N∑
k=2

uk(z)xN−k = 0
}

⊂ T ∗C, (1.4)

where z is a coordinate on C and x parametrizes the fiber of the cotangent bundle T ∗C,
the bundle of one-forms6 on C. The complex curve Σ depends on the choice of vacuum
(specified by ϕ2, . . . , ϕN ) and turns out to be the SW curve of T(g, C,D), presented as
an N -fold (ramified) cover of C. It is equipped with a natural one-form λ = xdz, the SW

5In the M-theory construction of the 6d theory, so(5) rotates coordinates x6, . . . , x10.
6This just means xdz transforms as a tensor under changing the coordinate z on C.
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differential.7 From the SW curve and differential (Σ, λ) of T(g, C,D) in a given Coulomb
branch vacuum one can derive the infrared effective action (the prepotential). Masses of
BPS particles can also be extracted as integrals of λ along closed contours.

Tame punctures and tinkertoys. A puncture at zi ∈ C is described in this language
as a singularity of the gauge-invariants ϕk. An important example is the full tame puncture
which imposes a first order pole Φz ∼ mi(z − zi)−1dz + O(1) at zi, up to conjugation,
where the residue mi ∈ gC is a suitably generic element of the complexification gC of g.
This mass8 parameter mi can be understood as a constant value for the background
vector multiplet scalar that couples to the flavour symmetry g corresponding to the
puncture at zi. In gauge-invariant terms this first order pole translates to

⟨Pk(Φz)⟩ = Pk(mi)
(z − zi)k

+ . . . , (1.5)

or equivalently ϕk ∝ dzk/(z − zi)k + . . . with a leading-order coefficient determined
from mi, using (1.3) in the su(N) case.

In fact, when C gets pinched and split into two in the limit where a tube becomes
infinitely thin, this type of singularity generically occurs. The main building block of
class S theories is thus the tinkertoy Tg, namely the theory associated to a sphere with
three full tame punctures. A frequent notation is TN := Tsu(N). By matching SW curves
and SW differentials of T(su(2), C,D) theories to previously known theories such as SU(2)
Nf = 4 SQCD, one checks that T2 is simply a collection of 4 free hypermultiplets [1]. In
general, however, the theory Tg is a non-Lagrangian theory, with (at least) one flavour
symmetry g for each puncture. For instance, Tsu(3) is the Minahan–Nemeschansky SCFT
with flavour symmetry e6 ⊃ su(3)3.

There are more general tame punctures, defined as points where one imposes a first
order pole of Φz with a residue m that may be non-generic. The resulting tinkertoys
amount to a partial Higgsing: moving onto the Higgs branch of Tg by turning on a
nilpotent VEV for (the moment map of) the symmetry carried by the puncture, thus
reducing the symmetry. For su(N) they are characterized by the pattern of equal
eigenvalues of m, encoded as a partition of N , and they lead to lower-order poles for
the ϕk. The partition for a full tame puncture is N = 1+1+ · · ·+1, also denoted by [1N ];
it carries su(N) flavour symmetry (broken explicitly by the mass m). At the other
extreme, the puncture corresponding to the partition [N ] (all eigenvalues equal, hence
vanishing) is a trivial absence of puncture since it is a pole with zero residue. The next
“smallest” puncture, called a simple tame puncture corresponds to the partition [N − 1, 1]
so m = diag(m1, . . . ,m1,−(N − 1)m1); it carries u(1) flavour symmetry, enhanced to
su(2) for N = 2 since in that case the simple and full punctures are identical. Both the
full and the simple tame punctures appear in the class S description of SU(N) Nf = 2N
SQCD, as depicted in Figure 1.

7Equation (1.4) is often reformulated as λN +
∑N

k=2 ϕk(z)λN−k = 0.
8For su(N), the N eigenvalues of mi give residues of λ at each of the N points of Σ projecting to zi.

Integrating λ to compute masses of BPS particles picks up such residues, which are thus mass parameters.
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u(1) su(N)

su(N)

su(N) u(1)

[1N ]

[N − 1, 1][1N ]

[N − 1, 1]

=

[1N ]

[N − 1, 1][1N ]

[N − 1, 1]
u(1)

su(N)
su(N)

su(N)

u(1)

Figure 1: The su(N) class S theory corresponding to a sphere with two full tame punctures
(labelled [1N ], flavour symmetry su(N)) and two simple tame punctures (labelled [N−1, 1],
symmetry u(1)). We depict two pants decompositions constructed from spheres with
one simple and two full punctures, whose corresponding tinkertoy is a collection of
hypermultiplets. The decompositions lead to two S-dual Lagrangian descriptions of the
theory as SU(N) SQCD with Nf = 2N . The third pants decomposition (not depicted
here) involves non-Lagrangian tinkertoys (for N > 2).

While the gauge algebra carried by each tube is g when all punctures are full tame
punctures, more general tame punctures may lead to smaller gauge algebras. For
example, su(N) class S includes linear quiver gauge theories with gauge group ∏i SU(Ni)
(with Ni ≤ N), one hypermultiplet in each bifundamental representation Ni ⊗ Ni+1,
and Mi ≤ 2Ni − Ni−1 − Ni+1 hypermultiplets9 in fundamental representations Ni of
each SU(Ni). This is summarized in the quiver diagram

SU(N1) SU(N2) · · · SU(Np)

M1 M2 Mp
(1.6)

1.2 Basic AGT correspondence

We summarize here two sections that build up to the full AGT correspondence. First,
section 5 describes how the (squashed) sphere partition function ZS4

b
of quiver gauge

theories is computed using supersymmetric localization, and especially the issue of
instanton counting. Then, section 6 explains basic aspects of Liouville CFT and gives the
precise statement of the AGT correspondence for g = su(2) generalized quivers.

Supersymmetric localization. In section 5 we explain how to place class S theories
on the (squashed) four-sphere S4

b := {y2
5 + b2(y2

1 + y2
2) + b−2(y2

3 + y2
4) = r2} ⊂ R5

supersymmetrically, which incidentally requires masses to be purely imaginary. We also
explain how to evaluate the partition function on this ellipsoid using supersymmetric
localization [10, 11]. This path integral technique applies to each 4d N = 2 Lagrangian
description of T(g, C,D)—if such a description exists.10 Supersymmetric localization can

9When this bound is saturated the gauge coupling of that group does not run. When it is obeyed
but not saturated (so Mi < 2Ni − Ni−1 − Ni+1) we get an asymptotically free gauge theory, which can
be realized in class S using wild punctures. When the bound is violated instead, the theory is only an
effective theory and does not have a class S construction.

10Factorization properties of ZS4
b

that we find upon cutting the Riemann surface also hold for non-
Lagrangian class S theories. They are obtained by applying supersymmetric localization to the vector
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reduce the infinite-dimensional path integral down to a finite-dimensional integral over
supersymmetric configurations of the hypermultiplets and vector multiplets. One finds
configurations labeled by the (purely imaginary) constant value a of a vector multiplet
scalar, which can be gauge-fixed to lie in the Cartan subalgebra of the gauge algebras.
These configurations are additionally dressed by point-like instantons at one pole (y5 = r)
and anti-instantons at the other pole (y5 = −r) of S4

b . The partition function then reads

ZS4
b
(q, q) =

∫
daZcl(a, q, q)Zone-loop(a)Zinst(a, q)Zinst(a, q), (1.7)

where we omit the dependence on g and data D at the punctures but write explicitly the
dependence on complex structure parameters q of the curve C. Here, Zcl comes from
the classical action of supersymmetric configurations; it depends non-holomorphically
on the complex gauge couplings q, but factorizes as Zcl(a, q, q) = Zcl′(a, q)Zcl′(a, q).
Quadratic fluctuations around these configurations yield Zone-loop(a), a straightforward
product of special functions that is completely independent of the shape (complex
structure) of C. Finally, (anti)-instantons at each pole bring a factor of Zinst that depends
(anti)-holomorphically on gauge couplings q.

The factor Zinst(a, q) = ∑
k≥0 q

kZinst,k(a) = 1+O(q1) is Nekrasov’s instanton partition
function [12, 13] with parameters ϵ1 = b/r, ϵ2 = 1/(rb), computable in favourable cases.
The main difficulty is to compute each k-instanton contribution Zinst,k(a), which is an
integral over the k-instanton moduli space. This space is finite-dimensional but very
singular, and its singularities are understood best for unitary gauge groups. For linear
quivers of unitary groups, which are obtained from (1.6) by replacing all SU(Ni) gauge
groups by U(Ni), the Nekrasov partition function can be determined by equivariant
localization or through IIA brane constructions. The instanton partition function of the
SU theories (1.6) that we care about can then be derived by an appropriate decoupling of
the U(1) factors, which divides Zinst(a, q) by simple factors such as powers of (1 − q) [5].
Various other methods have been devised, but there is as of yet no complete first principles
derivation of Zinst for general class S theories, and even when restricting to g = su(2)
with tame punctures.11

S-dual Lagrangian descriptions of the same theory, obtained by different pants
decompositions of C, should have the same partition function if S-duality is to hold.
The equality of explicit integral expressions (1.7) is extremely challenging to prove, even
for the SU(2) Nf = 4 theory. In fact the easiest way I know is to derive the AGT
correspondence in that case (e.g. [14]) and then rely on modularity properties on the 2d
CFT side shown in [15–17].

Liouville CFT correlators and basic AGT correspondence. In section 6 we move
on to the other side of the correspondence for g = su(2), namely Liouville CFT correlators.
Liouville CFT depends on a “background charge” Q = b+ 1/b ≥ 2 (the central charge is
c = 1 + 6Q2 ≥ 25), which translates on the 4d side to a deformation parameter of S4 into

multiplets only, and not to the tinkertoys.
11I thank Jaewon Song for clarifications on this point.
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the ellipsoid S4
b . As in any 2d CFT, local operators organize into conformal families

constructed by acting with the Virasoro algebra on primary operators. In the Liouville
CFT these primaries are the vertex operators V̂α, labeled by a continuous parameter
α = Q/2 + iP with P ∈ R/Z2 (called momentum), and they have equal holomorphic
and antiholomorphic dimension h(α) = α(Q − α) = Q2/4 + P 2. In the su(2) case the
data Dj for each tame puncture reduces to specifying a mass mj ∈ iR/Z2 (imaginary),
naturally identified with a Liouville momentum (up to the sphere’s radius r): the AGT
correspondence then states

ZS4
b

(
T(su(2), C,m)

)
=
〈
V̂Q/2+rm1(z1) . . . V̂Q/2+rmn

(zn)
〉Liouville
C

. (1.8)

As in any 2d CFT, n-point functions of Virasoro primary operators on the Riemann
surface C have a useful expression for each pants decomposition of the punctured
Riemann surface C. The idea is to insert a complete set of states along each cut in the
decomposition, then use Virasoro symmetry to rewrite all resulting three-point functions
in terms of those of primaries. Schematically this gives〈

V̂µ1(z1, z̄1) . . . V̂µn(zn, z̄n)
〉Liouville

C
=
∫

dαC(µ, α)F(µ, α, q)F(µ, α, q). (1.9)

Here we integrate over all internal momenta α labelling the conformal family in each
inserted complete set of states. The factor C(µ, α) is a combination of structure constants
of Liouville CFT. The other two factors are conformal blocks, which are purely about
representation theory of the Virasoro algebra, and which depend (anti)-holomorphically
on the complex structure parameters q of C, including (cross-ratios of) zi.

Both sides of the AGT correspondence admit the same kind of expressions (1.7)
and (1.9) for each pants decomposition of C, with one integration variable a or α for
each tube, and a factorization of the dependence on q into holomorphic and antiholo-
morphic. In fact these expressions match factor by factor: Zone-loop(m, a) = C(µ, α) and
Zcl′(a, q)Zinst(m, a, q) = F(µ, α, q). An additional entry in the dictionary is that ϕ2 on
the 4d side corresponds to the holomorphic stress-tensor T (z) on the Liouville side in the
classical limit r → ∞: the leading term in an operator product expansion (OPE) with
T (z) matches r2ϕ2(z),

T (z)V̂µ(0) = h(µ)V̂µ(0)
z2 + · · · ≃

r→∞
−r2m2

z2 V̂µ(0) + · · · ≃ −r2ϕ2(z)V̂µ(0) + . . . . (1.10)

We end section 6 by outlining the technical derivation of how Liouville CFT appears
upon reducing the 6d theory on S4 [18].

Extensions of the AGT correspondence. The AGT correspondence is generalized in
two ways in section 7. First, asymptotically free theories and AD theories are described by
replacing tame punctures by wild punctures, which replaces primary vertex operators by
irregular ones on the CFT side. Second, su(2) is replaced by g = su(N): hypermultiplets
are then replaced by non-Lagrangian building blocks TN and Liouville CFT by Toda CFT.

9



In section 8 we investigate how to include in the AGT correspondence various gauge
theory operators (local operators, Wilson–’t Hooft loops, . . . ). The CFT side features
Verlinde loops, degenerate vertex operators, fusion and braiding kernels, and Riemann
surfaces with boundaries. The dictionary and references are summarized in Table 1.

Table 1: AGT correspondence for extended operators, sorted by codimension
of the 6d operator or orbifold that yields them, and sorted by dimension
on the 4d side. Most entries are hyperlinked to the main text.

Operator in class S theory Liouville/Toda CFT References

C
od

im
en

sio
n

4
︷

︸︸
︷

0d
Coulomb branch operator Integrated current [19]
Orbifold C2/ZM Change CFT to coset [20–37]

1d Dyonic loop:
Wilson loop/’t Hooft loop

Degenerate Verlinde loop:
around a tube/transverse

su(2) [38–44],
g [45–54]

2d
Vortex string operator Degenerate vertex operator [39, 55–71]

C
od

im
en

sio
n

2
︷

︸︸
︷ Gukov–Witten surface defect

or orbifold C × (C/ZM )
Change CFT by
Drinfeld–Sokolov reduction [72–85]

Symmetry-breaking wall Verlinde loop [43]
3d S-duality domain wall Modular kernel [86–90]

Boundary Boundary CFT [91, 92]
4d Coupling to a tinkertoy Vertex operator [5, 93–109]

We discuss some offshoots of the AGT correspondence in section 9. Placing the 6d
theory onto other product spaces M × C (with some twist) leads to interesting relations
between theories on M and on C: the index/qYang–Mills (YM) correspondence [110], the
3d/3d correspondence [111], the 2d/4d correspondence [112]. In another direction, some
class S theories (especially linear quiver gauge theories) can be realized as reductions of
5d N = 1 theories. Instanton partition functions have direct analogues in 5d as certain
q-deformations of the 4d results. This leads to a q-deformed AGT correspondence [113]
equating these 5d instanton partition functions to chiral correlators (“conformal blocks”)
of q-deformed Virasoro or WN algebras. The S5 partition function involves three instanton
partition functions, and its proper translation to non-chiral correlators of a complete
q-Toda theory is still under investigation [114]. We end in section 10 with a quick
outline of many topics omitted in this review, such as matrix models, topological strings,
quantum integrable systems, etc.

1.3 Earlier reviews

There have been many good reviews related to the AGT correspondence, including in
several PhD theses. I particularly recommend Tachikawa’s very clear collection of
reviews [115–118].
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• 6d (2, 0) SCFTs. These theories, and more generally 6d (1, 0) SCFT, are reviewed
in [119] from an F-theory perspective. For codimension 2 defects, which are central
in the AGT correspondence, see [120].

• 4d N = 2 and Seiberg–Witten. While there are nice introductions from the
late 1990’s [121, 122] to the SW solution of 4d N = 2 theories, I recommend
more modern explanations such as Martone’s notes in this school [123], and the
well-known review “for pedestrians” [115] which covers a lot of ground, including
how AD theories arise from limits of SQCD. The book [124] discusses many modern
relations between 4d N = 2 theories and other topics. The review [117] is focussed
on the very important non-Lagrangian 4d N = 2 theory TN .

• Localization and instanton counting. Supersymmetric localization is reviewed
in the book [125], and in particular the squashed four-sphere partition function
in [126]. Its expression involves Nekrasov’s instanton partition function, for which
a good starting point is [116], followed by [127] which discusses all gauge groups,
subtleties regarding the U(1) factor, and the choice of renormalization scheme.

• Toda CFT and W-algebras.12 Liouville CFT is reviewed in [128, 129] among
many others, and it is worth reading [130] for some subtleties. There are no recent
reviews on Toda CFT or on W-algebras. For W-algebras see the old [131, 132] (and
possibly [133]) or the truncations of W1+∞ in [134, 135]. For Toda CFT perhaps
the early article [136] or my thesis [137]13.

• AGT for physicists. See [118] (or perhaps [138], in Japanese) for a brief review, and
the longer [139] ranging from SW basics to AD theories arising from degenerations
of SQCD. The matrix model approach to AGT is reviewed in [140, 141].

• AGT for mathematicians. Possible starting points for mathematicians include
the introductory seminar notes [142], a “pseudo-mathematical pseudo-review” [143,
144], incomplete (nevertheless 200 pages long) lecture notes [145], a categorical
version of the correspondence [146], a review that focuses on moduli spaces of flat
connections [147] and one discussing instanton counting on asymptotically locally
Euclidean (ALE) spaces [148]. There are also notes on mathematical applications
of the 6d (2, 0) SCFT to geometric representation theory, symplectic duality, knot
homology, and Hitchin systems [149].

• Generalizations of AGT. These include the 3d/3d correspondence reviewed
in [150] and the AGT relation between 5d N = 1 gauge theories and q-Toda
correlators in [151].

Given these numerous reviews, writing yet another set of notes is perhaps futile,
but hopefully the rather different approach taken here, starting from the 6d theory,

12I thank Ioana Coman for pointers.
13Better reference very welcome: only the AN−1 case is considered there, and only full, simple, and

degenerate punctures rather than general tame punctured labeled by partitions of N .
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is the right one for some readers. I apologize for omitting many directions from this
review, listed in the conclusion section 10, especially a broader discussion of the BPS/CFT
correspondence and of the deep links to quantization of integrable models underlying SW
geometry, matrix models, and topological strings.

Part I

Class S theories
2 6d (2, 0) SCFT of ADE type
Superconformal algebras exist in dimensions up to 6, and there is by now ample evidence
for the existence of 6d N = (2, 0) (maximally supersymmetric) SCFTs X (g), labelled
by a Lie algebra g that is simply-laced14,15. Nobody knows how to actually define
X (g) directly in a QFT language, for instance through a Lagrangian formulation. It is
instead obtained as a decoupling limit of certain string theory or M-theory brane setups.

Properties of X (g)

• X (g) has vacua whose infra-red (IR) description is an
abelian 6d (2, 0) theory of self-dual two-form gauge fields
valued in the Cartan algebra of g modulo the Weyl group.
• X (g) is a UV-completion of 5d N = 2 SYM in the sense
that SYM with gauge algebra g and gauge coupling g5d
gives an IR description of X (g) compactified on a circle of
radius g2

5d.
• X (g) admits codimension 2 half-BPS defects labeled by
nilpotent orbits in g, and codimension 4 half-BPS defects
labeled by representations of g.

Despite its stringy construction, the
theory is expected to be a bona-fide
local QFT, for instance having a lo-
cal conserved stress-tensor.16 These
constructions entail three important
properties detailed to the right.

The first two properties are com-
patible because both 5d N = 2
SYM on its Coulomb branch, and the
abelian 6d theory on a circle, are
described by 5d abelian vector mul-
tiplets in the Cartan of g. The last
property is compatible as well, as
the defects have rather explicit de-
scriptions when one moves along the
Coulomb branch or when one places the theory on a circle. The existence of X (g) with
these properties is confirmed by many consistency checks involving better-understood
theories. A major set of consistency checks is the AGT correspondence obtained by placing
these theories on the product M4 × C2 of a 4d and a 2d manifolds.

14As a reminder, simply-laced Lie algebras are aN−1 = su(N), so(2N) = dN , and the three exceptional
algebras e6, e7, e8 (in each case the subscript is the rank). This ADE classification has several beautiful
avatars in theoretical physics but we will not get to explore them in this review.

15While different constructions of X (g) give the same condition that g is simply-laced, including some
field theoretic arguments [152], it has not been proven that X (g) exhaust all 6d N = (2, 0) SCFTs. The
situation is the same in 4d N = 4 SCFT: there might possibly be such theories other than N = 4 SYM
theories.

16To be precise, it is a relative quantum field theory [153].
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Table 2: Nahm classification of superconformal algebras in Lorentzian signature. Here we
list the superconformal algebras in each dimension, the two bosonic factors (conformal
algebra and R-symmetry algebra), and the representations (of these bosonic factors) in
which Poincaré and conformal supercharges Q and S transform.

Superalgebra Conformal R-symmetry Q&S
3d N ≤ 8 osp(N |4) sp(4,R) so(N ) (4,N )
4d N ≤ 3 su(2, 2|N ) su(2, 2) su(N ) ⊕ u(1) (4,N ) ⊕ (4,N )
4d N = 4 psu(2, 2|4) su(2, 2) su(4) (4, 4) ⊕ (4, 4)
5d N = 1 f2(4) so(2, 5) su(2) (8, 2)
6d N ≤ 2 osp(8∗|2N ) so∗(8) usp(2N ) (8, 2N )

In this section we describe the symmetry algebra osp(8∗|4) (subsection 2.1), proper-
ties of self-dual two-form gauge fields (subsection 2.2), string/M-theory constructions
(subsection 2.3) and extended operators (subsection 2.4) of X (g).

2.1 Superconformal algebras

Superconformal algebras in dimensions d > 2 have been classified by Nahm [154] under
certain conditions. Their even (bosonic) part consists of the conformal algebra so(2, d)
(in Lorentzian signature) and an R-symmetry algebra, and their odd (fermionic) part
consists of supercharges that must transform in the spinor representation of so(2, d), and
such that translations are realized as anticommutators of supercharges.

The classification is in Table 2. In dimensions d = 3, 4, 6 the conformal algebra coin-
cides with the expected so(2, d) thanks to accidental isomorphisms17 so(2, 3) = sp(4,R)
and so(2, 4) = su(2, 2) and so(2, 6) = so∗(8). In each case, the spinor representation of
so(2, d) is the fundamental (vector) representation of the other group. It is known that
SCFTs with more than 16 Poincaré supercharges do not exist for d ≥ 4 (and are free for
d = 3) [155], and this leads to the bounds on N given in the table.

For the 6d case of interest to us, minimal spinor representation of the Lorentz algebra
so(2, 6) are chiral, and the superconformal algebras contain N = 1 or 2 such chiral spinors
(technically, symplectic Majorana–Weyl spinors) with the same chirality. These algebras
are thus called 6d N = (1, 0) and 6d N = (2, 0) superconformal algebras. There is no
6d N = (1, 1) superconformal algebra. We are interested in the largest superconformal
algebra of all: the 6d (2, 0) algebra osp(8∗|4).

Supercharges of this algebra transform in the (8s,4) representation18 of the conformal
17There are no such accidental isomorphisms for d > 6, which more or less explains the lack of

higher-dimensional superconformal algebras.
18We denote irreps (irreducible representations) of a simple Lie algebra by their dimension in bold

face. When ambiguities arise there are standard decorations to distinguish them, such as overlines for
conjugating the representation, or primes when there are several irreps of the same dimension and they
are not related by conjugation. A peculiar example is so(8) and other real forms thereof like so(p, 8 − p)
as they have three dimension 8 irreps: the defining representation of so(8) called 8v, and two conjugate
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and R-symmetry algebras so(6, 2) × so(5)R, with a reality condition. Decomposing this
into representations of the Lorentz algebra so(1, 5) gives (4,4) ⊕ (4,4), with a symplectic
reality condition. One set (4,4) consists of Poincaré supercharges and the other of
superconformal transformations.

2.2 Self-dual forms

The 6d N = (2, 0) SCFT X (g) is roughly speaking a theory of self-dual two-forms gauge
fields for a gauge Lie algebra g among aN−1, dN , e6, e7, e8, as we explain next.

Abelian self-dual forms. In even dimension d there exists an interesting notion
of (anti)19 self-dual k-form for k = d/2 − 1: a k-form B with components Bα1...αk

(antisymmetric in α1, . . . , αk) such that the field strength H = dB is mapped to a
multiple of itself by the Hodge star, that is,

Hα0α1...αk
:= (k + 1)! ∂[α0Bα1...αk] = ±id/2+sϵα0...αkβ0...βk

∂[β0Bβ1...βk]. (2.1)

Here indices within square brackets are antisymmetrized and the power of i =
√

−1
involves s = 0 for Euclidean and s = 1 for Lorentzian signature. The self-duality condition
regards the field strength hence is invariant under gauge transformations B → B + dΛ
for any k-form Λ: explicitly this adds k! ∂[α1Λα2...αk] to the component Bα1...αk

of the
k-form gauge field B.

From (2.1) we see that real self-dual k-forms exist only if d/2 + s is even. In 2d this
happens in Lorentzian signature, and it corresponds to a real scalar field propagating only
in one lightlike direction. (In the Euclidean case it is a complex chiral boson depending
on one holomorphic coordinate.) In 4d with Euclidean signature, (2.1) defines self-dual
gauge field configurations, also called instantons, which play a crucial role on the 4d side
of the AGT correspondence. (In the Lorentzian case they are complex saddle-points.) In
6d with Lorentzian signature we get a real self-dual two-form gauge field Bαβ.

We care about 6d (2, 0) supersymmetry, in which case the multiplet containing Bαβ
consists of B, spinors λ, and scalars Φ that transform respectively as the singlet, the
4-dimensional, and the 5-dimensional representations of R-symmetry usp(4) = so(5).

Compactifying on a circle. Let us place this 6d (2, 0) abelian theory of (B, λ,Φ) on
a circle and decompose into Kaluza–Klein (KK) modes. As determined in the following
exercise, the five scalars ΦI remain scalars, the spinors λ as well, and the self-dual
two-form gauge field B becomes a usual gauge field A in 5d. Altogether this gives abelian
5d N = 2 SYM.

We review dimensional reduction in Exercise 2.1 below. An important aspect for the
reduction from X (g) to 5d is that 5d SYM has instanton particles, namely gauge field
configurations with non-trivial topological number

∫
ϵµνρσFµνFρσd4x on each spatial slice.

spinor representations 8s and 8c, related by the triality automorphism of so(8).
19Self-dual and anti-self-dual cases differ by a sign, and we shall just write “self-dual” for simplicity.
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These excitations of the gauge field A play the role of the tower of KK modes: their mass
(proportional to) 1/g2

5d is correctly identified with the mass 1/R of KK modes.
Exercise 2.1. 1. Consider a D-dimensional scalar field φ, with Lagrangian L(φ) =
∂αφ∂

αφ − V (φ) (you can take V = 0 for simplicity). Consider it on a d-dimensional
Minkowski space times a (D − d)-dimensional torus of radius R (you can take D − d = 1
for simplicity). Write a Fourier decomposition of φ along the circle direction and rewrite
the action of φ as an action for these components. In the limit R → 0 notice that all
Fourier modes become infinitely massive except the zero mode.

2. Repeat the exercise for an abelian vector field Aα (α = 0, . . . , D − 1) with
Lagrangian FαβF

αβ , where Fαβ = ∂αAβ − ∂βAα. Check that the dimensionally-reduced
theory has both a vector field Aµ (µ = 0, . . . , d− 1) and D − d scalar fields. These can
be gauge-invariantly understood for finite R as Wilson loops of Aα around coordinate
circles of the torus. How do D-dimensional gauge transformations act? Deduce that the
scalar fields are circle-valued.

3. Repeat the exercise for a two-form Bαβ reduced from 6d to 5d. This results in a
two-form Bµν and a one-form Aµ. By imposing the self-duality condition on Bαβ find
that Bµν can be reconstructed (up to gauge transformations) from Aµ.

Nonabelian theory. Recall the Bianchi identity ∂[µFνρ] = 0 in 4d. It generalizes
to dH = ddB = 0. For a self-dual form this implies the free equations of motion
d ⋆ dB = 0, namely ∂µHµν... = 0. How can we add interactions? In 4d, the equation
Fµν = ∓1

2ϵµνρσF
ρσ defining instantons makes sense even for the field strength of non-

abelian gauge fields, F = dA + A ∧ A, explicitly Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. The
non-abelian version of the Bianchi identity is ϵλµνρDµFνρ = 0. When the gauge field
configuration is self-dual this implies the standard Yang–Mills equations of motion
DµF

µλ = 0. In contrast, for other self-dual k-forms, k ̸= 1, there is no obvious non-
abelian generalization of the relation H = dB, hence no obvious way to introduce
interactions. Instead, we use two stringy constructions.

2.3 Brane construction of 6d theories

The 6d (2, 0) theory X (g) naturally arises as the zero string tension limit of a 6d (2, 0)
little string theory, whose excitations are self-dual strings. These self-dual strings were
uncovered as supergravity solutions [156], then in IIB string theory at ADE orbifold
singularities [157], then as D2 branes ending on NS5 branes (or M2 ending on M5) [158].
(There also exist analogous 6d (1, 1) little string theories, but they have no conformal
limit so we do not discuss them further.) The 6d (2, 0) little string theories are labeled
by a simply-laced20 Lie algebra g, just like X (g), and we discuss two string theory
constructions reviewed in [160].

• In the zero string coupling limit gs → 0 of a stack of N coincident NS5 branes in
IIA string theory (or of M5 branes in M-theory), bulk degrees of freedom decouple,
and one gets the 6d (2, 0) little string theory with g = su(N).

20The ADE classification comes here from anomaly cancellation on the string worldsheet [159].
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• General 6d (2, 0) little string theories arise in the zero string coupling limit gs → 0
of IIB string theory on a C2/Γ singularity for the discrete subgroup Γ ⊂ SU(2)
corresponding to g.

These approaches teach us that X (g) on a circle is equivalent to 5d N = 2 SYM, and how
to describe X (g) upon moving on the tensor branch21.

Fivebranes in IIA or M-theory. We begin with the M-theory (or equivalently IIA)
construction, applicable to g = su(N): X (su(N)) is the world-volume theory of a stack
of N coincident M5 branes in M-theory, with the decoupled center of mass degrees of
freedom removed.

M-theory is an 11 dimensional theory (Lorentzian signature) with 32 supersymmetries
(one Majorana spinor). It is related by various dualities to better-understood string
theories and supergravity, for instance its low-energy limit is described by 11-dimensional
supergravity. For our purposes, the most interesting aspect is that M-theory on a circle
times a 10-dimensional spacetime is equivalent to IIA strings on that spacetime. The
aim of this review is not to discuss the intricate web of dualities relating M-theory to IIA
and other string theories, so we are quite schematic.

A standard comment on terminology: p branes are (p + 1) dimensional objects,
with p space and 1 time directions, so for instance the M5 brane is 6-dimensional and
has Lorentzian signature, as we wanted. M-theory has two such half-BPS objects: the
M5 brane and the M2 brane. Stacks of flat22 parallel branes of the same type preserve
the same half of supersymmetry (see Exercise 2.2), and there is no energy cost to moving
the branes while keeping them flat and parallel. While the world-volume theory of a
stack of N Dp branes has been known for a long time to be maximally supersymmetric
SYM in p + 1 dimensions (see the review [161]), the world-volume theory of stacks of
branes in M-theory has proven more difficult to pin down.

• The world-volume theory of a stack of coincident M2 branes is now known23 to be
the Aharony–Bergman–Jafferis–Maldacena (ABJM) Chern–Simons matter theory,
an SCFT with an explicit 3d N = 2 Lagrangian description, whose supersymmetry
enhances to the expected 3d N = 8 superconformal algebra osp(8|4) preserved by
the branes (see the review [162]). The R-symmetry so(8) rotates the 11-dimensional

21The 6d N = (2, 0) tensor multiplet splits into a 6d N = (1, 0) tensor multiplet and a hypermultiplet.
The tensor branch and Higgs branch are vacua where scalar fields in tensor or hyper multiplets acquire
a VEV (with (2, 0) supersymmetry the two branches combine). The tensor branch is sometimes called
Coulomb branch because it reduces to Coulomb branches in 5d and 4d. In 6d N = (1, 0) theories one
also has vector multiplets but they contain no scalars so there is no corresponding branch.

22Here we work as if spacetime were flat; the backreaction of branes on the geometry does not invalidate
the conclusions.

23Depending on one’s point of view, most words “known” in this review should be replaced by
“conjectured”. Ultimately, since the path integral has not been properly defined in most cases of interest
to physicists, almost all non-perturbative QFT results are conjectural. One can think about how much
“evidence” there is for one result or another. Results that are consistent with many others should then
serve as a guide to determine if a given mathematical definition of the theories is acceptable.

16



space around the M2 branes. Its holographic dual is AdS4 ×S7. That is all we will
say in this review.

• The world-volume theory of a stack of N coincident M5 branes is what we
call X (su(N)), a 6d (2, 0) SCFT with no Lagrangian description.24 More pre-
cisely, this would give u(N), but the u(1) center of mass of the branes decouples.
The R-symmetry so(5) rotates space around the M5 branes. The holographic dual
is AdS7 ×S4, which has the expected symmetry algebra osp(8∗|4), differing only
from the 3d case by some signs in the 7d and 4d parts.

Consequences of the M-theory construction. Consider now X (su(N)) on a circle
(times five-dimensional Minkowski space). M-theory on a circle is equivalent to IIA string
theory, and M5 branes wrapping the circle become D4 branes. Thus, X (su(N)) on a
circle is equivalent to the world-volume theory of N D4 branes, which is 5d N = 2 SYM,
as announced at the start of this section 2. Dimensional analysis shows that the 5d gauge
coupling scales as g5d ∼ L

1/2
5 in terms of the compactification circle length L5.

We move on to describing the vacua of X (g) from its M-theory construction. Super-
symmetric vacua are parametrized by the positions of the N M5 branes in the 5 transverse
directions, modulo relabelling of the branes since they are indistinguishable. The vacua
are thus (RN )5/SN . At any generic vacuum, all degrees of freedom are massive (with
mass proportional to the separation between the branes), except fluctuations around each
individual brane, which are known to be described by one 6d abelian theory of (B, λ,Φ)
for each brane. The scalar fields ΦI , I = 6, . . . , 10, describe fluctuations of each of the N
M5 branes in the transverse directions (except the u(1) trace part).

IIB strings. The M-theory construction gives a lot of insight on X (g) for g = aN−1,
and can be extended to dN by orbifolding, but it cannot realize the exceptional cases
e6, e7, e8. For this a dual IIB description is needed.

As understood in [163], T-duality transverse to a stack of N NS5 branes in IIA theory
produces IIB strings on an AN−1 singularity. This second construction of the 6d (2, 0)
little string theory, which we will not use much, generalizes readily to all ADE cases.
Place IIB string theory on Minkowski space R1,5 times a quotient C2/Γ by a finite
subgroup Γ ⊂ SU(2). Such subgroups are classified by ADE Lie algebras g. For instance,
the AN−1 case is Γ = ZN acting as (z, w) 7→ (e2πi/Nz, e−2πi/Nw) on coordinates of C2.
The zero-coupling limit gs → 0 of this set-up yields little string theory, and the further
zero-tension limit gives the 6d (2, 0) theory X (g).

Moving along the vacuum moduli space of the 6d theory corresponds to blowing
up C2/Γ into ALE space, namely resolving the singularity at the origin of C2/Γ into a
collection of r = rank g finite-size two-cycles. The sizes of these two-cycles become r
scalar fields Φ of the 6d theory on R1,5, in the Cartan subalgebra of g. In fact their VEV
parametrizes the vacua of X (g). In any vacuum, the IR degrees of freedom are: these

24Instead of g = aN−1 = su(N) one can realize g = dN = so(2N) by including an O5 orbifold plane on
top of the M5 branes.
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scalar fields Φ, the two-form B obtained by integrating the chiral four-form of IIB string
theory around each of the two-cycles, and some spinors. We end up as wanted with the
6d (2, 0) theory of an abelian self-dual two-form gauge field multiplet (B, λ,Φ) in the
Cartan subalgebra of g.

In this description only SO(4) R-symmetry is manifest, and the reduction to 5d N = 2
SYM is also nontrivial to see.

2.4 Codimension 2 and 4 defects

We return to the M-theory construction of X (su(N)) and consider intersecting brane
configurations with branes placed along the following directions inside R1,10.

M5 0 1 2 3 4 5 . . . . . → 6d (2, 0) theory
M5’ 0 1 2 3 . . 6 7 . . . → codimension 2 defect
M2 0 1 . . . . . . . . 10 → codimension 4 defect

Each column is a direction in R1,10; a dot indicate that a stack of branes is localized
at a given value of that coordinate, and a number indicates that the brane extends
along the corresponding direction. For instance the M5 branes are at given values of
x6, x7, x8, x9, x10 and extend in all other coordinates. The prime on M5’ branes just
helps us distinguish them from the M5 branes on which X (g) lives. Each additional stack
of branes in this table breaks half of supersymmetry (see Exercise 2.2). There can be
several stacks of the same kind of branes parallel to each other, in which case they don’t
break further supersymmetry.

The M2 branes extend only in one direction transverse to the M5 branes. In this
direction x10 they can either be infinite, or semi-infinite ending on one M5 brane, or finite
stretching between two M5 branes. Either way, from the point of view of X (g), stacks of
M2 branes insert a half-BPS codimension 4 operator, namely an operator supported on a
two-dimensional slice of the 6d theory [164].

The way it is written here, it would seem the M5 and M5’ branes intersect in
codimension 2. In truth they turn out to merge into a smooth complex manifold that
asymptotes at large distances to the configuration we wrote. For this to happen, the x6, x7

positions of the M5 branes should grow to infinity as x4, x5 get closer to the positions of
M5’ branes, as depicted in Figure 2. We return to this in section 4 for concrete cases.
From the point of view of X (g), at large distance, the intersection with M5’ branes has
an effective description as a four-dimensional (codimension 2) half-BPS operator [165].

As we explore the AGT correspondence in this review we learn various properties of
these defects, and especially the data that describes them. We find that:

• Codimension 2 operators are labeled by nilpotent orbits of g [7, 100]. In the su(N)
case, these amount to partitions of N specifying the way in which the N M5 branes
cluster into different groups as they go to infinity in the x6, x7 directions. Additional
continuous data describes the length scales in these directions.
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Figure 2: Configuration of a pair of M5 branes spanning the x4, x5 directions (depicted
horizontally) in the presence of an M5’ brane at a point in the x4, x5 plane. The M5 and
M5’ branes merge into a complex manifold. The x6, x7 positions (depicted vertically)
diverge at one point in the x4, x5 plane. We depicted the situation after decoupling the
center of mass modes, which is why the branes diverge symmetrically.

• Codimension 4 operators are labeled by representations of g. For the su(N), recall
that to each representation is associated a Young diagram, such that □ is the
fundamental N -dimensional representation, □□ is the symmetric representation,
etc. The total number of boxes is the number of M2 branes necessary to describe
the operator in M-theory. Roughly speaking, the number of boxes in each row of
the Young diagram indicates how many M2 branes can end on the same M5 brane.

Exercise 2.2. A flat M5 brane along directions x0, x1, . . . , x5 preserves supersymmetries
with Γ012345ϵ = ϵ while a flat M2 brane along directions x0, x1, x10 preserves supersym-
metries with Γ23456789ϵ = ϵ. Check that the brane configurations above are such that
each additional stack of branes breaks half of supersymmetry. (Hint: check that Γ01, Γ23,
Γ45 etc. commute with each other.) What other relative orientations of the stacks of
branes preserve half of the supersymmetry?

3 Class S theories from 6d

6d viewpoint on 4d N = 2 class S theories

• Reducing (with a twist) the 6d theory X (g) on a punc-
tured Riemann surface C gives a 4d N = 2 theory.
• Its Coulomb branch is parametrized by differentials ϕk =
ukdzk of the same degrees k as the Casimir invariants of g.
• Its SW curve Σ ⊂ T ∗C is a multiple cover of C.
• Gluing punctures amounts to gauging symmetries.
• Cutting C amounts to decoupling gauge fields.

Our next task is to dimensionally
reduce the 6d theory X (g) on a Rie-
mann surface C2. We explain in
subsection 3.1 a partial topological
twist such that the reduced theory
has 4d N = 2 supersymmetry [1].
The Coulomb branch and SW curves
giving the IR physics are worked out
in subsection 3.2 and subsection 3.3.
We then explain in subsection 3.4
how the 4d theory decomposes into
building blocks called tinkertoys [95].

19



3.1 Partial topological twist

Our aim is to place the 6d (2, 0) theory on R4 × C2, where C2 is an arbitrary punctured
Riemann surface. Doing this too naively would not preserve any symmetry beyond the
Poincaré symmetry of R4. We explain a procedure, the partial topological twist, that
allows 4d N = 2 supersymmetry to be preserved regardless of C2.

Generalities on topological twist. First we comment on the topological twist of
supersymmetric theories [166] in general terms from several point of views.

When placing a field theory on a curved background, the metric gµν acts as a source
for the stress tensor Tµν . For a supersymmetric field theory, Tµν typically belongs to a
multiplet together with supersymmetry currents Sµα and R-symmetry currents Jµ. These
can also be coupled to sources ψαµ and Aµ. The partial topological twist consists of setting
Sµα = 0 and choosing Aµ equal to the spin connection derived from gµν . Schematically, at
linearized order around some background values of g, ψ,A, when these fields are changed
the Lagrangian varies by

δL = Tδg + JδA = Tδg − J∂(δg) ≃ (T + ∂J)δg. (3.1)

In the second step we used our choice that A is related to derivatives of the metric, and
in the last step we integrate by parts.

In this way the topological twist amounts to redefining the stress-tensor from T to
Ttwist = T + ∂J before placing the theory on a non-trivial background metric. The twist
mixes the stress-tensor Tµν with the R-symmetry current Jµ, but it is good to remember
that it does not affect any observables of the theory in flat space, only what we call the
stress-tensor. Through the change of stress-tensor it changes how the theory is put on
curved spaces.

One job of the stress-tensor is to keep track of Poincaré symmetries: Tµν is the
conserved current of translation symmetries, while x[µT ν]ρ is the conserved current of
rotations. Since the twist shifts T by a total derivatives it is simply an improvement
transformation of the translation symmetry current, and it does not change the corre-
sponding conserved charge, the momentum operator. In contrast, it has a non-trivial
effect on what we call rotations: twisted rotation acts by a rotation plus an R-symmetry
transformation, because schematically xT 7→ xT + x∂J = xT − J + ∂(xJ) where ∂(xJ)
is an improvement transformation. Commutators between translations and the twisted
rotations nevertheless coincide with those in the standard Poincaré algebra.

What happens to supercharges? They typically transform as spinors under the original
rotations and under R-symmetry transformations. Under the new rotations embedded
diagonally, the supercharges typically split into a scalar supercharge Q and a vector.
By virtue of Q being a scalar, the stress tensor is Q-closed, so that placing the theory
on a curved manifold using the twisted stress-tensor preserves the supersymmetry Q.
The next step is typically to restrict to operators in the Q-cohomology. In many cases,
the twisted stress-tensor is Q-exact, namely Tµνtwist = {Q,Gµν} for some supersymmetry
generator Gµν , so that it vanishes in Q-cohomology and the correlators are described
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by a topological quantum field theory (TQFT). For the twist we consider, this will not
happen and there will remain non-trivial local dynamics instead.

Partial topological twist of 6d theories. The partial topological twist we use
consists of only mixing some of the R-symmetries into some of the rotation symmetries.
To define the specific twist we use, consider rotations so(1, 3) × so(2)old preserving
separately the two factors of a product R1,3 × R2, and consider the block-diagonal
subalgebra so(2)R × so(3)R ⊂ so(5)R of R-symmetry. We define twisted rotations to be
embedded diagonally into so(2)old × so(2)R, namely we treat the following symmetries as
our (twisted) Lorentz and R-symmetries:

so(1, 3) × so(2)twist × so(3)R. (3.2)

This is done by changing the stress-tensor to

Tµνtwist = Tµνold + 1
4(ϵµρ∂ρJν12 + ϵνρ∂ρJ

µ
12), (3.3)

where J12 is the R-symmetry rotation generator of so(2)R and ϵµν = δµ4 δ
ν
5 − δν5δ

µ
4 is the

Levi-Civita tensor on the R2 factor.
Exercise 3.1. Check that (3.3) shifts the x4, x5 rotation current x[4T 5]µ by J12 up to
total derivatives (an improvement term), so that the twisted rotation is a combination of
rotation and R-symmetry.

Let us track supersymmetries as we twist and then compactify. Under the so(1, 5)
rotations of R1,5 and so(5)R R-symmetry, the Poincaré supersymmetries transform in
the spinor representation of each, denoted (4,4), with a symplectic reality condition that
we hide for simplicity. Each 6d Weyl spinor, namely each representation 4 of so(1, 5)
decomposes into a pair of 4d Weyl spinors of opposite chirality (2,1) ⊕ (1,2) under
so(1, 3), and these spinors have opposite charges 1/2 and −1/2 under so(2)old. Each
spinor 4 of so(5) decomposes into two 2 of so(3)R with so(2)R charges ±1/2. Altogether
we denote this as follows, with subscripts denoting charges under the two so(2) algebras:

(4,4) =
(
(2,1) 1

2
⊕ (1,2)− 1

2

)
⊗
(
2 1

2
⊕ 2− 1

2

)
= (2,1,2) 1

2 ,
1
2

⊕ (2,1,2) 1
2 ,−

1
2

⊕ (1,2,2)− 1
2 ,

1
2

⊕ (1,2,2)− 1
2 ,−

1
2
.

(3.4)

By construction the charge under so(2)twist is the sum of those under so(2)old and so(2)R.
Thus, under the so(1, 3) × so(3)R × so(2)twist symmetry of R1,5 that we are concentrating
on, Poincaré supercharges transform as

(2,1; 2)1 ⊕ (2,1; 2)0 ⊕ (1,2; 2)0 ⊕ (1,2; 2)−1. (3.5)

We denote them respectively as

QαAz , QαA, Q̄α̇A, Q̄α̇Az̄ , (3.6)

21



where α, α̇, A, ranging from 1 to 2, are indices for spinors of so(1, 3) of the two chiralities
and spinors of so(3)R, respectively, while z is a complex coordinate on the R2 factor that
keeps track of so(2)twist charges ±1 of the first and last supercharges Qz, Q̄z̄.

The middle two supercharges Q, Q̄ are scalars under so(2)twist rotations, so that
deforming the metric on R2 to any curved metric preserves these supercharges. Altogether,
upon compactifying on R1,3 ×C with the partial topological twist we obtain a system that
preserves iso(1, 3) Poincaré symmetry, supercharges QαA and Q̄α̇A, and the so(3)R = su(2)
R-symmetry. Together these form the 4d N = 2 Poincaré supersymmetry algebra.

In the limit where C has zero size, we thus obtain a 4d N = 2 theory, generically.25

Twisting (3.3) does not preserve the tracelessness of T , so even though the original 6d
rotation symmetry extends to conformal symmetry, this is not the case of the twisted
rotation symmetry. In the zero area limit, 4d conformal symmetry can be restored and
we get an SCFT unless data at punctures of C carry an intrinsic mass scale.

3.2 Coulomb branch

The Coulomb branch of a 4d N = 2 theory is described by giving a VEV to Coulomb
branch operators, namely (gauge-invariant) operators of the 4d theory that are annihilated
by all antichiral Poincaré supercharges Q̄α̇A. Let us identify these operators starting
from the 6d theory X (g), following roughly [167, section 3].

Importantly, the resulting Coulomb branch B obtained in (3.13) only depends on the
complex structure of C, not on its metric. This lets us deform the Riemann surface in
various ways to understand the resulting 4d theory, and it underlies the appearance of
2d CFT objects on C in the AGT correspondence.

General supersymmetry considerations allow the vacuum moduli space of 4d N =
2 theories [168] to be a union of mixed branches Cα × Hα, which include the pure
Coulomb and pure Higgs branches as special cases. The special Kähler manifolds Cα
are parametrized by Coulomb branch operators and the hyper-Kähler manifolds Hα are
parametrized by Higgs branch operators. Higgs branch chiral ring relations for class S
theories were explored in [169–172]. Determining all branches as done in [173, 174] for
class S theories is in general difficult, so we will concentrate solely on the Coulomb branch
(for which Hα is a point).

Coulomb branch operators. The vacua of X (g) are parametrized by the VEV of
scalar fields ΦI , I = 6, . . . , 10, in the Cartan subalgebra of g (modulo the Weyl group).
The low-energy theory in a given vacuum is described by fluctuations of these fields as well
as spinors λ and a self-dual two-form B. Under the

(
so(1, 3) × so(3)R

)
× so(2)old × so(2)R

25The system at finite area of C has a certain moduli space of vacua, and in the scaling limit where the
area is sent to zero one must specify around which vacuum to expand. If C has “enough” handles or
punctures, then its Higgs branch has a maximally symmetric point around which it is natural to expand,
and the 4d N = 2 limit is well-defined. If C is a sphere with “too few punctures” or is a torus without
punctures, there is no maximally symmetric point and the situation is more subtle, as explained in [8].
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symmetry algebra of interest to us just before the twist, these fields transform as

B ∈ (3,1,1)0,0 ⊕ (1,3,1)0,0 ⊕ (2,2,1)±1,0 ⊕ (1,1,1)0,0,

λ ∈ (2,1,2) 1
2 ,±

1
2

⊕ (1,2,2)− 1
2 ,±

1
2
, Φz := Φ6 + iΦ7 ∈ (1,1,1)0,1,

Φ8,Φ9,Φ10 ∈ (1,1,3)0,0, Φz̄ := Φ6 − iΦ7 ∈ (1,1,1)0,−1.

(3.7)

On the other hand the supercharges Q̄α̇A transform as (1,2,2)−1/2,1/2. We deduce that

Q̄α̇AΦz = 0 (3.8)

because no component of λ has the appropriate so(2)R charge 3/2.
Really, we should be working with the corresponding gauge-invariant operators, such

as traces Tr(Φj
z) in classical cases su(N) and so(2N). These are the Casimirs of g,

polynomials Pk(Φz) of various degrees dk for k = 1, . . . , rank g. Concretely, for classical
gauge groups these gauge-invariant operators annihilated by Q̄α̇A are

Tr(Φj
z), j = 2, 3, 4, . . . , N for su(N),

Tr(Φj
z), j = 2, 4, 6, . . . , 2N − 2, and Pfaff(Φz) for so(2N).

(3.9)

(We recall that the Pfaffian is a square root of the determinant.) For reference, the
degrees of Casimirs of su(N) are 2, 3, . . . , N ; of so(2N) are 2, 4, 6, . . . , 2N − 2 and N ; of
e6 are 2, 5, 6, 8, 9, 12; of e7 are 2, 6, 8, 10, 12, 14, 18; of e8 are 2, 8, 12, 14, 18, 20, 24, 30.

It is often convenient to replace Φz by Φzdz to soak up the z index and obtain a tensor.
Then we work with the order dk differentials Pk(Φz)dzdk on the holomorphic curve (aka
Riemann surface) C. A somewhat different basis is more practical: for instance for su(N)
one expands

det(X − Φzdz) = XN −
N∑
j=2

Oj X
N−j . (3.10)

Exercise 3.2. Check that O2 = Tr(Φ2
z/2)dz2, O3 = Tr(Φ3

z/3)dz3, and perhaps check
that O4 = Tr(Φ4

z/4)dz4 − O2
2/2. Why is there no O1?

Coulomb branch. What VEV can we give Oj to define a vacuum? Denote it by26

ϕj := ⟨Oj⟩. (3.11)

It should be constant along R1,3 to avoid breaking Poincaré symmetry. Next we use the
anticommutator {Q̄α̇A, Q̄β̇Bz̄ } ∼ ϵα̇β̇ϵAB∂z̄ to deduce that ϕj must depend holomorphically
on z:

ϵα̇β̇ϵAB∂z̄ϕj ∼
〈
Q̄α̇A

(
Q̄β̇Bz̄ Oj

)〉
+
〈
Q̄β̇Bz̄

(
Q̄α̇AOj

)〉
= 0. (3.12)

26The notation is slightly ill-defined in the case of so(4K) because there are then two Casimirs of the
same degree 2K, leading to two order 2K differentials: ϕ2K defined from traces of powers of Φz, and
ϕ̃2K = ⟨Pfaff(Φz)⟩ dz2K .
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The first term vanishes because the twisted compactification preserves the supercharge Q̄.
The second term vanishes by construction of Oj .

The Coulomb branch of the 4d N = 2 theory is thus parametrized by degree dk
differentials ϕdk

on C for k = 1, . . . , rank g. When there are no punctures,

B =
r⊕

k=1
H0(C,K⊗dk), ϕj ∈ H0(C,K⊗j), (3.13)

where K is the canonical bundle on the curve C and H0(C,L) is the vector space of
sections of the line bundle L on C. When C has punctures, the sections ϕdk

have
prescribed behaviours at each puncture. Starting in section 4 we explain, for concrete
choices of C giving usual 4d N = 2 gauge theories, how to relate the parametrization (3.13)
to the usual description in terms of scalars in 4d N = 2 vector multiplets.

Hitchin system. We would like to say intuitively that the 4d Coulomb branch is
parametrized by the “VEV” of the adjoint-valued holomorphic one-form Φzdz, a putative
element of H0(C,K ⊗ g), modulo gauge transformations. Of course, VEVs of non-gauge-
invariant operators don’t make sense (or are automatically zero, depending on your point
of view) so talking about them is an abuse of language. Nevertheless in our case there
is a construction of the so-called Hitchin field (or Higgs field), a holomorphic one-form
φ = φzdz with component φz ∈ g, whose Casimirs give Tr(Φj

z)dzj in the su(N) case
and likewise in other cases. For convenience we occasionally use φ rather than the
gauge-invariants ϕj in some explanations.

The story is a bit longer: one compactifies the 4d theory further on S1. Coulomb
branch vacua of the 3d theory are given by solutions (A,φ) of the Hitchin system on C,

F + [φ, φ̄] = 0, ∂̄Aφ = 0, ∂Aφ̄ = 0, (3.14)

modulo G gauge transformations. The resulting Coulomb branch M (the Hitchin moduli
space) admits a projection onto the Coulomb branch B of the 4d theory by mapping
(A,φ) to Casimirs of φ. The Hitchin equations (3.14) are equivalent to flatness of the
GC connection A+ φzdz + φ̄z̄dz̄ together with a gauge-fixing condition, so that M can
also be described as the moduli space of complex GC flat connections on C modulo
GC gauge transformaions.

Comment on the IR behaviour. The low-energy limit of the 6d theory in a generic
vacuum is given by an abelian 6d (2, 0) theory valued in the vacuum moduli space.
Likewise, in a Coulomb branch vacuum described by a given choice of differentials ϕj
in (3.13), the effective description of the 4d N = 2 theory includes massless scalar fields
describing fluctuations of the ϕj . Together with similar dimensional reductions of Bµν
and λ, these scalar fields form 4d N = 2 abelian vector multiplets.

How many? The scalar fields have the Coulomb branch B as their target, so we
should expect an infrared description as a 4d N = 2 gauge theory with gauge group
U(1)dimC B. At particular points on the Coulomb branch there are additional massless
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particles charged under this gauge group. The Coulomb branch typically features points
that are even more singular, where the low-energy dynamics are not abelian.

3.3 Seiberg–Witten curve

Seiberg–Witten curve. In the su(N) = aN−1 case we can repackage the data of ϕk
in a geometric way in terms of the SW curve Σ and SW differential λ defined next.

Consider the canonical line bundle T ∗C ↠ C, whose fiber at a point in C consists
of one-forms at that point. In a local coordinate z on C the total space T ∗C admits
coordinates (z, x) where x ∈ C describes a one-form xdz. There is a natural injection
C ↪→ T ∗C, the “zero section”, that maps z ∈ C to (z, x = 0). We define the (complex)
curve Σ ⊂ T ∗C as the locus (z, x) such that

⟨det(x− Φz)⟩ = det(x− φz)︸ ︷︷ ︸
see (3.14)

= xN −
N∑
j=2

uj(z)xN−j = 0 (3.15)

where we used the construction (3.10) of Oj and wrote ϕj = ⟨Oj⟩ = uj(z)dzj for each
exponent j of g. Note that (3.15) is consistent with transformation properties of x and
of the uj since each term is (the sole component of) a holomorphic N -form. At generic
points z ∈ C this equation (3.15) has N solutions, which locally gives an N sheeted cover
of C. Generically, at certain isolated points on C two sheets intersect with a branch
point of order 2. We have constructed in this way an N -sheeted ramified cover Σ of C.

As we will see in concrete examples, Σ turns out to be the SW curve of the 4d N = 2
theory in the given Coulomb branch vacuum, and the SW differential is the holomorphic
one-form λ defined as λ = xdz in coordinates (z, x) of T ∗C. The fact that our (Σ, λ)
matches the usual one is easier to see for concrete theories later on, but we can give some
intuition. Besides indirectly giving the prepotential for the low-energy U(1)dimC B vector
multiplets, one of the jobs of the SW curves is to calculate the central charge of particles
(which puts a BPS lower bound on their mass) in terms of their electric, magnetic, and
flavour charges: it should be obtained by integrating λ along closed contours in Σ. Let
us confirm this from the M-theory perspective in the A-type case.

M-theory perspective on SW curve. We recall that X (su(N)) is the world-volume
theory of N M5 branes (with the decoupled center of mass modes removed). The R-
symmetry is then realized geometrically as transverse rotations. The topological twist
corresponds to combining the 2d rotations with 2d transverse rotations, and one finds
that the full geometrical set-up corresponding to X (su(N)) partially twisted on R1,3 ×C
is to consider M-theory on R1,3 × T ∗C × R3 and to place M5 branes along R1,3 × C, the
zero section.27

Moving onto the Coulomb branch corresponds to shifting the M5 branes away from
each other along the fibers of T ∗C. Since the branes are indistinguishable they generically

27More generally, T ∗C can be replaced by a four-dimensional hyper-Kähler manifold and C by a
holomorphic cycle inside Q.
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reconnect into an N -sheeted ramified cover Σ ⊂ T ∗C of C. Supersymmetry requires it
to be holomorphic and we thus reproduce the above classification of Coulomb branch
vacua. We emphasize that the UV curve C characterizes the theory, while the IR curve
(or SW curve) Σ depends on (and characterizes) the given Coulomb branch vacuum.

Excitations of the brane system include massless fluctuations along the Coulomb
branch of course, but also very interesting massive excitations coming from M2 branes
ending on the M5 branes. Consider a two-dimensional surface D ⊂ T ∗C whose boundary
lies in the SW curve, ∂D ⊂ Σ, and let us place an M2 brane along D × R where R is the
time direction in 4d Minkowski space. From the 4d point of view this describes a particle
sitting still as time passes. Its mass m is simply the area of D,

m =
∫
D

|dzdx| ≥
∣∣∣∫
D

dzdx
∣∣∣ =

∣∣∣∫
D

d(xdz)
∣∣∣ =

∣∣∣∫
∂D

λ
∣∣∣. (3.16)

This reproduces the BPS lower bound expected from the SW curve and differential (Σ, λ).
In fact, realizing the SW curve Σ as a fibration over C gives slightly finer control of the
BPS spectrum than just knowing Σ (and λ). Indeed, some closed curves on Σ are not the
boundary of any two-dimensional D ⊂ T ∗C, so that the M-theory setup “knows” that no
BPS state with these charges exist, while the data of (Σ, λ) only would not know it.

These M-theory considerations suggest that we found the right notion of SW curve
and differential for class S theories. But we have yet to explain any concrete description
of the 4d theories, rather than only their IR behaviour on the Coulomb branch. We turn
to this next.

3.4 Tubes and tinkertoys

So far we only discussed the low-energy effective description of T(g, C,D) on its Coulomb
branch. We now study how the class S theory can be described without moving along
its Coulomb branch. Our guide to find such a description is that it should reproduce
the aforementioned IR physics (it also reproduces some protected observables), and that
different descriptions we find should be (exactly) dual to each other. Recall that the
partial twist ensures that 4d physics we are interested in only depends on the complex
structure of the Riemann surface C on which we compactify. We can thus pick any metric
compatible with this complex structure.

Gluing. Consider two punctures p1, p2 ∈ C of the same (or of different) punctured
Riemann surface C = C \{pi} and consider disks around p1 and p2. As far as the complex
structure is concerned, these punctured disks are the same as semi-infinite cylinders
thanks to the exponential map (expressed here in coordinates centered at pi)

exp: (−∞, ρi] × (R/(2πZ)) ∼−→
{
z
∣∣ |z| ≤ eρi

}
\ {0}.

pi
ρi

pi
(3.17)
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We can glue two such semi-infinite cylinders by cutting their infinite end off at some
finite distance and identifying the cutoff points on the left side of the following diagram:

ρ1

ρ2

Rest of
Riemann
surface

(3.18)

where the “rest” can remain connected or be disconnected upon removing the tube. In
terms of complex coordinates w and z around p1 and p2 respectively (with p1 at w = 0
and p2 at z = 0), the identification is

zw = q (3.19)

for some parameter q. The modulus |q| gives the aspect ratio (length over circumference)
(− log |q|)/2π of the tube, while the phase of q indicates how the cylinders are rotated
before gluing. The coordinates w, z are only locally defined so |q| cannot be too big: the
tube can be arbitrarily long/thin but not too short/thick, as the description otherwise
breaks down.
Exercise 3.3 (On punctured spheres). Choose a coordinate w on the complex projective
plane CP1 (the two-sphere), where w ∈ C ∪ {∞}.

1. For n ≥ 3 arbitrary distinct points wj ∈ C ∪ {∞}, j = 1, . . . , n, define a new
coordinate z(w) := (w−w1)(w2−w3)

(w−w3)(w2−w1) . Check that w 7→ z is bijective on CP1 so that the
definition gives a good coordinate on CP1. Check that w1, w2, w3 are mapped to 0, 1,∞.
The coordinate z(wj) for j > 3 is called cross-ratio of w1, w2, w3, wj .

2. In the four-punctured sphere, how does the cross-ratio q change when w1, w2, w3, w4
are permuted?

3. Construct the four-punctured sphere CP1 \ {0, q, 1,∞} by gluing two three-
punctured spheres CP1 \ {0, 1,∞}. (Hint: let x, y be coordinates on the two three-
punctured spheres; identify qx = y for some region 1 < |x| < 1/|q|.) Generalize to the
n-punctured sphere.

y ∈

x ∈

Vector multiplets. Despite how it is drawn in (3.18), the cylinder connecting the two
punctures is flat and of constant circumference 2πL5 (for some metric). Let us denote
the directions along and around the cylinder as x4, x5. We know that the 6d theory X (g)
reduced on a circle gives 5d N = 2 SYM with gauge algebra g and coupling g2

5d ≃ L5.
We should thus expect that part of the system obtained by reducing X (g) on the glued
surface (3.18) is 5d N = 2 SYM on an interval of length L4 ∼ (− log |q|)L5. In the limit
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where C shrinks to a point, the 5d term Tr(F 2) does not depend much on the x4 direction,
thus the 4d Lagrangian ought to have a term

1
g2

5d

∫
I

Tr(F 2) = 1
g2

4d
Tr(F 2), 1

g2
4d

= L4
g2

5d
≃ L4
L5

= − log |q|. (3.20)

What about the phase of q, which implements a translation along the circle direction,
namely a rotation around the cylinder? The instanton current of a 5d gauge field is
defined as

J inst
µ = ϵµνρστ Tr(F νρF στ ). (3.21)

As we mentioned earlier, in the reduction from X (g) to 5d N = 2 SYM the KK (Kaluza–
Klein) modes correspond to instanton particles of the 5d theory, namely the KK momentum
in x5 is equal to the charge under J inst. Thinking of x4 as Euclidean time, the translation
operator P5 is given as an integral of the “time” component J inst

4 over the 4d “spatial”
directions x0, . . . , x3. Twisting the cylinder by an angle θ = Im log |q| thus contributes a
term θTr(F ∧ F ) to the 4d Lagrangian when we eventually reduce C to a point.

Altogether we expect that a long cylinder as in (3.18) should yield a 4d N = 2 vector
multiplet with complexified gauge coupling τ given by log q:

τ = θ

2π + 4πi
g2 , q ∼ e2πiτ . (3.22)

The relation is made more precise later in concrete geometries.

Pants decomposition and S-duality. Vector multiplets must gauge flavour symme-
tries of some matter sector, and our next task is to understand where that matter comes
from. For this, the key is to send gauge couplings to zero, because in this limit the vector
multiplet decouples and leaves behind the matter sector with its flavour symmetries.
Exercise 3.4. As a toy model, consider a scalar field ϕ transforming in some represen-
tation of a group G, and gauge the symmetry G using a gauge field A. We denote by
D = d +A the covariant derivative and F = dA+A ∧A, and ignore numerical factors.
By introducing a field Ã = g−1A with canonically normalized kinetic term, show how

L = 1
g2 Tr(F 2) + |Dϕ|2 g→0−−−→ Tr(dÃ)2 + |dϕ|2. (3.23)

Note that in the limit the flavour symmetry G of ϕ is not gauged any longer. The
original gauge theory can be then restored (up to the free gauge field Ã) by gauging this
flavour symmetry with a new gauge field. Check the same decoupling happens for spinors
(ψ̄γµDµψ).

Any punctured Riemann surface C with genus g and n punctures, except for (g, n)
among (0, 0), (0, 1), (0, 2), (1, 0), can be decomposed into three-punctured spheres (pairs
of pants) glued as described above. Such a decomposition is called a pants decomposition.
For each pants decomposition of C there is a corresponding cusp in the moduli space
Mg,n of Riemann surfaces with genus g and n punctures. At this cusp, C is described
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by three-punctured spheres joined by infinitely thin tubes. Each such tube yields an
infinitely weakly coupled vector multiplet in the 4d theory, so that in this limit we can
expect 6d fields “localized” on each pair of pants to decouple from each other since the
4d vector multiplets joining them become free:

free vector
free vector (3.24)

As in the toy model, the symmetries gauged by the vector multiplet are restored as
flavour symmetries in the zero coupling limit.

The picture that emerges is as follows. The building blocks of T(g, C,D) are class S
theories called tinkertoys associated to three-punctured spheres. These (4d N = 2)
tinkertoys have flavour symmetries associated to each puncture, which we study carefully
later. For each tube, consider the flavour symmetry groups F1 and F2 associated to the
two punctures that it connects, and gauge a suitable diagonal subgroup F ⊂ F1 × F2
using a 4d N = 2 vector multiplet. This yields T(g, C,D). This description of T(g, C,D)
for each pants decomposition of C can be written schematically as

T(g, C,D) =
( ∏

pants
T(g, sphere \ 3pt)

) / ( ∏
tubes

gauge group
)
. (3.25)

A large part of the work in understanding the AGT correspondence is to classify tinkertoys
obtained from three punctured spheres with different types of punctures. Their flavour
symmetry can be rather intricate, which is why we cannot make the gauge groups more
explicit in (3.25) in such generality.

When all punctures are so-called full tame punctures (explained later), all building
blocks are the same tinkertoy Tg. This theory is an isolated28 SCFT with (at least) g3

flavour symmetry associated to its three punctures. For g = su(2) it consists of four free
hypermultiplets, while for other g it has no 4d N = 2 Lagrangian description.

Of course, a given Riemann surface has many inequivalent decompositions into pairs
of pants. Each one leads to a description of T(g, C,D) as a weakly coupled gauge theory
in one corner of parameter space. At strong coupling (short tubes) another description
may be weakly coupled hence more useful. In concrete cases this reproduces known 4d
N = 2 S-dualities. Here is an exercise to get an intuition about pants decompositions.
Exercise 3.5 (Combinatorics of pants decompositions). 1. Given a surface Cg,n with
genus g and n punctures, check that all pants decompositions use the same number of
three-punctured spheres.

2. Draw the three topologically different29 pants decompositions of a four-punctured
sphere (assuming punctures are distinguishable). How many pants decompositions does
an n-punctured sphere have? Does a once-punctured torus have a finite number of pants
decompositions?

28An SCFT with a certain amount of supersymmetry is isolated if it does not have any exactly marginal
deformation with the same supersymmetry (such as gauge couplings in 4d).

29Two pants decompositions are the same in this sense if the closed curves cutting the surface into pieces
with three boundaries can be deformed into each other without (self)-intersection or crossing punctures.
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3. Return to point 3 of Exercise 3.3 and construct the sphere with n = 4 (or 5)
punctures by gluing three-punctured spheres in all possible ways.

4. We don’t need to degenerate the Riemann surface completely down to pairs of
pants: as soon as C involves one long tube the theory T(g, C,D) can be written in terms
of a weakly coupled vector multiplet gauging flavour symmetries of a “smaller” class S
theory. What Riemann surface (genus, punctures) underlies the latter theory? There are
two cases depending on whether the surface disconnects.

4 Lagrangians for class S theories
After discussing the tame punctures that arise when pinching tubes, we argue in subsec-
tion 4.1 that X (su(2)) on a sphere with three tame punctures yields 4 free hypermultiplets,
with a flavour symmetry SU(2)3 made manifest. In subsection 4.2 we glue two such
building blocks to learn how X (su(2)) on a sphere with four tame punctures reproduces
known aspects of 4d N = 2 SQCD with gauge group SU(2) and Nf = 4 flavours. This is
the conventional starting point of AGT reviews: one usually studies S-duality of SU(2)
SQCD [4] and of quivers gauge theories [175], before explaining the unifying 6d point of
view [1]. We extend the discussion in subsection 4.3 to generalized SU(2) quivers arising

Description of punctures and some tinkertoys

• The su(2) tinkertoy consist of a trifundamental half-
hypermultiplet of SU(2)3.
• The su(N) tinkertoy with two full and one simple punc-
ture is an SU(N)2 bifundamental hypermultiplet.
• For su(N), at a full tame puncture z0 the differentials
obey ϕk =

( σk

(z−z0)k +O( 1
(z−z0)k−1 )

)
dzk for 2 ≤ k ≤ N where

σk has mass dimension k. Other tame punctures arise by
restricting the pole coefficients down to orders < k − 1.
• Many linear quivers have both class S and IIA descrip-
tions; Coulomb branches and SW curves work out.

from X (su(2)) on arbitrary punc-
tured Riemann surfaces.

In subsection 4.4 we realize as
class S theories some SU(N) lin-
ear quiver gauge theories including
SU(N) SQCD with Nf = 2N flavours.
This teaches us that there are sev-
eral types of tame punctures hence
several types of codimension 4 oper-
ators in the 6d theory. All theories
we consider in this section are such
that gauge couplings have vanishing
one-loop beta function, and this im-
plies that the couplings have vanish-
ing beta function at all orders [176].

4.1 Trifundamental tinkertoy

We discuss tame punctures; for su(2) there is only one type. We then consider X (su(2))
on a sphere CP1 with three tame punctures at 0, 1,∞ and we argue that the resulting
tinkertoy T2 = Tsu(2), which is the main building block of su(2) class S theories, is a
collection of four free hypermultiplets. There is no first principle derivation of that fact,
but we will see many checks of it, especially correct postdictions of Coulomb branch and
SW curves of many gauge theories, as well as consistency with string theory dualities.
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Tame punctures. We describe punctures in terms of their effect on the Hitchin field
φ(z) parametrizing the Coulomb branch, or gauge-invariantly in terms of the higher-order
differentials ϕdk

, k = 1, . . . , rank g.
Punctures can arise from pinching a thin tube. In a complex coordinate w ∈ R × S1

describing this tube, the ϕdk
often tend to constants (times dwdk) inside the thin tube.

Cutting the cylinder (the opposite of what we did in (3.18)) and applying the exponential
map (3.17) z = ew, we generically expect

ϕdk
≃ dzdk

zdk
+ . . . (4.1)

with some coefficients, in a local coordinate z in which the puncture is at z = 0.
This motivates us to work with tame punctures, namely points where φ(z)dz has

a first order pole with a prescribed residue, of course up to gauge conjugation: the
prescribed residue translates generically to a prescribed leading coefficient in (4.1) —a
full tame puncture. We study other punctures later in section 7: tame punctures in
which ϕdk

have lower-order poles instead of (4.1), and wild punctures defined as having
higher-order poles.

Massive and massless tame punctures for su(2). For now we focus on su(2): there
is then a single type of tame puncture.

This case has a single Casimir, the quadratic differential ϕ2 = 1
2 Tr(φ2)dz2. We

impose the residue of the Hitchin field φ up to conjugation (which we denote ∼): for
non-zero m ∈ C,

φ(z) ∼
(diag(m,−m)

z − zi
+O(1)

)
dz =⇒ ϕ2(z) =

(
m2

(z − zi)2 +O

( 1
z − zi

))
dz2. (4.2)

We call m ̸= 0 the mass parameter of the puncture for the following reason. The sheets
of Σ defined in (3.15) behave as x±(z) = ±m/(z − zi) + O(1), and integrating the SW
differential λ around zi on one of the two sheets picks up the residue ±m. This means
m appears as a contribution to the central charge hence to masses of BPS particles.

Naively, taking the m → 0 limit in the φ(z) asymptotics changes zi into a regular
point. In the ϕ2 equation however, the puncture remains as a first order pole. This is
explained from the φ(z) point of view by noting that it is only defined up to conjugation.
Conjugating the diagonal matrix diag(m,−m) before taking the m → 0 limit can yield a
non-zero value, (

m 0
0 −m

)
∼
(
m 1
0 −m

)
m→0−−−→

(
0 1
0 0

)
. (4.3)

Indeed, we find a consistent massless tame puncture

φ(z) ∼
((

0 1
0 0

)
1

z − zi
+O(1)

)
dz =⇒ ϕ2(z) = O

( 1
z − zi

)
dz2 (4.4)

where the pole has a free coefficient. Interestingly, the sheets of Σ defined by x2dz2 = ϕ2
admit a branch point at such a massless puncture.
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Exercise 4.1. 1. For any α ∈ C find an invertible matrix g ∈ SL(2,C) such that
g−1 diag(m,−m)g =

(m α
0 −m

)
.

2. Check that all
( 0 α

0 0
)
, α ̸= 0, are conjugate to each other.

3. How does the coefficient of 1/(z − zi) arise in (4.2) and (4.4) from components of
the (z − zi)0 term in the expansion of φ?

We interpret (4.2) as follows: the massless puncture (4.4) carries SU(2) flavour
symmetry, and turning on a constant scalar ϕbackground = m in a background vector
multiplet coupled to that symmetry changes the puncture to the massive one (4.2).

Three-punctured sphere and symmetries. Now consider T2, the result of placing
X (su(2)) on a sphere CP1 with three tame punctures. What do we know for sure
about T2?

First, it should have at least SU(2)3 flavour symmetry, one SU(2) per puncture. We
learn in the next exercise that 4 free hypermultiplets indeed have an USp(8) flavour
symmetry, which contains SU(2) × Spin(4) = SU(2)3. The USp(8) flavour symmetry is
in this context an emergent symmetry that is only present in the limit where C shrinks
to a point; it is not a symmetry of the 6d setup.
Exercise 4.2. 1. Check that k free scalar fields carry O(k) flavour symmetry. Check that
p free hypermultiplets contain 4p free scalars hence have O(4p) symmetries (and more from
spinors). Out of these, check a USp(2p) subgroup commutes with SU(2)R R-symmetry.
(Hint: as an intermediate step, the U(2p) subgroup commutes with J3 ∈ SU(2)R.)

2. Now gauge an SU(2) = USp(2) flavour symmetry embedded diagonally into
USp(2)p ⊂ USp(2p). The gauged su(2) times su(2)R combine into so(4). Check that the
4p scalars organize as p copies of the fundamental representation of so(4). Deduce that
the remaining flavour symmetry is SO(p). It is in fact Spin(p) because of the action on
spinors in the hypermultiplets.

The trifundamental half-hypermultiplet. All three SU(2) symmetries of the four
hypermultiplets can be made manifest, at the cost of hiding N = 2 supersymmetry. Split
each hypermultiplet into a pair of N = 1 chiral multiplets (q, q̃). The four hypermultiplets
split into eight N = 1 chiral multiplets qaiu where a, i, u (ranging from 1 to 2) are indices
for the three independent SU(2). To reconstruct the hypermultiplets as (q, q̃) simply
introduce the notation

q̃aiu = ϵabϵijϵuvqbjv. (4.5)

The hypermultiplets are thus in a trifundamental representation of SU(2)3 with a reality
property (4.5) that halves the number of components. This set of matter fields is called
a half-hypermultiplet.

If background vector multiplet scalars (i.e., masses m1,m2,m3) are turned on for the
three SU(2)3, then the underlying 8 chiral multiplets have complex masses ±m1 ±m2 ±m3
for all choices of signs. In particular one of the 4 hypermultiplets becomes massless when
m2 = ±m1 ±m3. This is important later.
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Seiberg–Witten curve of T2. We denote by m1,m2,m3 the mass parameters of
punctures at 0, 1,∞ in the sense of (4.2) or (4.4).30 The Coulomb branch (if any) of the
4d theory is parametrized by holomorphic quadratic differential ϕ2(z) that have second
order poles (4.2) or first-order in the massless case (4.4) at each of the punctures, and no
other pole. The puncture at infinity translates to a condition as z → ∞:

ϕ2(z) =
(
m2

3
z2 +O

( 1
z3

))
dz2. (4.6)

We recall Liouville’s theorem regarding entire functions (holomorphic functions on C
with no pole): if an entire function f is bounded as |f(z)| < Kzp for some constant K
and exponent p then f is a polynomial of degree at most p.
Exercise 4.3. Find a quadratic differential ϕ2(z) = u2(z)dz2 that has the prescribed
second order poles at 0, 1,∞ and no other singularity and show it is unique. (Hint: write
it as u2(z) = f(z)/(z2(z − 1)2), change variables to w = 1/z to polynomially bound f at
infinity and use Liouville’s theorem to bound the degree of f , then compare with the
prescribed asymptotics to fix coefficients.)

The Coulomb branch is thus a single point, which is consistent with the lack of vector
multiplet in our description of T2 as free hypermultiplets. Explicitly,

ϕ2(z) = u2(z)dz2, u2(z) = −m2
1

z2(z − 1) + m2
2

z(z − 1)2 + m2
3

z(z − 1) . (4.7)

Let us find the IR description of T2 at this unique Coulomb branch vacuum. As we
commented on page 24, the low-energy theory is generically a 4d N = 2 abelian gauge
theory with the vector multiplet scalars living in the Coulomb branch B. Here there is no
Coulomb branch hence no gauge fields in the IR. There may be hypermultiplets: for this
we have to study the SW curve Σ defined by x2 = u2 and the SW differential λ = xdz.
The integral of λ over closed cycles tells us about masses of BPS states.

The curve Σ is a ramified double cover of CP1. How many branch points does it
have? Branch points are where the two sheets x = ±√

u2 rejoin, namely where u2 = 0.
This happens at the (generically) two roots of the quadratic polynomial

z2(z − 1)2u2(z) = −(z − 1)m2
1 + zm2

2 + z(z − 1)m2
3. (4.8)

Altogether, Σ wraps the sphere twice, with a single branch cut. It is thus topologically
a sphere. The three punctures at 0, 1,∞ ∈ CP1 become six point on Σ where the SW
differential λ blows up:

Σ: 0
1

∞ :C (4.9)

30We don’t know at this stage that they are the same parameters as in the last paragraph about the
trifundamental half-hypermultiplet.
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BPS spectrum. Contour integrals of λ give integer31 linear combinations of residues
of λ = xdz = ±√

u2 dz at the poles z = 0, 1,∞. By construction these residues are
±m1,±m2,±m3, so we find that masses (or rather central charges) of BPS states take the
form Z = f1m1 + f2m2 + f3m3 for f1, f2, f3 ∈ Z. On the other hand, the trifundamental
half-hypermultiplet only has BPS states with integer linear combinations of ±m1±m2±m3:
this imposes the further restriction that f1 = f2 = f3 mod 2. Does the tinkertoy T2 also
have that restriction?

In subsection 3.3 we learned that M-theory instructs us to only integrate λ over
contours γ in Σ ⊂ T ∗C that can be written as the boundary γ = ∂D of some two-
dimensional surface D ⊂ T ∗C.
Exercise 4.4. 1. First choose D to be a small circle around one of the punctures, times
the interval connecting the two sheets of Σ. Its boundary is a pair of circles picking up
twice the same residue mi (from different sheets). Deduce that 2m1, 2m2, 2m3 and all
their integer linear combinations are in the spectrum.

2. Next, choose D such that ∂D is a contour from one branch point to the other (on
one sheet) and back via the other sheet. Note that the contour ∂D can be deformed to a
contour staying on one sheet and surrounding the cut. Deduce that the integral of λ is
one of the combinations ±m1 ±m2 ±m3 (three poles are on each side of the contour)
and conclude that the BPS spectrum of T2 contains all Z = f1m1 + f2m2 + f3m3 with
f1 = f2 = f3 mod 2.

3. (Mathematical.) For any D ⊂ T ∗C with boundary ∂D ⊂ Σ, consider the projection
π : T ∗C → C and deduce that π(∂D) = ∂(π(D)) cannot surround a pole. Deduce that
the BPS spectrum of T2 is exactly that of the trifundamental half-hypermultiplet.

Generically, all of these BPS particles are massive so that the low-energy theory
is empty. An interesting case is the limit m2 → ±(m1 ± m3) where one of the four
hypermultiplets in the trifundamental half-hypermultiplet becomes massless. Then the
SW curve degenerates because the two branch points collide: indeed, u2 has a double
root (4.8)

z2(z − 1)2u2(z) = (m1 ± zm3)2. (4.10)

The contour we considered in point 2 of the above exercise shrinks to zero size while λ
itself remains finite, so the integral is indeed zero, consistent with the vanishing mass.
We will run this kind of easy consistency checks for the more complicated theories.

4.2 4d N = 2 SU(2) Nf = 4 SQCD

After so many generalities let us study the Coulomb branch, SW curve and S-dualities of
our first interesting concrete theory: X (su(2)) on a sphere with four tame punctures.

Identifying the 4d theory (spoilers in the title above). We place the four
punctures at z1 = 0, z2 = q, z3 = 1, z4 = ∞ on the two-sphere CP1. The three
degeneration limits q → 0, 1,∞ of the four-punctured sphere correspond to all ways of

31We ignore the factor of 2πi in the residue theorem.
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clustering the punctures pairwise. Since the three limits are identical up to permuting
the punctures we concentrate on q → 0. In this limit, we expect on general grounds that
the 4d theory consists of two tinkertoys Tsu(2) and one SU(2) vector multiplet gauging an
SU(2) flavour symmetry of each tinkertoy. After this gauging each tinkertoy should still
carry at least su(2) × su(2) flavour symmetries associated to its two remaining punctures.
We can depict this as a (generalized) quiver making all symmetries explicit:

T
(
su(2),CP1 \ {0, q, 1,∞}

)
=

SU(2)

SU(2)
SU(2)

SU(2)

SU(2)
(4.11)

Here the round node denotes a gauge group while square nodes denote flavour symme-
tries. Each junction represents our favorite tinkertoy T2, the trifundamental half-
hypermultiplet, i.e., four hypermultiplets transforming as two doublet representations of
the SU(2) gauge group.

We thus get two flavours from the left junction and two flavours from the right junction,
hence the theory is SU(2) SQCD with Nf = 4 flavours. While each tinkertoy in (4.11)
has Spin(4) flavour symmetry after gauging SU(2), the full theory has Nf = 4 doublets
of SU(2) on an equal footing hence has flavour symmetry Spin(8), larger than Spin(4)2.
This symmetry of the 4d theory only emerges in the limit where C shrinks to a point.

Coulomb branch. We denote by m1,m2,m3,m4 the mass parameters at each of
these punctures in the sense of (4.2) or (4.4). Coulomb branch vacua of the 4d theory
are parametrized by holomorphic quadratic differential ϕ2(z) that have second order
poles (4.2) or first-order in the massless case (4.4) at each of the punctures, and no other
pole. The puncture at infinity translates to a condition as z → ∞:

ϕ2(z) =
(
m2

4
z2 +O

( 1
z3

))
dz2. (4.12)

We parametrize the possible ϕ2(z) in the next exercise, starting with the massless case
m1 = m2 = m3 = m4 = 0 for which ϕ2 has first-order poles.
Exercise 4.5. 1. Find all quadratic differentials ϕ2(z) = u2(z)dz2 that have first order
poles at 0, q, 1,∞ and no other. (Hint: after writing u2(z) = f(z)/(z(z − q)(z − 1)),
change variables to w = 1/z to deduce a polynomial bound on f(z), then use Liouville’s
theorem mentioned above.)

2. Find one quadratic differential ϕ2 that has leading behaviour m2
i /(z − zi)2 for

i = 1, 2, 3 and m2
4/z

2 at infinity as per (4.12). Combining with the massless case deduce
all such quadratic differentials.

We find a one-dimensional Coulomb branch B = C with vacua32

ϕ2 = u2dz2, u2(z) =
q
zm

2
1 + q(q−1)

z−q m2
2 + z−q

z−1m
2
3 + zm2

4 − u

z(z − q)(z − 1) (4.13)

32The variable u parametrizing the Coulomb branch can be freely redefined, hence you may have gotten
a slightly different expression in Exercise 4.5.
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labeled by u ∈ B = C. A zero-th order check that we did not go astray is that we got
the correct dimension (namely 1) for the Coulomb branch of SU(2) SQCD with Nf = 4
flavours.

Degeneration limit. As q → 0, the surface degenerates, and we should obtain in a
suitable sense two disconnected three-punctured spheres. For |q|, |z| ≪ 1 at fixed masses,
(4.13) behaves as

ϕ2(z) ≃
−q
z m

2
1 + q

z−qm
2
2 + u

z(z − q) dz2, (4.14)

which is precisely the quadratic differential on a sphere with three tame punctures of
masses squared m2

1, m2
2, and u. Likewise, for |q| ≪ |z|, 1 (4.13) behaves as the quadratic

differential on a three-punctured sphere with masses squared u, m2
3 and m2

4. This is
consistent with how we introduced tame punctures in subsection 4.1.

Since masses are background values of vector multiplet scalars, we learn from (4.14)
the identification

u = 1
2
〈
Trϕ2

〉
(4.15)

in the weakly-coupled limit |q| ≪ 1, where ϕ is the (dynamical) vector multiplet scalar
corresponding to the SU(2) gauge group. In other words u is the usual parametrization
of the Coulomb branch of SQCD.

Seiberg–Witten curve. We now return to general q. The SW curve and differential
are defined by Σ = {(x, z) ∈ T ∗CP1 | x2 = u2(z)} and λ = xdz.

The curve Σ is a ramified double cover of CP1. How many branch points does it have?
Branch points are where the two sheets x = ±√

u2 rejoin, namely where u2 = 0. This
happens at the (generically) four roots of the polynomial z2(z − q)2(z − 1)2u2(z), which
is quartic. Altogether, Σ wraps the sphere twice, with four branch points joined by two
branch cuts. It is thus topologically a torus. In addition to these branch cuts we have
four punctures at 0, q, 1,∞ ∈ CP1, hence eight point on Σ where the SW differential λ
blows up:

Σ: 0
q 1

∞ :C (4.16)

Exercise 4.6. 1. By changing coordinates as x = x̃/z + m2/(z − q) + m3/(z − 1),
rewrite the curve x2 = u2 in a form that only has simple poles at z = 0, q, 1. Show that
λ̃ := x̃dz/z differs from the SW differential λ = xdz by a u-independent term whose
contour integrals (residues) are linear combinations of masses. Recall the BPS mass
formula

∮
λ = na+maD+fimi and check what changing λ to λ̃ amounts to a redefinition

of flavour charges. Up to simple changes of coordinates perhaps33 match with more
33I have not checked yet what form Martone uses in his notes.
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conventional expressions of the SW curve and differential of SU(2) Nf = 4 SQCD given
in [123]. The match confirms that we correctly identified the tinkertoy Tsu(2).

Singularities on the Coulomb branch. As we described on page 24, the low-energy
theory is generically a 4d N = 2 abelian gauge theory with the vector multiplet scalars
living in the Coulomb branch B. For generic values of u and of masses, we thus get a
U(1) vector multiplet, but at special values of the parameters some branch points may
collide, which leads to interesting low-energy behaviours. We already saw that near (4.10)
in our study of the tinkertoy: we found particular values of the masses where a pair of
branch points of the SW curve collide. This collision made a certain contour shrink to
zero size, hence lead to a massless BPS particle which remains present in the IR theory.
For SQCD such collisions of branch points enrich the IR theory by adding one or more
massless hypermultiplets charged under the low-energy U(1).
Exercise 4.7 (On the discriminant). The discriminant of a degree d polynomial P (z) =
pd
∏d
a=1(z − za) is ∆P = p2d−2

d

∏
a<b(za − zb)2. It vanishes by construction exactly when

P (z) has double roots. It is known that ∆P can be expressed as a polynomial of degree
2d− 2 in the coefficients pj of P (z) = ∑d

j=0 pjz
j . Check this for quadratic polynomials.

Our question is to find when P (z) = z2(z − q)2(z − 1)2u2(z), which is a quartic
polynomial given explicitly in (4.13), has double roots (hence when two branch points
collide). The discriminant ∆P is then of degree 6 in the coefficients of P . Since P depends
linearly on u we find that ∆P is of degree 6 in u (the leading coefficient turns out to be
nonzero). We should thus expect 6 singularities on the Coulomb branch.

Four of these can be seen concretely in the weak coupling limit (with fixed masses).
Then ϕ2 is roughly given by the quadratic differential on each pair of pants, connected by
a long tube where ϕ2 is suitably constant, see (4.14). Each three-punctured sphere has
two zeros of ϕ2, hence one branch cut of the SW curve. Consider the pair of pants with
masses squared m2

1,m
2
2, u, for definiteness. Its branch cut shrinks to zero size whenever

any combination ±m1 ±m2 ±
√
u of the mass parameters vanishes. We thus find four of

the six singular points of the Coulomb branch:

u = (m1 ±m2)2 +O(q) and u = (m3 ±m4)2 +O(q). (4.17)

The remaining two points are not so easy to determine from the explicit quadratic
differential (4.13) of the class S theory, partly because they correspond to the collision of
branch points that sit in different pair of pants in our decomposition above. A tedious
series expansion shows that at34

u = ±2
(
q(m2

2 −m2
1)(m2

3 −m2
4)
)1/2 +O(q) (4.18)

two branch points collide at z = ∓2
(
q(m2

2 −m2
1)/(m2

3 −m2
4)
)1/2 + O(q), with the sign

being correlated to that of u.
From the point of view of SQCD with Nf = 4 flavours, what happens is as follows. The

four doublet hypermultiplets have mass parameters m1 +m2,m1 −m2,m3 +m4,m3 −m4,
34It would be nice to understand the formulae better from our 6d construction.
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so when the “VEV” of the vector multiplet ϕ matches one of these we get a massless
hypermultiplet; its charge is +1 or −1 under the low-energy U(1) because that is how
the diagonal U(1) ⊂ SU(2) acts on a doublet. At low energies |u| ≪ |mi|, |mi ±mj |, all
hypermultiplets are massive and can be integrated out, leaving behind pure SU(2) SYM,
whose Coulomb branch is known to have two singular points at u = ±2Λ, the monopole
and dyon points. Incidentally we learn that the dynamically generated scale is at 1/2
times the value (4.18). The main takeaway for our purposes is that the 6d perspective
reproduces all the expected physics of SQCD.

By tuning more than just u we can get more than two branch points to collide,
hence more than one set of fields to become massless. Such limits can lead in the IR to
non-trivial SCFT including the AD theory, which we return to in section 7. The limits are
also interesting on the 2d side.

Coupling constants. It may be puzzling how q = e2πiτ , which ranges over C \ {0, 1},
reproduces the complexified gauge coupling τLag = θ/(2π) + 4πi/g2 that appears in a
Lagrangian description of SU(2) SQCD with Nf = 4, especially the fact that Im τLag > 0.
To relate them, we consider the massless limit where all mi → 0, such that the theory is
an SCFT and the couplings do not run. An equivalent limit is the large |u| region of the
Coulomb branch, specifically |u| ≫ |mi|2. From this point of view the running is stopped
very quickly at the large energy scale |u|. Thus, the IR gauge coupling τIR captured by
the SW curve obeys τIR = 2τLag, with a factor due to how U(1) embeds into SU(2).

The SW curve Σ is a torus double-covering the sphere, with four branch points found
at zeros of u2. At most one of the first four terms in u2 given in (4.13) can be large
at once, so to compensate for the large value of u one must have z close to one of the
punctures 0, q, 1,∞: the four branch points are thus at

z = O

(
m2

1
u

)
, z = q +O

(
m2

2
u

)
, z = 1 +O

(
m2

3
u

)
, z = O

(
u

m2
4

)
. (4.19)

The modular parameter τIR of the torus Σ gives the complexified gauge coupling, which
automatically obeys Im τIR > 0. In terms of the modular lambda function λ, one has [177]

q = λ(τIR) = 16eπiτIR − 128e2πiτIR + . . . ,

τ = 1
2τIR + log 16

2πi − 8
2πie

πiτIR + . . . ,
(4.20)

where the expansion holds for small gauge coupling g. Both τ and τLag = 1
2τIR are perfectly

good definitions of gauge coupling, which amount to two different renormalization scheme,
differing by a constant shift and by instanton corrections. The freedom to redefine
couplings appears again in (5.38).

S-duality. The four-punctured sphere CP1 \{0, q, 1,∞} has three pants decompositions
hence three Lagrangian descriptions. The descriptions are identical except for permuta-
tions of masses m1,m2,m3,m4 and changing q → 1/q or q → 1 − q. This is S-duality of
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SQCD [4]. In the notation of (4.11),

SU(2)1

SU(2)2
SU(2)
q

SU(2)3

SU(2)4

=
SU(2)1

SU(2)2

SU(2)
1/q

SU(2)3

SU(2)4

=
SU(2)1

SU(2)2

SU(2) 1−q
SU(2)3

SU(2)4
(4.21)

While these equalities are manifest in the 6d perspective they hide deep non-perturbative
physics, as they are equalities between QFTs involving completely different elementary
gauge fields and matter fields (the gauge field Aµ in some description is unrelated to Aµ
in another).

4.3 Generalized SU(2) quivers

We have given all the ingredients to determine su(2) class S theories arising from X (su(2))
on an arbitrary punctured Riemann surface C with tame punctures.35 This subsection
will thus consist essentially of exercises.

Five-punctured sphere. We consider here C = CP1 \ {0, z1, z2, 1,∞}; note that
we shifted indices of punctures zi a bit compared to our earlier conventions. For any
decomposition into three-punctured spheres the Lagrangian has the form

T
(
su(2),CP1 \ {0, z1, z2, 1,∞}

)
=

SU(2)

SU(2)
SU(2)

SU(2)
SU(2)

SU(2)

SU(2)
(4.22)

Contrarily to spheres with fewer punctures, the SU(2)5 flavour symmetry manifest from 6d
does not enhance in the 4d theory (as far as I know). S-dualities of this theory were
studied in [175] before class S theories and their S-dualities were uncovered in [1].
Exercise 4.8. Write C as the gluing of three pairs of pants with gluing parameters
z1/z2 and z2 following Exercise 3.3.
Exercise 4.9. For each pants decomposition of C check that the Lagrangian description
is (4.22), with gauge group SU(2)2 and twelve hypermultiplets. In what representations
of the SU(2)2 gauge group do they transform? What flavour symmetries do these
representations carry?
Exercise 4.10. 1. Each SU(2) gauge group is coupled to four doublet hypermultiplets.
When the other gauge group is weakly coupled the theory is thus SQCD coupled to further
matter by a weakly coupled gauge field. “Apply” S-duality to this SQCD theory and check
that the resulting description is the description one would have written for some pair of
pants of the five-punctured sphere.

35We exclude the sphere with no puncture, one puncture (a plane), or two punctures (a cylinder), and
the torus without punctures, as they are pathological.
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2. Check that elementary S-dualities (4.21) applied to different gauge nodes do not
commute so that the S-duality group(oid) of the SU(2)2 gauge theory is not the product
of S-duality groups of two SQCD theories.

Punctured sphere. Next we consider CP1 \ {z0, . . . , zn−1} with n punctures, with
z0 = 0, zn−2 = 1, zn−1 = ∞. Denote by m0,m1, . . . ,mn−1 the mass parameters of the
punctures.
Exercise 4.11. 1. By using Liouville’s theorem as in Exercise 4.3 and Exercise 4.5, find
all quadratic differentials ϕ2(z) that have the prescribed second order poles at punctures.
Deduce that the Coulomb branch is B = Cn−3.

2. Write a SU(2)n−3 linear quiver description of the theory that is weakly coupled in
the regime |z1| ≪ |z2| ≪ · · · ≪ |zn−3| ≪ 1.

2. Expand ϕ2(z) in this regime for z in an annulus |zi−1| ≪ |z| ≪ |zi+1| (i =
1, . . . , n − 2). Check that ϕ2 reduces to the differential of T2 on each of these pair of
pants building blocks. Check that B = Cn−3 can be parametrized by the parameters ui,
i = 1, . . . , n− 3 of punctures in these pants. Identify ui = 1

2 Trϕ2
i where ϕi is the vector

multiplet scalar of the i-th vector multiplet.
3. Check that starting at n = 6 pants decompositions can be topologically distinct

beyond just the permutation of punctures.

Punctured torus. We repeat a similar exercise for genus g = 1. One could also study
theories associated to higher-genus curves, but the relevant mathematics are out of scope
of this review.
Exercise 4.12. 1. The once-punctured torus is obtained by gluing two punctures of the
same pair of pants. Write the theory as an SU(2) gauge theory and note that there is a
decoupled gauge singlet in addition to the adjoint hypermultiplet.36

2. Write the theory associated to an n-punctured torus as a circular SU(2)n quiver
with a bifundamental hypermultiplet for each pair of neighboring groups. The weak
gauge coupling regime corresponds to a long torus with well-separated punctures.

3. If you know enough about elliptic functions determine all quadratic differentials
with prescribed second order poles at the punctures. Expand them in the weak gauge
coupling limit as in Exercise 4.11.

4.4 Linear quiver su(N) theories

We move on briefly to su(N) class S theories, specifically a particular subclass that is
ad-hoc from the 6d perspective but leads to linear quiver gauge theories in 4d, as can
be understood using brane constructions. These will be useful for our discussion of
instantons.

36It is not immediately clear to me how such gauge singlets work out when considering different
Lagrangian descriptions of n-punctured tori or of higher genus surfaces. Indeed, some channels include
adjoint hypermultiplets, hence gauge singlets, while for others the singlets are not manifest.
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Conformal SQCD. Let us try and realize SU(N) SQCD with Nf = 2N flavours (the
number of flavours needed for a vanishing beta function) as a class S theory. Its flavour
symmetry is u(Nf ) = u(2N) (enhanced to so(8) when N = 2). In analogy to the N = 2
case we expect the gauge group to correspond to a tube joining two three-punctured
spheres, so we split the 2N flavours as two groups of N , where each group should come
from one of the two three-punctured sphere. The flavour symmetry of each group is
u(N) = u(1) × su(N), so that this split makes su(N)2 × u(1)2 flavour symmetry manifest.
In analogy to the N = 2 case we associate each of the four factors to one puncture and
write an analogue of (4.11):37

T
(
su(N),CP1 \ 4pt, suitable data

)
=

SU(N)

U(1)
SU(N)

U(1)

SU(N)
(4.23)

In the N = 2 case the u(N) = u(2) symmetry enhances to so(4), namely the u(1) factor
enhances to su(2). For N > 2 in contrast we have to deal with the presence of different
kinds of punctures. We delay the full story to subsection 7.2. For now we shall be
content with using two types of tame punctures: full punctures that carry su(N) flavour
symmetry and simple punctures that carry u(1).

From the 6d point of view, the u(2N) flavour symmetry of conformal su(N) SQCD is
an accidental IR symmetry, as it is not a symmetry of the 6d N = (2, 0) setup.

Free hypermultiplets. The left and right sides of the quiver (4.23) consist of N2 hy-
permultiplets that each have u(1) × su(N)2 flavour symmetry (actually more before
gauging), of which one su(N) factor is gauged. This collection of N2 free hypermultiplets
is the tinkertoy associated to a sphere with two full and one simple puncture.

Punctures. Following the general ideas from the su(2) case the full punctures are
described as a boundary condition like (4.2):

φ(z) ∼
(

mi

z − zi
+O(1)

)
dz =⇒ ϕk(z) =

((−1)k+1σk(mi)
(z − zi)k

+O

( 1
(z − zi)k−1

))
dzk,

(4.24)
for mi ∈ su(N), where the symmetric polynomials σk(mi) are defined by expanding
det(X −mi) = XN +∑

k≥2X
N−k(−1)kσk(mi). The condition on φ(z) should be under-

stood modulo conjugation, hence only the conjugacy class of mi is important.
We return in subsection 7.2 to a description of conjugacy classes in su(N)C = sl(N,C).

For now, it suffices to mention simple punctures, whose mass parameters take the form
mi = diag((N − 1)µ,−µ, . . . ,−µ). As a result, the massless limit where mi becomes

37As in various other places in this review there are inaccuracies about the global structure of groups.
Corrections welcome.
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nilpotent (see (4.4) for the N = 2 case) is different for full and simple punctures:

ϕk(z) = O

( 1
(z − zi)k−1

)
dzk (massless full puncture),

ϕk(z) = O

( 1
(z − zi)

)
dzk (massless simple puncture).

(4.25)

Exercise 4.13. 1. Massless case. Find the most general degree k ≥ 2 differential on the
three-punctured sphere with a simple pole at z = 1 and poles of order k − 1 at z = 0,∞.
Deduce the SW curve of the class S theory corresponding to a sphere with one simple
and two full punctures and deduce the theory has no Coulomb branch, consistent with
free hypermultiplets.

2. Massive case. For N = 3, evaluate det(x − φz) near a simple puncture φ(z) ∼(
(z − 1)−1m + p

)
dz with m = diag(2µ,−µ,−µ). Observe that the (z − 1)−k terms in

ud(z), for k, d = 2, 3, are expressed in terms of the (z − 1)−1 terms and of µ. Deduce
that there is again no Coulomb branch.

3. Massless case. Write the most general degree k ≥ 2 differential on the n-punctured
sphere with order k− 1 poles (full punctures) at 0,∞ and simple poles (simple punctures)
at q1, . . . , qn−3, 1. Write the SW curve and check that the Coulomb branch has dimension
(n− 3)(N − 1), consistent with the quiver (4.26) below.

Linear quiver gauge theory. Starting with collections of N2 free hypermultiplets,
identifying pairs of su(N) symmetries, and gauging them using vector multiplets, we find

T
(
su(N),CP1 \ {0, z1, . . . , zn−2,∞}

)
=

SU(N)

U(1)
SU(N)

U(1)
SU(N)

U(1)
· · ·

U(1)
SU(N)

U(1)

SU(N)

(4.26)

where we have underlined the simple punctures (so that only 0 and ∞ are full punctures).
This linear quiver gauge theory description corresponds to a specific degeneration limit
of the Riemann surface. We emphasize that other limits would involve more elaborate
tinkertoys, which do not typically have any Lagrangian description unless every pair of
pants involves a simple puncture. As found in Exercise 4.13, the SW curve in the massless
case reads

xN =
N∑
k=2

P
(k)
n−4(z)

(z − z1) · · · (z − zn−2)zk−1x
N−k (4.27)

where P (k)
n−4 denote polynomials of degree n− 4.

Exercise 4.14. Consider the degeneration limit where each zi+1/zi is kept fixed (and
|zi+1/zi| > 1) except zj+1/zj → +∞ for some j. Check that the part of the curve with
finite x/zj takes the form (4.27) with n replaced by j + 2 and additional mass terms. In
particular the new puncture is a full puncture.
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Brane construction. We know that the 6d (2, 0) theory X (su(N)) is the world-volume
theory of a stack of N coincident M5 branes (minus the center of mass). The Riemann
surface in (4.26) can be taken to be a cylinder, with some punctures. Then the brane
setup can be described by N M5 branes wrapping the cylinder, with the insertion of
transverse M5’ branes at n− 2 points on the cylinder.

Now, M-theory on a circle is IIA string theory, M5 branes wrapping the circle become
D4 branes, while M5’ branes at points on the circle become NS5 branes. This gives a
well-known brane set-up [178] with N D4 brane segments stretching between each pair of
neighboring NS5 branes:

NS5 D4

(4.28)

The world-volume description of this brane diagram is known to be the linear quiver
gauge theory (4.26). Mass parameters of the two SU(N) flavour symmetries are positions
(vertically in the figure) of the semi-infinite D4 branes on either end. Mass parameters of
all U(1) flavour symmetries are distances between centers of masses of each collection of
N D4 branes. The remaining vertical positions are dynamical and appear on the gauge
theory side as Coulomb branch parameters. The SW curve and differential of the linear
quiver can be extracted from this construction [178] and coincides with what is found
from the 6d perspective.

It is very easy in the brane diagram to accomodate gauge group ranks that are not
all the same. We outline in subsection 7.2 how to realize such theories in class S.

Part II

AGT correspondence
5 Localization for 4d quivers
Up to this point we have been working with 4d N = 2 class S theories in Minkowski
space. We now turn38 to Euclidean signature. Our aim in this section and the next is to
explain both sides of the AGT relation (1.1) for the case g = su(2) with tame punctures:

ZS4
b

(
T(su(2), C,m)

)
=
〈
V̂α1(z1) . . . V̂αn(zn)

〉Liouville

C
. (5.1)

38We shall ignore possible difficulties with Wick rotation.
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We postpone to section 6 the description of the right-hand side, a 2d Liouville CFT
correlator on the Riemann surface C. For now we concentrate on the sphere (and
squashed sphere) partition function of T(su(2), C,m). We explain how 4d N = 2 theories
are placed on this curved background geometry in subsection 5.1, by coupling with

Localization and factorization

• 4d N = 2 theories can be put supersymmetrically on
S4
b = {y2

5 + b2(y2
1 + y2

2) + b−2(y2
3 + y2

4) = r2} ⊂ R5.
• For any gauge theory, supersymmetric localization re-
duces the S4

b partition function exactly to an integral
ZS4

b
=
∫

daZcl(a, qq)Zone-loop(a)Zinst(a, q)Zinst(a, q) over
the gauge group’s Cartan algebra.
• The classical contribution is Zcl = |q|r2|a|2 .
• The one-loop contribution Zone-loop only depends on mat-
ter and is known for any Lagrangian theory.
• The instanton contribution Zinst is holomorphic in q and
known for many theories such as linear quivers.

supergravity [179–181] (see also [182,
183] for other early explorations). In
subsection 5.2 we reduce the infinite-
dimensional path integral to a finite-
dimensional one (a matrix model) in
the Lagrangian case using supersym-
metric localization. The resulting
expression is built from Nekrasov in-
stanton partition functions, which we
explore in subsection 5.3. Supersym-
metric localization implies that some
factorization properties remain true
even for non-Lagrangian theories, see
subsection 5.4.

Localization on the round sphere
was done in [10] and extended to
the squashed sphere in [11] based on some analogous developments on 3d squashed
spheres [184, 185]. The supergravity background of [11] was generalized to complex b
in [186]. The partition function admits alternate “Higgs branch localization” expres-
sions [187–190] which we will not need. See [191] for a review of curved-space localization,
and [126] more specifically for 4d N = 2 theories.

5.1 Theories on an ellipsoid

An easy case: the round sphere. Placing an SCFT on a round sphere S4 is in
principle39 straightforward: just apply a conformal transformation to the flat space
theory since the sphere is conformally flat. The 4d N = 2 superconformal algebra on S4

is then the same as on R4, namely su∗(4|2), whose bosonic part is the conformal algebra
su∗(4) = so(5, 1) times the R-symmetry algebras u(1) and su∗(2) = su(2).

The class S theories we study (for tame punctures) are mass deformations of SCFTs.
They can thus be placed on S4 by conformally mapping the SCFT to the sphere, then
turning on masses as background values for vector multiplet scalars coupled to the
various flavour symmetries. Mass terms turn out to break half of supersymmetry, break
the conformal algebra to the rotation algebra so(5) = usp(4), and the R-symmetry
to so(2) = so∗(2). Altogether one can work out that massive theories preserve the
supersymmetry subalgebra

osp∗(2|4) ⊂ su∗(2|4). (5.2)
39Identifying operators in flat space and on the sphere is subtle, as there can be some mixing involving

curvature tensors. This was understood for 4d N = 2 theories in [192].
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Note that this differs quite a bit from the Poincaré algebra preserved by massive theories
on R4: for instance spatial isometries of R4 are iso(4) = R4 ⋊ so(4) while here we have
the usp(4) = so(5) rotation algebra.

The AGT correspondence involves an ellipsoid (often called squashed sphere) S4
b and

not only S4. The squashed sphere is not conformally flat, and defining theories on this
background requires technology that we now explain.

Conformal Killing vectors. We are interested in QFTs on rigid curved spaces (no
dynamical gravity). Placing a Poincaré-invariant QFT on a curved space is done by
coupling the theory to gravity and freezing the value of the metric40. Invariance under
changes of coordinates leads to the existence of a conserved stress tensor (∇νT

µν = 0).
As the next exercise shows, the resulting curved-space theory preserves some space-time
(Poincaré) symmetries provided the metric admits Killing vectors Yµ, defined by the
Killing vector equation ∇µYν + ∇νYµ = 0. More generally if the flat-space QFT is
conformal, isometry and conformal symmetries of the CFT are given by conformal Killing
vectors

∇µYν + ∇νYµ = 2
d
gµν∇ρY

ρ. (5.3)

Exercise 5.1. 1. A Poincaré-invariant local QFT has a conserved stress-tensor Tµν that
is symmetric. Check that the current YµTµν is conserved if Y is a Killing vector.

2. If the flat-space QFT is conformally invariant, Tµν is traceless as well. Check that
YµT

µν is then conserved provided Y is a conformal Killing vector. Hint: explain the
factor 2/d in (5.3) by taking the trace of the equation.

Conformal Killing spinors. Consider now a supersymmetric theory. This means
that there are conserved supersymmetry currents Gµα and G̃α̇µ, where µ is a vector index
of the SO(4) rotation group, and α = 1, 2 and α̇ = 1, 2 are spinor indices with both
chiralities. Leaving the spinor index of Gµ implicit, the conservation equation reads

DµG
µ := ∇µG

µ + 1
4ωµ

abγaγbG
µ = 0 (5.4)

where ∇ is the Levi–Civita connection of the given metric, ω its spin connection, a, b are
vielbein indices, and γ are Dirac matrices.

To get a usual conserved translation current from the conserved stress-tensor in flat
space one contracts Tµν with a constant translation vector aµ. Likewise here we have
usual currents ξGµ = ξαGµα and ξ̃G̃µ = ξ̃α̇G

α̇µ for constant41 spinors ξ. In curved space
we can check that ξGµ is conserved provided ξ is a Killing spinor:

Dµξ :=
(
∂µ + 1

4ω
ab
µ γaγb

)
ξ = 0. (5.5)

40To be precise, if the theory has spinors one must additionally give a spin structure rather than only
the metric (for instance giving a vielbein is enough).

41Here we use a common abuse of language: talking about constant spinors requires a choice of vielbein,
for which we choose the standard Cartesian one on flat space.

45



(Note that we put ∂ instead of ∇ because ξ has no vector index.)
Just as a theory is conformally invariant if xµTµν is conserved, a theory is super-

conformally invariant if xνγνGµ is conserved in the same sense as (5.4). When put on
curved space, the theory now has super(conformal) symmetries if the spacetime admits a
conformal Killing spinor

Dµξ = 1
d
γµγ

νDνξ. (5.6)

Exercise 5.2. Check that (5.6) indeed leads to a conserved current ξG if the theory is
superconformal.

Generalized Killing spinors. We defined the (partial) topological twist in subsec-
tion 3.1 as a mixing of some rotations and R-symmetries, which allowed us to compactify
the 6d (2, 0) theory on a Riemann surface C. This idea is refined and generalized as
follows whenever the flat-space theory has an R-symmetry current Jµ. When placing
the QFT on curved space we can turn on a background gauge field Vµ coupled to Jµ in
addition to the metric gµν that is coupled to Tµν (we typically don’t turn on fermionic
backgrounds coupled to supersymmetry currents).

In such a background, the Killing spinor equation (5.5) generalizes by including the
R-symmetry gauge field in the covariant derivative:

Dµξ :=
(
∂µ + 1

4ω
ab
µ γaγb + Vµ

)
ξ = 0. (5.7)

The conformal Killing spinor equation generalizes in the same way to (5.6) with the
new Dµ. Here Vµξ should be suitably weighted by the R-charge under the given R-
symmetry, as is standard for covariant derivatives in the presence of a gauge field. The
(partial) topological twist consists of choosing Vµ to cancel some component of ωabµ so that
the corresponding component of ξ can simply be chosen to be constant (along C). More
general choices for the background gauge field V can make it possible to preserve some
supersymmetries even if the curved manifold of interest does not have any (conformal)
Killing spinors.

Squashed sphere. The supergravity background found in [11] to place 4d N = 2
theories on S4

b is rather complicated and gives non-zero values to most bosonic fields
in the supergravity multiplet. We point to the review [126] for actual expressions. For
our purposes we only need two aspects. The metric is the one induced from that of
Euclidean R5 in the embedding

S4
b :=

{
y2

5 + b2(y2
1 + y2

2) + b−2(y2
3 + y2

4) = r2} ⊂ R5. (5.8)

Parts of 4d N = 2 supersymmetry remain: U(1)2 rotations M12 and M34 in the y1, y2
and y3, y4 planes, and a supercharge Q (and its conjugate) such that

Q2 = b

r
(M12 − 1

2J
R
3 ) + 1

br
(M34 − 1

2J
R
3 ) (5.9)

where JR
3 is the Cartan generator of su(2)R.
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5.2 Supersymmetric localization

The idea of supersymmetric localization is several decades old when applied to scalar
supercharges of topologically twisted field theories. It received a new life since Pestun’s
calculation in 2007 [10] of the sphere partition function of 4d N = 2 theories, and of Wilson
loop expectation values. In the following decade the technique was sucessfully applied to
many dimensions (from 1d to 7d and even continuous dimensions) and geometries (such
as spheres Sd, products Sd−1 × S1, hemispheres and other spaces with boundaries), as
summarized in the 2016 review volume [125]. Besides the applications to understanding
supersymmetric theories and black hole state counting, the resulting expressions are
often complicated special functions with an interest of their own. We introduce here
the technique and present in subsection 5.4 a variant that explains various factorization
properties.

Set-up for supersymmetric localization. Our goal is to compute a path integral

⟨O⟩ =
∫

[Dϕ]e−SO (5.10)

that is invariant under some supercharge Q (we denote collectively all the fields as ϕ).
This means that the action and path integration measure are Q-invariant (QS = 0 and∫

[Dϕ]Q(anything) = 0) and that the observable also is (QO = 0). Roughly speaking,
the integrand is invariant along orbits of Q in the space of field configurations, so the
integral on each non-trivial orbit is the Grassmann integral of a constant hence vanishes.

Recipe for supersymmetric localization

• Choose a supergravity background on M with at least one
generalized conformal Killing spinor ξ, so that the theory
on M has at least one supersymmetry Q. Realize it off-shell.
• Choose a fermionic functional V that is Q2-invariant and
has (QV )bosonic ≥ 0 on the path integral contour.
• Find zeros of (QV )bosonic, which will be the resulting
integration locus, often finite-dimensional.
• Expand (QV )bosonic to quadratic order around these zeros
and compute the Gaussian integral (one-loop determinants).

Intuitively, this ought to reduce the
integral to Q-invariant field configu-
rations.

Supersymmetric localization is
based on the path integral so we
need the supersymmetry Q to be
realized off-shell, not only on-shell.
For highly supersymmetric theories
(such as 4d N = 2), realizing all su-
persymmetries on-shell requires in-
finitely many auxiliary fields, but
only a finite number are typically
needed to realize a single supercharge
off-shell.

The key idea of supersymmetric localization is to deform the action S in a way that
does not affect ⟨O⟩ yet suppresses contributions from most configurations, thus reducing
the path integral down to a smaller space of configurations. Typically one arranges to
make this smaller space finite-dimensional so as to get a well-defined finite-dimensional
integral, but it can also be interesting to get a lower-dimensional field theory.

Concretely, one needs some functional of the fields with three properties: it is Q-
exact (namely of the form QV ), Q-closed (namely V is invariant under the bosonic
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symmetry Q2), and has nonnegative bosonic part on the path integration contour we
wish to consider. A typical choice is roughly speaking a sum over all fermions of the
theory (collectively denoted as ψ) of the form

V =
∑

all spinors ψ
ψQψ =⇒ (QV )bosonic =

∑
ψ

|Qψ|2 (5.11)

for a suitable definition of the conjugate Qψ which ensures positivity of (Qψ)Qψ along
the path integral contour.

Saddle-point calculation. Once such a term is chosen, we deform the action by tQV
for t ∈ [0,+∞) and notice that the observable is unaffected since

⟨O⟩t =
∫

[Dϕ]e−S−tQV O

=⇒ ∂t⟨O⟩t = −
∫

[Dϕ]e−S−tQV OQV = −
∫

[Dϕ]Q
(
e−S−tQV O V

)
= 0.

(5.12)

Here we used that QO = 0 = Q(S + tQV ) to write the integrand as Q of something.
The observable is t-independent, so we can take the limit t → ∞, in which limit the

saddle-point approximation becomes exact. In addition, any saddle with (QV )bosonic > 0
is infinitely suppressed by e−tQV . Since we assumed QV ≥ 0, in this limit we are left with
an integral over field configurations with QV = 0 and the Gaussian integral of quadratic
fluctuations around it:

⟨O⟩ = ⟨O⟩t=0 = lim
t→∞

⟨O⟩t =
∫
QV=0

[Dϕ]e−S[ϕ]Zone-loop[ϕ]O[ϕ]. (5.13)

Here we wrote schematically
∫
QV=0, but this may also involve discrete sums if the space

of zeros of QV is disconnected. Here Zone-loop[ϕ] is the result of a Gaussian integral of
exp(−tQV ) around a field configuration ϕ that is a zero of QV .

Calculating the one-loop determinant Zone-loop is often the most technical step. It
is determined by the quadratic terms (QV )2 in QV , and more precisely is a ratio
of determinants of the fermionic and bosonic parts of (QV )2. In sufficiently simple
geometries one can explicitly diagonalize these operators by listing all the modes and
regularize the infinite products over modes using e.g. zeta-function regularization. The
calculation involves huge cancellations, due to how the supercharge Q pairs up most
bosonic and fermionic modes together. Roughly, only modes that are annihilated by Q
contribute, and this observation helps extend the cases where one-loop determinants
can be evaluated in a pedestrian manner. Finally, this latter calculation can be much
simplified by using powerful index theorems. We refer to the review volume [125] for
details.
Exercise 5.3. 1. Remind yourself that for a symmetric n × n matrix ∆ we have the
Gaussian integral

∫
Rn dnx exp(−xT∆x) =

√
det(π/∆).

2. Consider next n pairs of Grassmann variables θ1, θ̄1, . . . , θn, θ̄n and an n × n
matrix D, and evaluate the Berezin integral

∫
dnθdnθ̄ exp(−θ̄.D.θ) = ± detD.
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In concrete QFT applications, the bosonic operator ∆ is roughly the Laplacian and the
fermionic operator D is roughly the Dirac operator, so that ∆ ∼ D2 and their one-loop
determinants mostly cancel.

Saddle-points on ellipsoid. We now apply localization to 4d N = 2 theories on the
squashed sphere S4

b . We take the standard deformation term (5.11) where the sum ranges
over quarks ψ (hypermultiplet spinors) and gauginos λ (vector multiplet spinors). The
resulting QV is pretty similar to the 4d N = 2 action of these multiplets, and we only
mention what is needed to determine the space (QV )bosonic = 0.

Supersymmetric localization relies on the existence of a supercharge Q that is an
off-shell symmetry. This requires the addition of some auxiliary fields K to the 4d N = 2
theory. For now we focus on the sphere [10], restoring the squashing only in the final
expressions [11].

For the hypermultiplet we have

(QVhyper)bosonic = |Dq|2 + |Dq̃|2 + · · · + R

6 |q|2 + R

6 |q̃|2 + |Kq|2. (5.14)

Here, R is the Ricci scalar, which is positive: this term arises upon conformally mapping
|Dq|2 from flat space to the sphere. The “. . . ” are also a sum of squares, so the zero
locus has the whole hypermultiplet set to zero:

q = q̃ = Kq = 0, (5.15)

and fermions as well since they are Grassmann variables.
For the vector multiplet we have similar terms with q, q̃ replaced by the vector

multiplet scalar ϕ, but we also have terms like |Fµν |2 and terms due to the supergravity
background. Eventually (the bosonic part of) the deformation term can be massaged to
a sum of squares of the form

(QV )vector,bosonic = r − x0

2r
(
F−
µν + w−

µν Reϕ
)2 + r + x0

2r
(
F+
µν + w+

µν Reϕ
)2

+ |Dϕ|2 + [ϕ, ϕ†]2 + |Kϕ,i + wi Imϕ|2.
(5.16)

Here F− and F+ are the (anti)-self-dual parts of the gauge field strength, Kϕ,i, i = 1, 2, 3
are auxiliary fields (a triplet of su(2)R), and w±

µν and wi are determined by the supergravity
background.

Let us find zeros of (5.16). Each term must vanish, so in particular ϕ is covariantly
constant (Dϕ = 0). Away from the poles x0 = ±r, we have F±

µν = −w±
µν Reϕ so

Fµν = −wµν Reϕ where w = w+ + w−. Then the Bianchi identities imply

0 = DµFµν = Dµ(−wµν Reϕ) = −(∂µwµν) Reϕ− wµν Re(Dµϕ) (5.17)

and the last term vanish since Dµϕ = 0. In the specific supergravity background we have
here, ∂µwµν ̸= 0, so we learn that Reϕ = 0, hence Fµν = 0. Thus, in a suitable gauge
the gauge field vanishes and

Aµ = 0, ϕ = a, Kϕ,i = −wia away from poles, (5.18)
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for a constant a.
At the poles x0 = ±r, on the other hand, we only have one of the two equations

F±
µν = −w±

µν Reϕ, while the other part of Fµν is unconstrained. This suggests to include
point-like instanton configurations at the poles:

instantons (F+ = 0) at x0 = r; anti-instantons (F− = 0) at x0 = −r. (5.19)

Let us concentrate on the North pole x0 = r. Instanton configurations are insensitive
to matter, so that the instanton moduli space Minst is a product, over simple gauge
group factors, of a moduli space of instantons for each gauge group. This, in turn, splits
as a union of infinitely many connected components, labeled by the instanton number
k = #

∫
Tr(F ∧ F ) ∈ Z≥0 (for some calculable constant #), with one instanton number

per gauge group. Altogether, denoting the gauge group by ∏I GI ,

Minst =
∏
I

( ⊔
kI≥0

MGI ,kI

)
. (5.20)

Reality of Coulomb branch parameter and masses. The condition Re a = 0
simply means that a ∈ g rather than the complexification thereof. We gauge-fix it so
that it belongs to the Cartan subalgebra h modulo the Weyl group. The reality condition
is then that

⟨w, a⟩ ∈ iR, for every weight w. (5.21)
For instance, a is anti-Hermitian for g = su(N).

This reality condition arose here from studying saddle-points of the deformation term,
but the same condition also derives from requiring the configuration to be Q-invariant.
As explained previously, hypermultiplet masses m simply amount to constant background
values for vector multiplet scalars. Thus, the reality condition (5.21) is also required
for masses in order for them to preserve the supercharge Q used by supersymmetric
localization. In other words, curved-space supersymmetry on S4

b requires masses to be
imaginary.

Result for round and squashed sphere. Saddle-point configurations defined by
(5.15), (5.18), (5.19) are thus characterized by a choice, for each gauge group, of an
imaginary Coulomb branch parameter a and point-like (anti)-instanton configurations at
the poles. For any such saddle-point we compute the classical action

Scl = − Re(2πiτ) Tr(ra)2 + 2πiτn− 2πiτn, τ = θ

2π + 4πi
g2 , (5.22)

where the radius r of the (squashed) sphere (5.8) makes the first term dimensionless.
We refer to [126] for the computation of one-loop determinants (Gaussian integral)

capturing the effect of quadratic fluctuations around the saddle-points. For the zero
(anti)-instanton saddle, one gets

Zone-loop = Zvector
one-loopZ

hyper
one-loop for k = k = 0. (5.23)
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Here, the vector multiplet one-loop determinant is a product over roots α of all gauge
group factors (non-zero weights of the adjoint representation),42

Zvector
one-loop =

∏
α∈∆

Υb(⟨α, ra⟩), (5.24)

where Υb is a special function defined in Appendix A. We emphasize that its argument
here is purely imaginary. The hypermultiplet one-loop determinant is a product over
weights w (with multiplicity) of the representation in which the hypermultiplet transforms,

Zhyper
one-loop =

∏
w∈R

1
Υb

( b+1/b
2 + ⟨w, ra⟩

) . (5.25)

As explained previously, hypermultiplet masses are simply background values for vector
multiplet scalars corresponding to flavour symmetries, so adding a mass m in (5.25)
simply changes

Υb

(
b+ 1/b

2 + ⟨w, ra⟩
)

→ Υb

(
b+ 1/b

2 + ⟨w, ra⟩ + rm

)
. (5.26)

Importantly, hypermultiplets in the representations R and R are equivalent (with mass
m → −m) and one checks that the symmetry Υb(b + 1/b − x) = Υb(x) ensures that
the one-loop determinant (5.25) computed with both presentations is the same. For a
half-hypermultiplet in a pseudoreal representation R ≃ R one should keep only one factor
for each pair of conjugate weights; thanks to the same symmetry of Υb it does not matter
which weight one selects in each pair. As expected all factors are invariant under the
b → 1/b symmetry of S4

b thanks to Υb = Υ1/b.
One-loop determinants can be further understood as products of contributions from

both hemispheres, essentially by decomposing each Υb function as Υb(x) = 1/(Γb(x)
Γb(b+ 1/b− x)). (Anti)-instantons at each pole only affect one-loop contributions from
the corresponding hemisphere, which leads to a factorization property of the form

Zone-loop(a, k, ξ, k, ξ) = Zone-loop(a)Zone-loop,inst(a, k, ξ)Zone-loop,inst(a, k, ξ) (5.27)

where ξ ∈ MG,k and ξ ∈ MG,k parametrize the instanton configurations and Zone-loop(a)
is the ratio of Υb written above.

Altogether, collecting all (anti)-instanton contributions together, including the classical
contributions expressed in terms of q = exp(2πiτ), the partition function reads

ZS4
b

=
∫

daZcl(a, qq)Zone-loop(a)Zinst(a, q)Zinst(a, q). (5.28)

Here, the integral ranges over the Cartan algebras of all gauge groups, Zone-loop is
given above, and the exponent in Zcl = exp(−Scl) = |q|r2|a|2 involves the Killing form

42To be precise, we have included here in Zvector
one-loop the Vandermonde determinant

∏
α∈∆(⟨α, ra⟩) that

arises when converting from an integral over the whole gauge algebra g to its Cartan subalgebra.
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|a|2 = − Tr(a2) of the Lie algebra and is positive since a is imaginary. We collected
into Zinst the shift of Scl due to instantons, and Zone-loop,inst, suitably integrated over the
instanton moduli space,

Zinst(a, q) =
∑

all kI≥0

(∏
I

qkI
I

)∫∏
I

MGI ,kI

Zone-loop,inst(a, k, ξ) dξ. (5.29)

There remains to compute this instanton partition function.

5.3 Instanton partition functions

Omega background. The point-like configurations in (5.19) are only sensitive to the
leading expansion of the supergravity background around the poles. This supergravity
background has a flat metric and a non-trivial graviphoton, and coincides with the Omega
background R4

ϵ1,ϵ2 discovered by Nekrasov [12], with parameters ϵ1 = b/r, ϵ2 = 1/(rb). It
was thus naturally conjectured in [10, 11] (and later works) that in the expression (5.28)
of ZS4

b
, the function Zinst(a, q) = 1 +O(q1) to be included is the partition function of the

4d N = 2 theory on the Omega background R4
ϵ1,ϵ2 , called Nekrasov’s instanton partition

function [12, 13]. We refer to reviews [116, 127] for a more detailed introduction to Zinst.
The Omega background tends to R4 as ϵ1, ϵ2 → 0, and can be understood as a

regulator for IR divergences due to non-compactness of R4. In fact, as explained in [12,
13] and the appendix of [193], the partition function gives the low-energy prepotential of
the gauge theory:43

F (a, q) = Fpert(a, q) + lim
ϵ1,ϵ2→0

(
ϵ1ϵ2 logZinst(a, q; ϵ1, ϵ2)

)
, (5.30)

where Fpert results from a one-loop computation and can be extracted from Zone-loop. In
this way, the instanton partition function gives access to the low-energy dynamics of the
4d N = 2 theory at a point a along the Coulomb branch. The whole SW curve can then
be rigorously derived, as done in [13, 194, 195]. The derivation relies on a link with the
theory of random partitions.

The Omega background can also be obtained as the β → 0 limit of a 5d background
S1
β ×ϵ1,ϵ2 R4 defined as the quotient of R × C × C under the identification (x, z1, z2) ∼

(x+ β, eiβϵ1z1, e
iβϵ2z2). Many 4d N = 2 Lagrangian theory can be lifted to a 5d N = 1

theory, in which case the instanton partition function Zinst has a 5d analogue defined as
the partition function on S1

β ×ϵ1,ϵ2 R4. It is also worth mentioning developments in how
to construct the Omega background in string theory and M-theory [196–200].

Computation methods. The instanton partition function is an integral over the
moduli space of instantons with an integrand depending on matter. As mentioned above,
this moduli space decomposes as a product over simple gauge group factors, and the

43The prepotential is the Lagrangian density in N = 2 superspace, and it encodes fully the low-energy
dynamics of U(1) gauge fields at a generic point on the Coulomb branch. We point to reviews such
as [115] for more discussion of this crucial function.
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moduli space for each gauge group factor has one connected component for each instanton
number k ≥ 0, with dimensions growing with k. There are several methods to compute
the instanton partition function [127].44

• ADHM construction. For classical gauge groups U (rather than SU), USp, SO
the n-instanton moduli space can be realized as a symplectic quotient through
the Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction [201], while no such
constructions are available in general for the exceptional groups E6,E7,E8,F4,G2,
nor for SU. Physically, the ADHM construction expresses the instanton moduli
space as the moduli space of a supersymmetric matrix model, describing D(−1)
brane instantons in a background of D3 branes and O3 planes that realize 4d N = 2
vector multiplets [202–204].
The matrix model is known for hypermultiplets in suitable representation (e.g.
bifundamental). Localization then reduces Zinst from an integral over the whole
moduli space down to a discrete sum of contributions from collections of point-like
instantons respecting certain U(1) symmetries. We give the resulting formula for
U(N) gauge theories in (5.33), below. This Losev–Moore–Nekrasov–Shatashvili
(LMNS) formula was obtained in [205–207], derived in [12], and extended to other
classical groups in [208–210], to quivers in [194], and to supergroup theories in [211].
These methods apply to 5d N = 1 lifts of these theories: the S1

β ×ϵ1,ϵ2 R4 instanton
partition function matches the supersymmetric index of a quantum mechanics
analogue of the matrix model (see e.g. [212, 213]).

• Pure 4d N = 2 SYM. For exceptional gauge groups there is no ADHM construction.
The one-instanton moduli space is (C2 times) the orbit under G of the highest
weight vector of its adjoint representation. This allows a group-theoretic calculation
of one-instanton partition functions for arbitrary gauge groups in pure SYM [99,
214, 215]. This was extended to two instantons in [216].
Instead of realizing the k-instanton moduli space as a Higgs branch as in the
ADHM construction, it can be realized as the Coulomb branch of a 3d N = 4 SCFT.
The Coulomb branch Hilbert series (a specialization of the superconformal index)
of this 3d theory then gives the k-instanton partition function of pure SYM on
S1
β ×ϵ1,ϵ2 R4 with an arbitrary gauge group [217]. The instanton partition function

for pure En SYM theory can be determined from the Hall–Littlewood index of the
En Minahan–Nemeschansky theory, calculated using the TQFT realization of this
index discussed in subsection 9.2.

• Mass-deformed 4d N = 4 SYM. For 4d N = 2∗ SYM, which interpolates between
N = 4 and N = 2 SYM as the mass is varied, the prepotential (or its Omega-
deformation) is expected to obey a modular anomaly equation that describes how
it transforms under S-duality [218, 219]. This led to a formula for the prepotential
in terms of Eisenstein series for arbitrary gauge groups [220–223]. This technique
extends somewhat, for instance to conformal SQCD [224, 225].

44I thank Jaewon Song for correspondence on some methods.

53



• Recursion relations. Comparing the instanton partition function to the partition
function on the blow-up of C2 yields recursion relations (see [226–228] and references
therein). For hypermultiplets (but not half-hypermultiplets) in a large class of
representations of both classical and exceptional gauge groups, one can solve these
recursion relations and deduce Zinst from the perturbative (one-loop) partition
function.

Some matter representations escape all the available methods: most notably, gen-
eral Lagrangians constructed from SU(2) vector multiplets and trifundamental half-
hypermultiplets, which are the Lagrangian descriptions of SU(2) class S theories. Among
these theories, Zinst is known whenever the theory can be written with gauge groups
SU(2) and SO(4) = (SU(2) × SU(2))/Z2 and bifundamental matter (of two SU(2) groups
or of an SU(2) and an SO(4) group); see [96, 98]. A possible way forward relies on the
topological vertex formalism [229].

Nekrasov partition functions have many generalizations, such as on ALE space [82,
230–235] and more general spaces [236–238], spiked instantons [239], and a proposed
generalization to 4d N = 1 theories [240].

Explicit formula for linear quiver gauge theories. We focus now on the linear
quiver gauge theory

SU(N1) SU(N2) · · · SU(Np)

M1 M2 Mp
(5.31)

which is a slight generalization (allowing Ni to be distinct) of those in subsection 4.4.
This theory has gauge group ∏p

i=1 SU(Ni), one hypermultiplet in each bifundamental
representation Ni ⊗ Ni+1, and Mi hypermultiplets transforming in the fundamental
representation Ni of each group. If the theory is conformal or asymptotically free, namely
the beta-function coefficient bj = 2Nj −Nj−1 −Nj+1 −Mj is non-negative, then it can
be realized in class S using quiver tails, see (7.15).

Extending the gauge groups from SU(Ni) to U(Ni) allows the theory to be realized in
IIA string theory, as the world-volume theory of groups of Ni parallel D4 branes stretched
between consecutive NS5 branes, together with Mi transverse D6 branes that give rise
to fundamental hypermultiplets, as depicted in Figure 3. Instantons are described as
D0 branes also stretching between NS5 branes, and Zinst is the partition function of
their world-volume theory, summed over the number of D0 branes. Eventually, one must
remove spurious factors caused by the additional U(1) gauge groups.

We denote the Coulomb branch parameter ai = {ai1, . . . , aiNi
} for 1 ≤ i ≤ p, and

by ki the number of instantons for U(Ni), namely the number of D0 branes in the i-th
interval between NS5 branes. Then

Zinst
[∏

U(Ni)
]

=
∑

k1≥0,...,kp≥0
zk1

1 · · · zkp
p Z

(k)
inst, (5.32)

where the counting parameters zj encode the dynamical scale Λj or gauge coupling τj

54



of the j-th gauge group.45 The k-instanton contribution to Zinst is the matrix model
contour integral

Z
(k)
inst =

∫
dϕ

∏
i,F,I

(mi
F − ϕiI)

p−1∏
i=1

[∏
I,J
S(ϕi+1

J − ϕiI)
∏
A,J

(ϕi+1
J − aiA + ϵ1 + ϵ2) ∏

I,B
(ai+1
B − ϕiI)

]
∏
i

[
( ϵ1ϵ2
ϵ1+ϵ2 )ki

∏
I ̸=J

S(ϕiI − ϕiJ) ∏
A,I

(ϕiI − aiA + ϵ1 + ϵ2)(aiA − ϕiI)
]

(5.33)
where S(ϕ) = −(ϕ+ ϵ1)(ϕ+ ϵ2)/[ϕ(−ϕ− ϵ1 − ϵ2)], indices run over the ranges that are
natural given where they appear (1 ≤ i ≤ p, 1 ≤ F ≤ Mi, 1 ≤ I ≤ ki, 1 ≤ J ≤ ki+1,
1 ≤ A ≤ Ni, 1 ≤ B ≤ Ni+1), and dϕ denotes a product of all dϕiI . The first factor in the
numerator captures the effect of fundamental hypermultiplets, the rest of the numerator
comes from bifundamental hypermultiplets, and the denominator from vector multiplets.

The integrand can be understood from the IIA string theory construction depicted in
Figure 3. The vector multiplet contribution (denominator) arises from strings stretching
between different D0 branes in a given interval (1/S factors) and strings stretching between
D0 and D4 branes (the remaining factors). The fundamental hypermultiplet contribution
arises from strings connecting D0 and D6 branes. Strings joining D0 or D4 branes on two
sides of an NS5 brane yield the bifundamental hypermultiplet contribution, in which one
omits the D4-D4 interactions because they are already taken into account in Zone-loop.

The same formula can be obtained from first principles using the mathematically
rigorous ADHM construction. The contour in (5.33) is such that it enclose poles at

{ϕiI | 1 ≤ I ≤ ki} = {aiA + (r − 1)ϵ1 + (s− 1)ϵ2 | (r, s) ∈ λiA} (5.34)

for each collection of Young diagrams λiA, 1 ≤ i ≤ p, 1 ≤ A ≤ Ni with a total number of
boxes equal to the instanton number, ∑Ni

A=1|λiA| = ki. The set of poles (5.34) arises from
a prescription called the Jeffrey–Kirwan (JK) residue prescription, which follows from
equivariant localization [210]. This prescription was also obtained from localization of
the aforementioned ADHM supersymmetric matrix model [241–244].
Exercise 5.4. Specialize these formulas to U(2) SQCD with Nf = 4 flavours (p = 1,
N1 = 2, M1 = 4). Note that the four mass parameters m1

B, B = 1, . . . , 4 can all be
shifted by shifting the Coulomb branch parameters a1

A, A = 1, 2. This is a shadow of the
fact that in the U(2) theory we have only SU(Nf ) flavour symmetry, not SO(2Nf ) like
for SU(2) SQCD. Compute the one-instanton contribution in Zinst. Start computing the
two-instanton contribution to get an idea of the complexity: write the integrand and list
the poles.

U(1) factor. The brane realization of the theory required the gauging of U(1) symmetries
to complete SU(Ni) into U(Ni) gauge groups. In this process, U(1) mass parameters

45If bj = 2Nj − Nj−1 − Nj+1 − Mj is positive then zj = Λbj

j while if bj = 0 then zj is essentially e2πiτj .
To be precise there is some renormalization scheme ambiguity in what we mean by τj , as we discuss
momentarily on page 56. The logic is rather to extract from Zinst the prepotential as a function of zj ,
deduce how IR couplings relate to zj , and finally invert the map if we want to express zj in terms of
physically meaningful quantities.
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NS5

D4

D6
⊗
⊗

Λ1 Λ2

⊗

Λ3

Figure 3: Brane construction of a U(4) × U(4) × U(3) gauge theory. The leftmost U(4)
factor has two fundamental hypermultiplets (inserted by transverse D6 branes depicted
as ⊗) and the rightmost U(3) factor has one fundamental hypermultiplet. In this example
each gauge group is asymptotically free.

become dynamical vector multiplet scalars. Thankfully, Zinst is calculated for constant
values of these scalars, so that we can simply set these Coulomb branch parameters to
the U(1) mass parameters we started with.

The major problematic effect of the gauging is to introduce spurious instanton
contributions from the U(1) gauge factor. After spending a week puzzled about a
mismatch with 2d CFT conformal blocks, the authors of [5] proposed to divide out this
spurious U(1) instanton contribution, schematically46

Zinst
[∏

SU(Ni)
]

= Zinst
[∏

U(Ni)
] / (

U(1) factor
)
. (5.35)

This U(1) factor is more readily singled out on the CFT side. Instanton partition functions
for linear quivers of SU(N) gauge groups are expected to match conformal blocks of the
WN algebra (Virasoro for N = 2), while U(N) gauge groups correspond to conformal
blocks of WN times the Heisenberg chiral algebra. The difference (or rather ratio) of
these two situations is thus given by a conformal block of the Heisenberg chiral algebra,
namely a free field correlation function of chiral vertex operators. This point of view was
understood in [14] for N = 2 and later extended in [245]. For the linear quiver considered
here, the factor is schematically(

U(1) factor
)

≃
∏

1≤i≤j≤p
(1 − zi · · · zj)cij (5.36)

for some exponents cij that are quadratic in the mass parameters.

Renormalization schemes: an example. Given the issue of extracting the U(1)
factor, and additional restrictions on which theories can be treated by brane constructions,

46References welcome: it would be good to lay down the procedure nicely on the instanton partition
function side, and I likely missed the correct reference.
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people have sought other methods to determine Zinst. We present one method [96] that
exemplifies a subtlety in comparing different results.

Brane setups with orientifold planes gives access to Zinst for linear quivers with
alternating USp and Spin groups. We return to such quivers and their class S construction
at the end of subsection 7.2. One of the simplest examples is in fact a different description
of SU(2) SQCD with Nf = 4 flavors:

Spin(4) USp(2) Spin(4) =
SU(2)

SU(2)
SU(2)

SU(2)

SU(2)
. (5.37)

More generally, linear quivers of USp(2) = SU(2) and Spin(4) = SU(2) × SU(2) gauge
groups are equivalent to generalized SU(2) quivers. In simple enough cases such as (5.37)
the instanton partition function can also be computed through the U(2) ADHM construc-
tion and removing U(1) factors (5.35). Surprisingly, the two methods yield different
series in powers of the exponentiated gauge coupling qLag = e2πiτLag , which would naively
suggest an inconsistency!

The same issue showed up a long time ago when comparing SW solutions coming
from different constructions of 4d N = 2 theories. It was resolved [246] by noting a
renormalization scheme ambiguity in the definition of the couplings. We have already
encountered this ambiguity in (4.20) when comparing the gauge coupling τLag appearing in
the Lagrangian of SU(2) SQCD to the position q = e2πiτ arising in the class S construction
of this same theory and found a relation τ = τLag + · · · with a constant shift and an
infinite tower of instanton corrections.47

Let us concentrate on (mass-deformed) SCFTs such as SU(2) Nf = 4 SQCD, whose
gauge couplings do not run, and let us simplify expressions by assuming there is a single
gauge coupling. In two renormalization schemes that agree at leading order, the gauge
coupling constants τ, τ̃ are related as

τ̃ = τ +
∑
n≥0

cne
2πinτ , (5.38)

where the τ -independent coefficients cn are dimensionless. In concrete cases these
coefficients are independent of Coulomb branch and mass parameters; assuming that the
schemes agree at leading order throughout the parameter space, a possible argument is
that the coefficients cn should be bounded functions of the Coulomb branch and mass
parameters, hence must be constants by the Liouville theorem on analytic functions.

The U(2) and USp(2)–Spin(4) approaches to Zinst are related in precisely this way,
as understood in [96]. Consider SU(2) SQCD with Nf = 4 massless hypermultiplets. The
quiver descriptions (5.37) correspond to seeing SQCD either as a reduction of X (so(4)) =
X (su(2)) ⊗ X (su(2)) with Z2-automorphism twist defects, or a reduction of X (su(2)):

T
[
so(4),

]
= T

su(2),

 . (5.39)

47In the AGT context, an early reference pointing out these instanton corrections is [247], see also [248]
for an F-theory derivation.
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The double-cover of the so(4) curve (cylinder with a branch cut) is the su(2) curve
(four-punctured sphere). The relation between the modular parameter qso(4) of the cut
cylinder and the IR coupling is fixed through the same considerations as for the modular
parameter qsu(2) of the four-punctured sphere (4.20). This allows to relate them to each
other,

qso(4) =
√

16λ(2τIR) = 16eπiτIR +O(e3πiτIR),

qsu(2) = λ(τIR) = qso(4)
(
1 +

qso(4)
4
)−2

= 16eπiτIR − 128e2πiτIR +O(e3πiτIR).
(5.40)

When comparing Nekrasov instanton partition functions, the non-trivial map between
the counting parameters qsu(2) and qso(4) must be taken into account.

5.4 Cutting by localization

Supersymmetric localization without a Lagrangian. We have presented supersym-
metric localization so far for Lagrangian theories, as the technique relies on a path-integral
formulation. In the absence of a path-integral formulation we cannot deform the action
S → S + tQV as before, but we can still deform an expectation value ⟨O⟩ to ⟨Oe−tQV ⟩.
In the same way as in (5.12) this expectation value is t-independent provided the su-
percharge Q is not spontaneously broken in the state of interest, and QO = 0. In the
t → +∞ limit the observable ⟨O⟩ should reduce in some sense to “zeros of (QV )bosonic”,
whenever such a notion can be defined.

In the following,48 using a deformation term for vector multiplets only, we decompose
the partition function of a general class S theory into simple building blocks for any pants
decomposition of C. On an orthogonal note, using a deformation term restricted to S3

b ⊂
S4
b , we factorize the partition function as the integral of a product of (anti)-holomorphic

functions of q as in (5.28), for any theory whose 3d restriction is Lagrangian.

Cutting C by localizing vector multiplets. Higher-rank class S theories are typically
non-Lagrangian, obtained by gauging common flavour symmetries of certain isolated
SCFTs called tinkertoys (most notably TN ). Gauging symmetries, however, is performed
using standard vector multiplets that are described by a standard path integral, with a
gauge coupling τ just as in the Lagrangian case. This raises the prospect of applying
supersymmetric localization to these vector multiplets.

Let us make more explicit what we mean by gauging a flavour symmetry group G
of some theory T (a product of tinkertoys). The G symmetry current multiplet in T
is first coupled to a non-dynamical vector multiplet (A, λ, ϕ). The partition function
ZT[A, λ, ϕ] depends on this background vector multiplet, whose components may be
given any values (constant or not). Gauging consists of performing the path integral over
the vector multiplet fields, so that the partition function of the gauged theory is

ZT,gauged =
∫

[DADλDϕ] e−SSYM[A,λ,ϕ]ZT[A, λ, ϕ], (5.41)

48The ideas mostly appear in the literature, but may not have been collected previously in this way.
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where the SYM action includes the gauge coupling and theta term, and the path integral
measure implicitly accounts for gauge fixing. Similar expressions are available for any
other observable of the gauged theory, in terms of observables of the non-gauged theory.

The idea then is to add the deformation term (5.11) for the vector multiplet, without
adding any deformation terms for the tinkertoys. Supersymmetric localization restricts
the vector multiplet path integral as

ZT,gauged = lim
t→+∞

∫
[DADλDϕ] e−SSYM−tQVvectorZT[A, λ, ϕ]

=
∫
QVvector=0

[DADϕ]e−SSYM[A,ϕ]Zvector
one-loop[A, ϕ]ZT[A, ϕ].

(5.42)

The locus QVvector = 0 cannot in principle have the fermion λ turned on, which is
why λ disappears in the last line. The locus is described by (5.18) away from the
poles and (5.19) at poles. Namely, zeros of the vector multiplet deformation term are
characterized by a constant imaginary value ϕ = a ∈ g and by (anti)-instantons at the
poles.

In our applications T splits into decoupled sectors T = ∏
L TL. Decomposing

G = ∏
I GI into simple factors and denoting by hI their Cartan algebra, we find

ZT,gauged =
∏
I

[ ∑
kI ,kI≥0

∫
hI×MGI ,kI

×M
GI ,kI

daIdξIdξI

]{
∏
I

[
|qI |r

2|aI |2qkI
I q

kI
I Z

vector
one-loop[GI ; aI , kI , ξI , kI , ξI ]

] ∏
L

ZTL
[a, k, ξ, k, ξ]

}
.

(5.43)

For class S theories, this matches precisely how a correlator on C would be calculated by
inserting, on each tube of a pants decomposition of C, a complete set of states labeled
by aI , kI , ξI , kI , ξI . Indeed, we recognize the sum over states ∑k,k

∫
a,ξ,ξ for each tube I,

the inverse norm of that state, and the remaining three-point functions ZTL
for each

three-punctured sphere L. We know that ZTL
is only sensitive to aI , kI , ξI , kI , ξI for

groups under which TL is charged; in class S these correspond to the tubes that connect
to the given tinkertoy.

Holomorphic factorization by localizing on S3
b . We now turn to a method to cut

and glue partition functions using supersymmetric localization. This was most deeply
explored in [249, 250] where many previously observed factorisation properties were
derived (see also [91] for an earlier application of the idea). Our aim here is to explain the
holomorphic dependence in q by cutting the sphere in halves along the equator S3

b ⊂ S4
b .

This is nicely complementary to how we have cut the Riemann surface C above.
As a warm-up we revise the Lagrangian case. The keys for factorization in that case

are that

• the q and q dependence arises from instantons at the poles;

• these instantons do not interact through ZTL
.
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To be precise, T consists of hypermultiplets and supersymmetric localization with the
hypermultiplet deformation term sets all fields of T to zero, and quadratic fluctuations
yield the product of a function of a, k, ξ and a function of a, k, ξ, as for the vector
multiplet (5.27). Thus, the q, k, ξ and q, k, ξ dependence completely decouple from each
other in (5.43). Collecting together the sum-integral over k, ξ into an instanton partition
function, we retrieve the expected factorization as an integral over a of a holomorphic
times an antiholomorphic function of q, as stated in (5.28).

We now rephrase this in terms of localization. The S3
b restriction of the 4d fields are

3d N = 2 vector and hypermultiplets, and the full 4d theory is alternatively described
as two (identical) 4d theories on the hemispheres of S4

b , coupled together through their
boundary condition: for instance the partition function reads

ZS4
b

=
∫

[DΦ3d]e−S3d[Φ3d]ZHS4
b
,North[Φ3d, q, q]ZHS4

b
,South[Φ3d, q, q], (5.44)

where Φ3d denotes collectively all fields of the 3d N = 2 theory on the equator and ZHS...
denote the path integrals over fields on each of the two hemispheres. This expression
can be seen as the expectation value of (very complicated) observables ZHS... of the 3d
theory.

The equator theory can then be localized by adding to it the usual deformation term
that is used for localization on S3

b . The 3d hypermultiplets get localized to zero as in
4d (5.15). The 3d vector multiplets get localized to constant values ϕ = a ∈ g. As for
any other observable, the ZHS... factors are evaluated on the localization locus so that

ZS4
b

=
∫

daZcl,3d[a]Zone-loop,3d[a]ZHS4
b
,North[a, q]ZHS4

b
,South[a, q]. (5.45)

The hemisphere partition functions are evaluated here with Dirichlet boundary conditions
with a constant boundary value a for the vector multiplet scalars. The absence of gauge-
coupling dependence in 3d is standard: YM terms in 3d are Q-exact. More generally,
YM and theta terms are Q-exact everywhere away from the North/South poles where
their sum/difference is not Q-exact in a smooth way. This explains why the hemisphere
contributions only depend on q or q.

This idea of cutting the theory along the equator generalizes beyond Lagrangian
theories. Even though ZTL

may not have a path integral description, general axioms
of QFT still apply and one can insert a complete set of states along the hypersurface
S3
b ⊂ S4

b . The partition function is then seen as the overlap of two states prepared by
the path integral over hemispheres,

ZS4
b

=
∑

|Φ⟩∈H[S3
b

]

〈
HS4

b North
∣∣ Φ
〉〈

Φ
∣∣ HS4

b South
〉
. (5.46)

Then, Q-invariance of the set-up implies that the sum restricts to Q-invariant states,

ZS4
b

=
∑

|a⟩∈H[S3
b

],Q|a⟩=0

〈
HS4

b North
∣∣ a〉〈a ∣∣ HS4

b South
〉
, (5.47)
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and Q-exactness of the YM ± theta terms on each hemisphere shows that the two factors
are (anti)-holomorphic functions of q as wanted.

We observe that the Coulomb branch integral over a ∈ h is in general replaced by a
sum/integral over Q-invariant states in the S3

b Hilbert space of the 4d theory. This is
typically a larger space, especially in the presence of non-Lagrangian tinkertoys.

6 AGT for SU(2) quivers
The AGT relation (5.1) relates observables of two different dimensional reductions of
the 6d (2, 0) theory X (su(2)). We have explained in section 4 how reducing X (su(2))
on a Riemann surface C = C \ {z1, . . . , zn} yields a 4d N = 2 su(2) Sicilian49 quiver
gauge theory that depends on C, with gauge couplings related to the complex structure
of C. Likewise, we expect that reducing X (su(2)) on S4

b should yield a 2d theory with
a coupling constant b, and the codimension 2 defects of X (su(2)) inserted at punctures
zi of C should become local operators in 2d. Since this 2d dimensional reduction is
somewhat technical, we postpone it to subsection 6.3, explaining there briefly why one
should expect 6d observables to be computable both on the 4d and 2d sides.

Before that we determine the relevant 2d theory in a more historically accurate way
in subsection 6.2: its correlators should reproduce the S4

b partition functions of class S
theories. These partition functions only depend on the complex structure of C, hence
only on the conformal class of the metric on C. This means that the 2d theory we
seek should be a CFT, and it turns out to be Liouville CFT. As a result, we begin by
reviewing Liouville CFT and 2d CFT basics in subsection 6.1. We summarize aspects of
the correspondence in Table 3.

Table 3: Basics of AGT. In Liouville CFT conventions, change Q to Q/2.

Gauge theory Toda/Liouville CFT

Partition function on S4
b Toda correlator on C

Pa
ra

m
et

er
s Squashing parameter b =

√
ϵ1/ϵ2 Toda coupling constant b

Gauge couplings in 4d Complex structure of C
Dual gauge theory descriptions Pants decompositions of C
Full tame puncture of mass m Vertex operator V̂Q+rm

Bu
ild

in
gb

lo
ck

s Coulomb branch parameter a Internal momentum α = Q+ ra
Gauge one-loop determinant Inverse two-point function
Matter one-loop determinant Three-point structure constant
Classical action contribution Conformal block leading term
Instanton partition function Conformal block power series

49Thus named because of a resemblance between trinions and the triskelion featuring prominently on
the flag of Sicily.
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6.1 2d CFT and Liouville CFT

We refer to reviews such as [128, 129] (and references therein) for an introduction to 2d
CFT and in particular to Liouville CFT. The Young Researchers Integrability School and
Workshop (YRISW) course [251] also provides a brief introduction to 2d CFT and their
symmetry algebras (chiral algebras), which curiously also show up independently as a
protected subsector of 4d N = 2 theories.

Virasoro algebra. In contrast to other dimensions, the conformal symmetry algebra
in 2d is the product Vir ×Vir of two infinite-dimensional algebras. The Virasoro algebra
Vir is spanned by Ln, n ∈ Z and a central element C, subject to

[Lm, Ln] = (m− n)Lm+n + 1
12δm+n=0(m3 −m)C. (6.1)

This algebra, and the other copy spanned by Ln, n ∈ Z and C, acts on the Hilbert space
of the theory on a circle. For any given 2d CFT the elements C,C of the conformal
algebra act as multiplications by constants called central charges and denoted c, c or
cL, cR.

In a CFT, radial quantization identifies such states to their infinite-radial-past limit,
which is a local operator O at the center of radial quantization. The state corresponding to
O under this state-operator correspondence is denoted by |O⟩. Under this correspondence,
the action of Vir ×Vir on states translates to an action on local operators by commutator.
Exercise 6.1. Using (6.1), check [Lm, [Ln, Lp]]+[Ln, [Lp, Lm]]+[Lp, [Lm, Ln]] = 0. This
is the Jacobi identity, essential for consistency of the Lie algebra Vir. Check that the
factor m3 −m is fixed by the Jacobi identity up to mixing Ln with C and scaling C.

Check that C̃ = kC and L̃n = Lkn/k + δn=0(k − 1/k)C/24 obey the Virasoro
commutation relations for any k ∈ Z\{0}, so that the Virasoro algebra contains infinitely
many Virasoro subalgebras. Conversely, the Virasoro algebra can be embedded as the
integer modes of a larger Virasoro algebra with fractional modes, useful in symmetric
product orbifolds [252].

Conformal dimensions. Dilations and rotations around the center of radial quantiza-
tions are generated by L0 ±L0, hence the dimension ∆ = hO +hO and spin hO −hO ∈ 1

2Z
of a local operator are given by the action of L0 and L0:

[L0,O] = hOO, [L0,O] = hOO. (6.2)

Despite the notation, the conformal dimensions hO and hO are independent numbers.
In a unitary CFT they are both real and non-negative. We find it more convenient to
mostly work with states, in which case ∆O and hO − hO are the energy and momentum
of the state.

Interestingly, the commutator [L0, Ln] = −nLn implies that if |O⟩ has conformal
dimensions (hO, hO) then Ln|O⟩ has conformal dimensions (hO −n, hO). For this reason,
Ln, n ≥ 1 are called lowering operators, and Ln, n ≤ −1 are called raising operators.
The same applies to Ln.
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Primary operators. The Hilbert space of a given theory organizes into conformal
families, namely representations of Vir ×Vir. In a unitary CFT, states have a non-negative
energy so each conformal family has a state |V ⟩ of minimal dimension. Such a state is
annihilated by all lowering operators Ln, Ln, n ≥ 1 and is called a primary state (the
corresponding operator V is called a primary operator):

Ln|V ⟩ = Ln|V ⟩ = 0, n ≥ 1. (6.3)

From this state of conformal dimensions (h, h) one can construct a tower of states of higher
dimensions by acting with L−n and L−n, n ≥ 1. Using the Virasoro commutator (6.1)
these raising operators can be ordered, and the set of descendants is spanned by the
following states

L−Y L−Y |V ⟩ := L−m1 . . . L−mk
L−n1 . . . L−nl

|V ⟩, (6.4)

where Y, Y are two Young diagrams, m1 ≥ m2 ≥ · · · ≥ mk ≥ 1 are the successive lengths
of rows of Y , and likewise n1 ≥ · · · ≥ 1 the rows of Y . The conformal dimensions of (6.4)
are

(
h+m1 + · · · +mk, h+ n1 + · · · + nl

)
. These states are called descendants of |V ⟩. In

fact, the whole representation of Vir ×Vir is spanned (as a vector space) by (6.4), and
generically these states are linearly independent.
Exercise 6.2. 1. For |V ⟩ a primary state, and for m,n ∈ Z, rewrite LmLn|V ⟩ as a linear
combination of terms (6.4) with properly sorted indices.

2. Check that for any Y, Y , acting with any Ln or Ln on L−Y L−Y |V ⟩ yields a linear
combination of such descendants.

Two and three-point functions. Conformal symmetry constrains correlators of local
operators. Denoting by zij = zi − zj , the two- and three-point functions of primary
operators Vi of conformal dimensions (hi, hi) take the form

⟨V1(z1, z1)V2(z2, z2)⟩ = g12 δh1=h2δh1=h2
z−2h1

12 z−2h1
12 ,

⟨V1(z1, z1)V2(z2, z2)V3(z3, z3)⟩ = C123 z
h1−h2−h3
23 zh2−h3−h1

31 zh3−h1−h2
12

× zh1−h2−h3
23 zh2−h3−h1

31 zh3−h1−h2
12 ,

(6.5)

where g12, C123 are constants depending on the primary operators involved. Descendant
operators can be written as Virasoro generators Ln, Ln acting on primary operators, and
these generators act on (6.5) as various differential operators.

If the CFT has a single primary operator of each conformal dimension (h, h), which is
the case for Liouville CFT, then g12 can be absorbed in a normalization of that operator.
Despite this possibility, the standard normalization of primary operators Vα has non-
trivial g12, and our AGT-friendly normalization V̂α given below also does. Once this
normalization is chosen, the theory is characterized by its spectrum of primary operators
(their conformal dimensions) and by three-point functions C123 as explained next.
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Correlators and conformal blocks. The n ≥ 4 point functions of primary operators
are then fixed by conformal invariance [253]. For concreteness, consider a 4-point function,
and insert a complete set of states, which we separate according to representations of
Vir ×Vir:

⟨V1V2V3V4⟩ =
∑

V,V ′ primaries
Y,Y ,Y ′,Y

′ Young diagrams

⟨V1V2L−Y L−Y |V ⟩ g−1(Y, Y , V ;Y ′, Y
′
, V ′) ⟨V ′|LY ′L

Y
′V3V4⟩,

(6.6)
where g−1(Y, Y , V ;Y ′, Y

′
, V ′) denotes components of the (matrix) inverse of the “ma-

trix” with components ⟨V ′|LY ′L
Y

′L−Y L−Y |V ⟩. Translating all Virasoro generators to
differential operators acting on the position dependence in (6.5) gives

⟨V1V2V3V4⟩ =
∑

V5,V6 primaries
C125g

−1
56 C634F(h1, . . . , h5; z1, . . . , z4)F(h1, . . . , h5; z1, . . . , z4).

(6.7)
Up to unimportant factors, the (locally) holomorphic factor F is called a conformal
block. It is entirely determined by dimensions h1, . . . , h4 of the external operators, and
the dimension h5 = h6 of the internal operator inserted as part of the complete set of
states.

We could have inserted a complete set of states with a different choice of which
pair of operators Vi lies on the two sides of the inserted states. More generally, the
possible ways to insert complete set of states to reduce a sphere n-point function (down
to the constants g, C, and conformal blocks) correspond to the ways of decomposing the
n-punctured sphere into three-punctured spheres: a complete set of states is inserted
along each closed loop cutting the sphere into pieces. In all cases, conformal blocks are
purely representation-theoretic objects; they depend on dimensions of the n external
operators and of n− 3 internal operators inserted along cuts.

Liouville theory. Liouville theory describes a single scalar field subject to the action

S[ϕ] = 1
4π

∫
d2z

√
g (∂νϕ∂νϕ+QRϕ+ 4πµ e2bϕ) (6.8)

where R is the Ricci scalar. Provided Q = b + 1/b this theory is conformal, with
holomorphic stress-tensor T = (∂ϕ)2 +Q∂2ϕ and central charges c = c = 1 + 6Q2 ≥ 25.

While it looks like the cosmological constant µ is a coupling constant, it turns out to
only appears in trivial ways in correlators: instead there is interesting dependence on
b > 0, with b → 0 being the semiclassical limit. The Liouville CFT admits a (non-manifest)
duality b → 1/b while keeping λ =

( πΓ(b2)
Γ(1−b2)µ

)1/b fixed.
One can check that Vα = :e2αφ: are conformal primary operators of left/right-moving

dimension h(α) = α(Q−α) = Q2/4+P 2, for α = (b+1/b)/2+iP , P ∈ R. The invariance
h(Q− α) = h(α) suggests the identification Vα = R(α)VQ−α. The reflection coefficient
can be determined (using conformal bootstrap) to be

R(α) = −λQ−2αΓ(b(2α−Q))Γ(1
b (2α−Q))

Γ(b(Q− 2α))Γ(1
b (Q− 2α))

. (6.9)

64



The two-point function is then

⟨Vα1Vα2⟩ = δα1+α2=Q +R(α1)δα1=α2 . (6.10)

The three-point function is known to be given by the Dorn–Otto–Zamolodchikov–
Zamolodchikov (DOZZ) formula [254, 255]

Cα1α2α3 = ⟨Vα1Vα2Vα3⟩

= (b2/b−2bλ)Q−α1−α2−α3Υ′
b(0)Υb(2α1)Υb(2α2)Υb(2α3)

Υb(α1 + α2 + α3 −Q)Υb(α1 + α2 − α3)Υb(α2 + α3 − α1)Υb(α3 + α1 − α2) .
(6.11)

Four-point functions for instance read

⟨Vα1(0)Vα2(q)Vα3(1)Vα4(∞)⟩ = 1
2

∫
Q/2+iR

dαsCα1α2αsC(Q−αs)α3α4

∣∣∣qhs−h1−h2(1 +O(q))
∣∣∣2

(6.12)
where the factor of 1/2 cancels the double-counting from the identification αs ∼ Q− αs,
and 1 + O(q) denotes an infinite series in positive integer power of q, the normalized
conformal block.
Exercise 6.3. 1. Check that the DOZZ formula (6.11) respects the expected b → 1/b
duality, and the symmetries αi → Q−αi for any of the i, up to the appropriate reflection
coefficient.

2. Using properties of Υb listed in Appendix A, show that at fixed generic α1, α2,
the α3 → 0 limit of Cα1α2α3 vanishes. Show that for α1 = α2 the limit is infinite, while
(α3/2)Cααα3 → gαα = R(α).

6.2 Finding the AGT dictionary

We expect a relation of the form

ZS4
b

(
T(su(2), C,m)

)
=
〈
V̂α1(z1) . . . V̂αn(zn)

〉
C

(6.13)

for any number n of puncture, where V̂αi(zi) are the reductions of codimension 2 operators
of the 6d theory down to points. In this section we use known S4

b partition function to
determine that the relevant 2d CFT is Liouville CFT described above, and that V̂α are
suitable rescalings of vertex operators Vα.

Three-point functions and normalization. A 2d CFT is characterized by its spec-
trum (left and right conformal dimensions of primary operators) and OPE structure
constants (equivalently, three-point functions of conformal primary operators). When
constructing class S theories from X (su(2)), the data associated to a puncture is a mass
parameter m ∈ iR/Z2. We thus want local operators V with a continuous parame-
ter. For consistency with earlier notation we denote this (dimensionless) parameter as
α = Q/2 + rm, where Q = b+ 1/b.

65



Determining the conformal dimension of V̂α will have to wait; let us begin with
three-point functions. We know that the theory associated to a three-punctured sphere is
a trifundamental half-hypermultiplet. Its partition function is a hypermultiplet one-loop
determinant (5.25), so that the three-point function is

Ĉα1α2α3 := ⟨V̂α1 V̂α2 V̂α3⟩ =
∏
±±

1
Υb

(
α1 ± (α2 −Q/2) ± (α3 −Q/2)

)
= 1

Υb(α2 + α3 − α1)Υb(α3 + α1 − α2)Υb(α1 + α2 − α3)Υb(α1 + α2 + α3 −Q) ,
(6.14)

in which we used the invariance Υb(x) = Υb(Q − x). This matches precisely the
denominator of the DOZZ formula (6.11), and the numerator can be absorbed (except for
an α-independent factor) by the normalization

V̂α = (b2/b−2bλ)α−Q/2

Υb(2α) Vα. (6.15)

With this normalization one can check that V̂α = V̂Q−α and that the two-point function
reads

ĝαα′ = ⟨V̂αV̂α′⟩ = δα+α′=Q + δα=α′

Υb(Q− 2α)Υb(2α−Q) . (6.16)

Four-point functions and dimensions. To determine the conformal dimension of
V̂α we consider a four-punctured sphere and cut it in a channel suitable for the q → 0
limit, where q is the cross-ratio of the four punctures. The gauge theory corresponding
to a four-punctured sphere is su(2) Nf = 4 SQCD, and its partition function, computed
using supersymmetric localization, takes the form (5.28)

ZS4
b

=
∫
iR/Z2

da |q|r2|a|2Zone-loop(a)Zinst(a, q)Zinst(a, q). (6.17)

In the q → 0 limit, Zinst → 1. This expression should be compared to the decomposition
of a four-point function in 2d CFT,

⟨V̂α1(0)V̂α2(q)V̂α3(1)V̂α4(∞)⟩

=
∫
Q/2+iR/Z2

dα qh(α)qh(α) Ĉα1α2αĈαα3α4

ĝαα
F(αi, α; q)F(αi, α; q)

(6.18)

in which F are conformal blocks that depend (anti)-holomorphically on the cross-ratio q,
and tend to 1 as q → 0.

We have already identified the three-point functions C to hypermultiplet one-loop
determinants. In turn, the inverse two-point function ĝ−1

αα is equal to the vector multiplet
one-loop determinant. It is thus natural to expect the conformal blocks to match instanton
partition functions, and to identify the powers of q, namely h(α) = h(α) = Q2/4 + P 2

and r2|a|2, up to a harmless shift by Q2/4.

66



Conformal blocks and proofs of AGT. The key remaining piece to check the
AGT dictionary is to verify that conformal blocks do indeed match instanton partition
functions,50 as tested at low orders (in powers of q) in [5, 93, 257–263]. There have been
many approaches to this (see for instance [124, section 5.3] for a short review).

One set of approaches relies on exhibiting an action of the Virasoro algebra (and
many generalizations) on the instanton moduli space. See [264, 265] for an early example,
and generalizations in [14, 29, 82, 266–284]. In particular, one can construct [14, 29,
245, 285, 286] (see also [287–289]) an orthonormal basis of conformal descendants of |V̂α⟩
such that inserting these states in a four-point function as in (6.6) yields term by term
the expression of Nekrasov instanton partition functions as sums over U(1)-invariant
point-like instanton configurations. The Virasoro algebra and W-algebras also appear in
a 6d context in [290–293]. See also our discussion of more elaborate symmetry algebras
on page 101 in section 10.

Recursion relations are studied in [227, 271, 294–296]. One difficulty is for instance
the presence of spurious poles in terms of the instanton expansion, which disappear
when summing all contributions [297]. The large c limit is investigated in [298, 299].
A free-field approach based on Dotsenko–Fateev representations of CFT correlators is
given in [289, 300–306]. A string-theory derivation of the AGT dictionary (from a 5d
generalization) is given in [67, 307] and reviewed in [308]. A rather different approach
is based on characterizing both conformal blocks and instanton partition functions as
solutions to Riemann–Hilbert problems [309].

6.3 Liouville from 6d

We have argued that the relevant 2d theory for the AGT correspondence is Liouville CFT,
and numerous checks of the AGT correspondence validate this. Could we see it directly
from 6d?

The approach. Deformations of the metric of C that preserve its conformal class (or
equivalently complex structure) are Q-exact with respect to the supercharge Q that we
used for supersymmetric localization [18]. Thus, such deformations do not affect the
partition function of the 6d theory, which can be computed in the limits where C is
infinitely smaller or larger than S4

b . Importantly, this argument holds also in the presence
of any Q-closed observables such as the loops, surfaces, or walls that we consider in
section 8. Remembering that the 6d theory is conformally invariant, these limits are
equivalent to dimensionally reducing on either one of the factors. We should thus expect
to obtain Liouville CFT (or its higher-rank generalization, Toda CFT discussed further
in subsection 7.1) by dimensionally reducing the 6d theory X (su(2)) (or X (su(N)))
along S4

b .
In [18, 310], Córdova and Jafferis have performed this reduction in three steps:

50Interestingly, the case of N = 4 SYM caused some early confusion in the literature, clarified in [256]:
this theory has Zinst = 1, and it corresponds to a torus with a non-trivial vertex operator insertion
α = Q/2.
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X (g) reduced on S1 yields 5d N = 2 SYM; X (g) reduced on S3
b (or quotients thereof51)

yields 3d complex Chern–Simons theory; X (g) reduced on S4
b yields 2d complex Toda

CFT. They conjectured that this complexified version of Toda CFT is dual to ordinary
Toda CFT. The derivation was extended in [313] to include orbifold surface operators
(see also [314] for another approach).

Reduction to complex Chern–Simons theory. The reduction to 3d is relevant for
the 3d/3d analogue of the AGT correspondence that we will describe in subsection 9.3. We
place the 6d theory on S3

b ×C3, where the squashed sphere is described for instance by its
isometric embedding into R4 as S3

b = {b2(y2
1 + y2

2) + b−2(y2
3 + y2

4) = r2} ⊂ R4. Preserving
supersymmetry requires a partial topological twist, which amounts to including suitable
background values for supergravity fields, determined in [315]. The approach in [310]
was to work with a different squashing of the sphere S3 that preserves U(1) × SU(2)
isometries instead of U(1) × U(1). We will gloss over this, as the backgrounds differ by
suitably Q-exact terms that do not affect partition functions eventually.

The Hopf fibration of S3, namely an S1 fibration over S2, is compatible with the
squashing. Thus, X (g) can be reduced first on the S1 fibers, obtaining 5d N = 2 SYM
theory. Thankfully, the non-abelian 5d theory has a Lagrangian description, hence can
be further dimensionally reduced explicitly, in contrast to X (g), which has no known
Lagrangian description.

A further reduction on the S2 base of the Hopf fibration gives the following light
fields, all valued in the adjoint representation of g.

• One 3d gauge field A arising from components of the 5d gauge field along C3. It has
a 3d Chern–Simons term at level k = 1, which arises because the 5d graviphoton
has one unit of flux through S2 in the supergravity background. This in turn stems
from the Hopf fibration; when reducing on S2 × S1 instead, k = 0.

• Zero modes of the five vector multiplet scalars of 5d N = 2 SYM. Because the twist
identifies an so(3) ⊂ so(5) subgroup of R-symmetry with 3d rotations, these zero
modes combine into a one-form X and a pair of scalars Yi.

• Four fermions λ with a two-derivative Lagrangian −λ(∇A)2λ+ [X,λ]2. In terms of
∆ = (∇A)2 + (adX)2, the quadratic path integral over λ yields a factor of (det ∆)2,
while the pair of scalars Yi yields 1/ det ∆ since their Lagrangian is −Y∆Y .

Altogether, Y and λ give a factor of det ∆, which matches the Faddeev–Popov determinant
for gauge fixing (∇A)µXµ = 0 the “imaginary” gauge transformation (Aµ, Xµ) 7→
(Aµ − [Xµ, g], Xµ + ∇A

µ g) for a local gauge parameter g.
The final 3d theory has a pair of one-forms, hence a complex one-form A = A+iX ∈ gC

with action

S = q

8π

∫
C3

Tr
(

A ∧ dA + 2
3A ∧ A ∧ A

)
+ q̃

8π

∫
C3

Tr
(

A ∧ dA + 2
3A ∧ A ∧ A

)
(6.19)

51The reduction of X (g) on S1 × S2 also yields complex Chern–Simons, at a different level [311, 312].
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subject to GC gauge invariance stemming from the standard and the imaginary gauge
invariances. The action for X arises from numerous supergravity fields necessary to
ensure supersymmetry. The coupling constants q = k + is and q̃ = k − is encode the
geometry as

k = 1, s = 1 − b2

1 + b2 . (6.20)

More generally the theory makes sense for k ∈ Z and s ∈ R ∪ iR. The SU(2) × U(1)
preserving squashing of S3 used in [310] has a parameter ℓ ∈ (0,+∞) and s =

√
1 − ℓ2

can also take imaginary values. Other values of k arise from changing S3
b to S2 × S1 for

k = 0, or to the (squashed) Lens space L(k, 1)b = S3
b /Zk. The 3d/3d correspondence is

discussed in subsection 9.3.

Reduction to complex Toda theory. The idea in [18] is to treat S4
b as a squashed

three-sphere S3
b fibered over an interval. In the notation of (5.8) the interval is

parametrized by y5 ∈ [−r, r] and the S3
b has squared radius r2 − y2

5, namely it de-
generates to a point at both ends. The product metric g on S4

b ×C is mapped by a Weyl
transformation to S3

b × C3, where C3 is a warped product of C with an interval:

g = dy2
5 + (r2 − y2

5) gS3
b

+ gC ,
1

r2 − y2
5
g = gS3

b
+ dy2

5 + gC
r2 − y2

5
. (6.21)

The resulting metric is singular at y5 = ±r, which leads to boundary conditions for the
theory on C3 = [−r, r] ×w C. The edge modes coming from each extremity are then
understood to be described by chiral complex Toda theory. Combining these two chiral
theories gives complex Toda CFT on C. This theory describes a complex boson Φ in the
complexification of the Cartan subalgebra h ⊂ g, with an exponential potential,

SgC Toda = q

8π

∫
C

(
⟨∂Φ, ∂̄Φ⟩+

r∑
j=1

e⟨ej ,Φ⟩
)

d2z+ q̃

8π

∫
C

(
⟨∂Φ, ∂̄Φ⟩+

r∑
j=1

e⟨ej ,Φ⟩
)

d2z, (6.22)

where ej are the simple roots of g, r = rank g, and the Killing form and the pairing of h∗

and h are both denoted ⟨ , ⟩. The coupling constants q = k + is, q̃ = k − is encode the
geometry as in (6.20).

Relation to ordinary Toda theory. The conjecture is then that complex Toda CFT
is related to an earlier proposal of [22] (based on [20] in the k = 2 case) for the AGT
correspondence on S4

b /Zk. For g = su(N), the 2d CFT proposed in [22] consists of two
decoupled theories: an ŝu(k)N/u(1)k−1 coset, and real parafermionic Toda CFT with
parameters N , k, and b =

√
q̃/q (coinciding with the squashing parameter). The latter

theory describes parafermions and real bosons ψ,φ ∈ h, where the parafermions are
described by another coset model ŝu(N)k/û(1)N−1 and are coupled through dimension
1 − 1/k operators ψjψ̄j to the real bosons,

Spara-Toda = S

(
ŝu(N)k
û(1)N−1

)
+
∫
C

(
⟨∂φ, ∂̄φ⟩ +

N−1∑
j=1

ψjψ̄je
(b/

√
k)⟨ej ,φ⟩

)
d2z. (6.23)
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For k = 1 both the decoupled coset and the parafermions trivialize and we are left with
ordinary Toda CFT with coupling b, as stated by the standard AGT correspondence.

The conjectured duality between complex Toda CFT and coset plus para-Toda CFT
has only been checked explicitly for the simplest case of g = su(2) with k = 1 in [316],
and in [29, 317] for the case N = k = 2 where it essentially boils down to bosonization.
See page 83 for a further discussion of the orbifold case.

Part III

Extensions of AGT

7 General class S theories
In this section we enter the realm of non-Lagrangian theories: while all class S theories
arising from X (su(2)) with tame punctures can be realized by coupling vector and
hypermultiplets, we now extend the story in two ways.

The 6d (2, 0) theory X (g) is labeled by an arbitrary simply-laced simple Lie algebra g,
so it is no wonder that the AGT correspondence [5] extends beyond su(2) to su(N) [93] and
general gauge algebras [96, 98, 99, 318], with Liouville CFT generalizing to the Toda CFT.
After reviewing this CFT in subsection 7.1 with an eye towards its connections to gauge
theory, we describe an example of AGT correspondence and important considerations

• Most higher-rank class S theories are non-Lagrangian.
• Partial Higgsing gives a hierarchy of tame punctures.
Some are described by quiver tails of SU groups.
• Collisions of tame punctures give wild punctures. This
often results in AD theories.
• Tame punctures map to Toda semi-degenerate primaries.
• Wild punctures map to Toda CFT irregular operators.

about punctures in subsection 7.2.
Second, in subsection 7.3, we con-

sider interesting limits where two
punctures collide while the parame-
ters describing the defects are appro-
priately scaled. The resulting wild
punctures allow to realize asymptot-
ically-free gauge theories (such as
SU(2) SQCD with Nf < 4), and AD
theories [2] as part of class S.

7.1 Toda CFT

Lagrangian and symmetries. We cannot do justice to the fifty year history of Toda
theory, starting from the Toda lattice [319, 320] in 1967, which consists of particles with
nearest-neighbor exponential interactions (see [321] for an early review). Its QFT version
was defined in 1982 in [322] and found to be conformal. Given a simply-laced52 Lie
algebra g and its Cartan Lie algebra h, Toda CFT describes a real scalar field ϕ ∈ h

52Toda CFT is defined for an arbitrary simple Lie algebra, but we only present the simply-laced case
because only that case is relevant for the AGT correspondence. Correlators in non-simply-laced Toda
CFT presumably correspond to correlators of suitable outer automorphism twist operators in the gauge
theory on S4

b .
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subject to the Lagrangian density

L = 1
8π
(
ĝab⟨∂aϕ, ∂bϕ⟩ + 2⟨Q,φ⟩R̂

)
+ µ

rank g∑
i=1

eb⟨ei,ϕ⟩. (7.1)

Here, ei are the simple roots of g and ⟨ , ⟩ denotes both the pairing of h∗ and h and the
Killing form. The background charge vector Q that multiplies the scalar curvature R̂ of
the background metric ĝ is set to Q = (b+ 1

b )ρ where ρ is the Weyl vector, namely the
half-sum of positive roots, equivalently the sum of all fundamental weights ϖj . Vertex
operators Vα = e⟨α,ϕ⟩ (we suppress normal ordering in this notation) are labeled by
α ∈ h∗

C and have holomorphic conformal dimension53

h(α) = 1
2⟨α, 2Q− α⟩. (7.2)

In particular h(bei) = 1, which ensures that the exponential potential terms are exactly
marginal. Their coupling µ is redundant and amounts to shifting ϕ by a multiple of ρ.
The coupling b > 0 however plays an essential role: for instance the central charge
c = rank g + 12⟨Q,Q⟩ depends on it. For simply-laced g the theory is (expected to
be) dual under b 7→ 1/b, while keeping λ = [πΓ(b2)µ/Γ(1 − b2)]1/b fixed. This is quite
satisfactory for the AGT correspondence since S4

b and S4
1/b are isometric.

Beyond the infinite-dimensional Virasoro symmetries of 2d CFT, Toda CFT has
(anti)-holomorphic Wg symmetries. This chiral algebra was uncovered in [323] for g = su(3),
and more broadly in [324–326] as a symmetry of minimal models. See [327] for an early
review.54 It can be realized by quantum Drinfeld–Sokolov reduction of an affine Lie
algebra [131, 132, 329, 330]. (See [331, 332] for applications to W-strings.) In the
g = su(N) case it can be realized as a truncation of a more general chiral algebra W∞
generated by infinitely many conserved currents, as reviewed in [134]. As a chiral algebra,
Wg is generated by rank g conserved currents W (k)(z) whose spins k are the degrees
of Casimir invariants of g. The quadratic Casimir invariant yields the holomorphic
stress-tensor T (z) = W (2)(z) which generates the Virasoro subalgebra of Wg.

Primary operators and normalization. The vertex operators Vα = e⟨α,ϕ⟩ have
definite quantum numbers w(k)(α) under zero-modes of all W (k), namely the OPE starts
as

W (k)(z)Vα(0) = w(k)(α)
zk

Vα(0) + · · · (7.3)

with for instance w(2)(α) = h(α) given in (7.2). The conserved current W (k)(z) translates
on the gauge theory side to the degree k differential ϕk that shows up in the construc-
tion (1.4) of the SW curve. The momenta Imα are r times the (diagonalized) mass
parameter m ∈ g at a given tame puncture. In the classical limit r → ∞ the quantum

53The standard conventions for Q in Liouville and Toda CFT differ by a factor of 2, so that typical
Liouville momenta take the form α = Q/2 + iP while typical Toda momenta are α = Q + iP .

54The contemporary [328] by the same authors is supposedly relevant, but not available to me.
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numbers w(k)(α) simplify to Casimir invariants of g and the OPE (7.3) becomes the
singularities of ϕk near tame punctures [19].

The quantum numbers w(k)(α) are invariant under the Weyl group action α 7→
Q+w(α−Q) for any Weyl group element w : h∗ → h∗. Thus, Vα and VQ+w(α−Q) have the
same quantum numbers; in Toda CFT they are the same operator up to a normalization
called reflection amplitude and determined in [333–335]. For generic α, the expressions
can be recast as the statement that [93]55

V̂α = λ⟨ρ,α−Q⟩∏
e>0 Υb(⟨Q− α, e⟩)Vα(z) (7.4)

is invariant under Weyl reflections of α, where the product ranges over all positive roots e
and we recall λ = [πΓ(b2)µ/Γ(1 − b2)]1/b. While often convenient, the normalization (7.4)
does not make sense for values of α where the denominator blows up.

The operator spectrum of Toda CFT consists of vertex operators VQ+a with a ∈ h
(purely imaginary in our conventions), modulo the Weyl group. Each of them is the
highest-weight of a Verma module of the Wg algebra, with no null states. As for the
Virasoro algebra, there are some values of momenta (away from this line) for which
the vertex operators have null descendants. The precise condition56 is that Vα has null
descendants if ⟨α−Q, e⟩ = −n1b− n2/b for any root e and positive integers n1, n2 > 0.

Correlators in Toda CFT. The Wg symmetry severely constrains two and three-
point functions in Toda CFT. A two-point function of primary operators Vα1 and Vα2

can only be non-vanishing if their quantum numbers obey w(k)(α1) = (−1)kw(k)(α2),
hence α1 = 2Q − α2 modulo the Weyl group. Taking into account our preferred
normalization (7.4) one has

⟨V̂α(z, z̄)V̂α′(0)⟩ = |z|−4h(α)
∑
w∈Weyl δQ−α′=w(α−Q)∏
roots e Υb(⟨Q− α, e⟩) , (7.5)

where the sum of delta functions simply ensures Weyl invariance and working with
the unnormalized Vα (which is necessary to treat partially degenerate momenta) would
simply introduce some reflection amplitudes in this sum. The Shapovalov matrix of
two-point functions of Wg-descendants follows in the standard way by commuting the
W-algebra modes W (k)

n . Our normalization choice is pleasant because, as in the su(2)
case, the inverse two-point function ∏e Υb(⟨Q− α, e⟩) matches the one-loop determinant
of a vector multiplet for the gauge algebra g.

The three-point functions of primaries are encoded in coefficients Ĉ123 = Ĉ(α1, α2, α3)

⟨V̂α1(z1, z̄1)V̂α2(z2, z̄2)V̂α3(z3, z̄3)⟩ = Ĉ(α1, α2, α3)
|z1 − z2|2h12 |z1 − z3|2h13 |z2 − z3|2h23

, (7.6)

55The reflection amplitude in [333–335] and in later work [136] (by one of the same authors) seems to
differ by a sign. I take the latter sign to be correct as it seems to agree with Liouville CFT.

56This is obtained using screening charges, see e.g. [336]. Reading modern references, I think that
the null descendants start at level n1n2, but I have not found the suitable references in old Toda CFT
literature. Help welcome.
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where hij = h(αi) + h(αj) − h(αk). The general three-point function is not known, and
in addition three-point functions of most Wg-descendants cannot be expressed in terms
of Ĉ123, unlike the standard case of Virasoro descendants. Only certain special cases [136,
337, 338] discussed below have been determined.

Under-determined conformal blocks. This has a knock-on effect on higher-point
Toda CFT correlators, as the conformal blocks describing how Wg descendants contribute
are not fixed by symmetry. Consider for instance

⟨V̂α1 V̂α2 V̂α3 V̂α4⟩ =
∫
a∈h/Weyl

da
∑
Y

⟨V̂α1 V̂α2 V̂
[Y ]
Q−a⟩

1
⟨V̂Q−aV̂Q+a⟩

⟨V̂ [Y ]
Q+aV̂α3 V̂α4⟩, (7.7)

where we suppressed the spatial dependence, the integral ranges over primary opera-
tors V̂α in the spectrum, and the sum ranges over their descendants, orthogonalized and
normalized to have the same norm ⟨V̂Q−aV̂Q+a⟩ as primaries. For generic αi, the only
three-point functions ⟨V̂α1 V̂α2 V̂

[Y ]
Q−a⟩ that are determined by primary three-point functions

are those where V̂ [Y ]
Q−a is in fact a Virasoro descendant of V̂Q−a.

The class S theory coming from a three-punctured sphere with full tame punctures is
the non-Lagrangian tinkertoy Tg, and supersymmetric localization has nothing to say
on its sphere partition function. A very powerful roundabout way is to consider the
5d lift and work out the limit of S4

b × S1 partition function when the circle radius β
shrinks [339–342]. In principle this provides conjectural expressions for Ĉ123 and all
descendant three-point functions [343], but it is not clear that the β → 0 limits exist,
and it is not clear how to relate parameters of the topological vertex formalism to bases
of descendants, as explained in detail in [229]. Higher-point correlators correspond to
theories obtained by gauging together copies of Tg. Since the gauge group is simply one
factor G per tube, the instanton moduli space is known, and the instanton partition
function is some integral over this space. The integrand, however, depends on the matter
theories Tg, whose reaction to instantons is not known. This is exactly analogous to how
the sum over descendants is known but the requisite three-point functions do not derive
from Ĉ123.

7.2 Higher rank AGT correspondence

The main building block of class S theories is the tinkertoy Tg for three full tame punctures,
reviewed in [117]. This tinkertoy is non-Lagrangian57 for g ̸= su(2). As a result, another
type of tame punctures (called simple punctures) is needed for the simplest examples
of higher-rank AGT correspondence, such as the matching of an SU(N) SQCD partition
function with an su(N) Toda CFT four-point function.

Besides full and simple tame punctures, there are other tame punctures (and of course
a host of wild punctures) studied in [1, 6, 261, 318, 336, 345, 346] A large program to

57Interestingly, its 3d N = 4 dimensional reduction is mirror to a Lagrangian theory described by a
star-shaped quiver [344].
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classify tinkertoys has been carried out by Chacaltana and Distler and collaborators
in [95, 97, 100–106, 108] (a warning though, their use of “irregular” is non-standard in
this context). The punctures that can arise in a limit where one of the tubes in the
Riemann surface becomes pinched were studied in [8, 347].

The various tame punctures correspond to Toda CFT vertex operators Vα that are
partially degenerate, as we explain for g = su(N). We also describe how punctures can be
“partially closed” by tuning their parameters, which on the gauge theory side corresponds
to a partial Higgsing. Finally, we outline how to include non-simply-laced gauge groups.

Wyllard relation: SU(N) linear quiver and a su(N) Toda CFT correlator. For
simplicity we now focus on the g = su(N) case, which is understood best. The chiral
algebra is denoted variously Wsu(N) = WAN−1 = WN .

In subsection 4.4 we considered a linear quiver gauge theory whose hypermultiplets
transform in bifundamental representations of n− 1 successive SU(N) groups, of which
the middle n−3 are gauged. Besides the two SU(N) flavour symmetries at the ends of the
quiver, each of the n−2 hypermultiplets has a U(1) flavour symmetry. As stated in (4.26),
this theory is realized by reducing X (su(N)) on a sphere with n punctures corresponding
to these n flavour symmetry factors. The SU(N) flavour symmetries correspond to full
tame punctures, at which each differential ϕk has a pole of order k − 1 in the massless
case, or k when SU(N) masses are turned on. The U(1) flavour symmetries correspond to
simple tame punctures where each ϕk has a simple pole in the massless case (the massive
case is more complicated).

The AGT correspondence proposed in [93] takes the form

ZS4
b


SU(N)

U(1)

SU(N)

U(1)

· · ·

U(1)

SU(N)

U(1)

SU(N)

 =
〈
V̂α1 V̂µ2 V̂µ3 · · · V̂µn−1 V̂αn

〉Toda(su(N))
(7.8)

where αj (j = 1, n) encode the imaginary SU(N) mass parameters of the two full
punctures, mj = (mj1, . . . ,mjN ) with ∑pmjp = 0, while µj (j = 2, . . . , n− 1) encodes
the j-th U(1) mass parameter mj ∈ iR as

αj = Q+ rmj , j = 1, n,

µj =
(
N

2
(
b+ 1

b

)
+ rmj

)
ϖ1, j = 2, · · ·n− 1.

(7.9)

For instance in the case n = 4 this identifies a Toda CFT four-point function to the
partition function of SU(N) SQCD with Nf = 2N flavours.

To understand these momenta, we discuss the corresponding vertex operators Vα and
their WN descendants. We have already encountered momenta in Q+ h which describe
normalizable states that occur in the spectrum of Toda CFT. Momenta proportional
to the first weight ϖ1 are called semi-degenerate momenta: as uncovered starting in
[348, 349] they have null WN descendants at level 1. Consider a three-point function
⟨VαVκϖ1Vα′⟩ with a semi-degenerate vertex operator. Thanks to null vectors, the action
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of arbitrary WN generators can be converted to Virasoro generators, hence to differential
operators acting on the known coordinate-dependence. This means that three-point
functions of descendants of Vα, Vκϖ1 , and Vα′ are uniquely fixed as a multiple of the
three-point function of primaries.

Checking the Wyllard relation. As in the su(2) case, the matching (7.8) is most
directly checked in the S-duality frame corresponding to the s-channel decomposition
of the sphere correlator. Each three-punctured sphere piece has one simple puncture
and two full punctures (and corresponds on the gauge theory side to a bifundamental
hypermultiplet). Expanding the correlator in this channel, rewriting descendant three-
point functions in terms of the primaries, and collecting the descendant’s contributions
into a conformal block, we have

⟨V̂α1 V̂µ2 · · · V̂µn−1 V̂αn⟩

=
∫
aj∈h/Weyl
2≤j≤n−2

da
⟨V̂α1 V̂µ2 V̂Q+a2⟩⟨V̂Q−a2 V̂µ3 V̂Q+a3⟩ · · · ⟨V̂Q−an−2 V̂µn−1 V̂αn⟩

⟨V̂Q+a2 V̂Q−a2⟩ · · · ⟨V̂Q+an−2 V̂Q−an−2⟩
F(z)F(z),

(7.10)
for some conformal blocks F(z) that are (in principle) calculable as series in powers of
complex structure parameters of C, and that depend on all external and internal momenta.
The very fact that conformal blocks are calculable (for these momenta) matches nicely
with the fact that the 4d theory is Lagrangian hence its partition function is calculable
by supersymmetric localization.

One key part of the matching is that the n− 2 three-point functions in (7.10) should
match with the one-loop determinants of the n− 2 bifundamental hypermultiplets in the
quiver. Thankfully, the three-point functions ⟨Vα1Vκϖ1Vα⟩ of two non-degenerate and
one semi-degenerate vertex operators were worked out in [136, 337, 338] by inserting
a fully degenerate vertex operator V−bϖ1 into the correlator and solving a differential
equation that results.58 Consider the normalization (7.4) of non-degenerate operators
and an ad-hoc normalization

V̂κϖ1 = λ⟨κϖ1,ρ⟩

(Υb(b))N−1Υb(κ)Vκϖ1 (7.11)

which is Weyl-invariant but is an abuse of notation since V̂ does not relate to V in the
same way as in (7.4). Then the three-point function is [136]

Ĉ(Q+ a1,κϖ1, Q+ a2) = 1∏N
i,j=1 Υb(κ/N − ⟨a1, hi⟩ − ⟨a2, hj⟩)

(7.12)

where hi are the weights of the fundamental representation of su(N). The product of Up-
silon functions correctly coincides with the one-loop determinants of N2 hypermultiplets

58This bootstrap technique was introduced by Teschner to solve Liouville CFT. See also [68, 350–352]
for further explorations in the Toda CFT context with more general fully degenerate vertex operators.
See [353, 354] for other related correlators.
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on S4
b with suitable masses. The inverse two-point functions match with vector multiplet

one-loop determinants, see below (7.5). The classical action also reproduces correctly
the leading z-dependence of the Toda CFT correlator. Finally, one can tediously match
conformal blocks with instanton partition functions order by order, to confirm (7.8).

The Toda correlator in (7.8) can be decomposed in principle in many other channels.
For instance taking the OPE of the semi-degenerate vertex operators V̂µ1 and V̂µ2 in the
four-point function (n = 4) yields a t-channel decomposition. In the N = 3 case, the
internal momenta produced by this fusion are non-degenerate, so that the decomposition
involves general three-point functions. The corresponding S-duality frame of SU(3) SQCD
consists of the Tsu(3) tinkertoy (the e6 Minahan–Nemeschansky SCFT) coupled to some
hypermultiplets by a gauge group that turns out to be SU(2). For general N , such
fusions lead to numerous types of punctures intermediate between the full and the simple
puncture.

Partial Higgsing. Consider the linear quiver in (7.8). Its Higgs branch consists of
supersymmetric vacua where hypermultiplet scalars get a VEV. Upon moving to any
given point on the Higgs branch, the hypermultiplet VEV may break gauge symmetry to
a smaller group, thus reducing the quiver to a smaller one.

We denote scalars in the bifundamental hypermultiplets as (Qj , Q̃j) for j = 2, . . . , n−1.
An important class of vacua are obtained by imposing a nilpotent VEV to the moment
map (see e.g. the appendix of [355])

µ1 = Q̃2Q2 − 1
N

Tr(Q̃2Q2) (7.13)

of the leftmost SU(N) flavour symmetry group. Nilpotent matrices in su(N)C = sl(N,C)
are classified up to conjugation by a partition of N , or equivalently a Young diagram Y
with N boxes. Denoting by nk the number of columns of length k in Y , the nilpotent
VEV we consider takes the block-diagonal form

⟨µ1⟩ = J⊕n1
1 ⊕ J⊕n2

2 ⊕ · · · ⊕ J⊕nℓ
ℓ (7.14)

with nk Jordan blocks Jk of size k × k (for instance J1 = (0)). The VEV ⟨µ1⟩ cannot
be imposed in isolation, as the F -term relations lead to non-vanishing values for the
hypermultiplets (Qj , Q̃j) for j = 2, · · · , ℓ.

The Higgs mechanism thus breaks multiple gauge symmetries. Specifically, it reduces
the first few groups of the quiver to a quiver tail

· · · Nℓ Nℓ−1 · · · N1

nℓ nℓ−1 n1

(7.15)

where round nodes are SU(Nj) gauge groups, rectangles count fundamental hypermulti-
plets, and Nj is determined by N0 = 0 and Nj −Nj−1 = nj + nj+1 + · · · + nℓ (which is
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the length of the j-th row). In other words, Nj counts all boxes in rows 1, · · · , j and in
particular Nℓ = N . The flavour symmetry is

[ ℓ∏
k=1

U(nk)
]
/U(1)diag. (7.16)

The puncture has n1 + · · · + nℓ − 1 = N1 − 1 mass parameters. The nilpotent ma-
trix (7.14) can also be understood as the image of the raising operator under an embed-
ding ρ : SU(2) → SU(N). In that equivalent description, the flavour symmetry (7.16)
arises as the commutant of ρ.

Quiver tails and punctures. Starting from a quiver tail (7.15) and its SW solution
obtained from M-theory [178], Gaiotto understood in [1] the relevant patterns of pole
orders for the differentials ϕk. This helped determine that tame punctures are labeled
by partitions of N . Linear quivers with arbitrary quiver tails are realized in class S as
the reduction of X (su(N)) on a sphere with arbitrarily many simple tame punctures and
with two (general) tame punctures.

In fact, the partial Higgsing procedure we described replaces the full tame puncture
(that we started with) by precisely the tame puncture labeled by Y . Just as full tame
punctures carry SU(N) flavour symmetry, the puncture carries flavour symmetry (7.16).
The dictionary between quiver tails, punctures, and the order of poles, is nicely written
in [6].

Punctures can be closed entirely. This is most easily seen for the simple punctures
in (7.8): on the gauge theory side, two neighboring SU(N) groups are reduced to their
diagonal subgroup, and we are left with a shorter linear quiver.

Partially degenerate vertex operators. Partial Higgsing translates on the Toda
CFT side to changing a non-degenerate vertex operator to a partially degenerate one.

According to footnote 56, level 1 null WN descendants of a vertex operator Vα
are characterized by roots e for which ⟨α − Q, e⟩ = −b − 1/b. Up to a Weyl group
transformation of α−Q, we choose these roots be simple roots ej only. The condition
then reduces to ⟨α, ej⟩ = 0, namely ⟨α, hj⟩ = ⟨α, hj+1⟩ in terms of the weights hi of the
defining representation of su(N). The components ⟨α, hi⟩ of α organize as

α =
(
α(1), · · · , α(1)︸ ︷︷ ︸

l1

, · · · , α(r), · · · , α(r)︸ ︷︷ ︸
lr

)
(7.17)

where lk, 1 ≤ k ≤ r denote the number of equal components, and we can reorder the
components such that l1 ≥ l2 ≥ · · · ≥ lr ≥ 0 defines lengths of columns of some Young
diagram Y . This is the same Young diagram classification as for the punctures. For
instance the momentum has r − 1 parameters (because of tracelessness), which is the
length of the first row of Y (minus one) thus matches the counting in (7.16).
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The precise proposal in [336] is that a tame puncture labeled by Y corresponds to a
vertex operator with momentum

α =
(
b+ 1

b

)
ρY +mY , (7.18)

with mY the mass parameters for the flavour symmetry (7.16) and ρY the projection of
the Weyl vector ρ onto the subspace with the multiplicities (7.17). For the full puncture
case Y = 1N we have ρY = ρ, while for the simple puncture Y = (N − 1) + 1 one finds
ρY = (N/2)ϖ1. In both cases the proposal reproduces (7.9).

Punctures: nilpotent orbits, Nahm, Hitchin, and Toda. For the A-type case
g = su(N) we have seen that tame punctures are labeled by partitions of N . A broader
perspective is that tame codimension 2 defects of X (su(N)) are labeled by such a partition.
The D-type case and USp–SO quiver tails are considered in [6].

For general 6d (2, 0) theories X (g), there are (at least) three sets of data that
equivalently characterize the defect.59

• Nahm data. A nilpotent orbit ON ⊂ gC that describes a Nahm pole boundary
condition for SYM with gauge group G. This arises by considering X (g) on R2,1 ×
cigar × S1 with the defect at the tip of the cigar. Reducing first on the circle
direction of the cigar gives 5d N = 2 SYM with gauge group G, with a Nahm pole
boundary condition.

• Hitchin data. A nilpotent orbit OH ⊂ gC with additional discrete data. Within
the same R2,1×cigar×S1 geometric setup, reducing first on S1 gives a codimension 2
defect in 5d, then reducing the cigar to a half-line gives the S-dual of the Nahm
pole boundary condition. This data was studied early on in [356].

• Toda data. A partially degenerate primary operator of g Toda CFT specified by
its null Wg descendants.

Nahm and Hitchin data were related in [100]. The relation to Toda data was understood
in [318] for the case where e is principal nilpotent inside some Levi subalgebra of g, see
also [357, 358].

The same classification holds for codimension 2 operators in the 6d (2, 0) little string
theory with Lie algebra g (which implies the classification for X (g)). The approach
in [342, 359, 360] is to realize little strings as IIB strings on a C2/Γ singularity, where
the defect consists of D5 branes wrapping certain non-compact two-cycles in C2/Γ.

Non-simply-laced gauge groups. Reducing X (g) on a circle yields 5d N = 2 SYM
with gauge algebra g, which is simply-laced. Non-simply-laced gauge groups are achieved
by twisting, namely changing the periodicity of fields,60 by an outer automorphism of g.

59Help welcome to complete the references.
60This notion of twist is unrelated to the partial topological twist used to preserve supersymmetry

when reducing X (g) on C.
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SU(2)

SU(2)
SU(2)
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SU(2)

Figure 4: Left: linear quiver with alternating USp(2N − 2) and Spin(2N) groups and
its so(2N) class S curve with branch cuts. Right: for N = 2, same theory as a SU(2)
generalized quiver, and its su(2) class S curve, which is a double-cover of the so(4) curve
on the left.

Likewise, class S includes 4d N = 2 theories with arbitrary gauge groups: these are
obtained by including (outer automorphism) twist lines that may end on punctures.
This direction was explored in [96, 98, 99, 318] (see also [361]). See Figure 4 for an
example with g = so(2N) and its reformulation as a su(2) class S theory for N = 2 since
so(4) = su(2)2.

7.3 Wild punctures and AD theories

Our investigations so far only involved so-called “tame” codimension 2 defects of the
6d (2, 0) theory. They admit a broad generalization to “wild” defects, introduced by
Witten [362] in the context of surface operators in 4d N = 4 SYM. These defects impose
a stronger blow-up near their support for the “fields” of the 6d theory.

Wild punctures from collisions. We recall the massive tame puncture (4.2)

φ(z) ∼
(diag(m,−m)

z − zi
+O(1)

)
dz =⇒ ϕ2(z) =

(
m2

(z − zi)2 +O

( 1
z − zi

))
dz2 (7.19)

and its massless version (4.4). Colliding l such simple poles of φ, while scaling ap-
propriately the mass parameters, leads to a pole of order l, hence generically to
ϕ2 ∼ dz2/(z − zi)2l. Just as their tame counterparts, the resulting wild punctures
of level l can be partially closed by imposing some relations between eigenvalues in the
series expansion of Φz, so that the pole of ϕ2 has an order lower than 2l.

The collision limits can have two main effects on the 4d gauge theory: decoupling
some hypermultiplets by making them massive while keeping the dynamical scale Λ fixed,
or tuning the theory to an AD point on the Coulomb branch [2, 363–365] at which point
the theory becomes a strongly-coupled isolated SCFT.

For the case g = su(2) that we consider for now, wild punctures are labeled by the
order of the pole of ϕ2 (which is 2 for a tame puncture), and of course by coefficients of
the expansion at these poles. By cutting the Riemann surface along circles as in the tame
case, su(2) class S theories can be constructed by gauging SU(2) flavour symmetries of
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T2tame

Xp1

su(2)
p1>2

su(2)
T2

tame

su(2)
Xp2 p2>2

Figure 5: Decomposition of a typical su(2) class S theory (associated to a sphere with
two tame and two wild punctures) into T2 and Xp building blocks coupled together by
gauging diagonal su(2) flavour symmetries.

the trifundamental half-hypermultiplet T2 (corresponding to a sphere with three tame
punctures) and of theories Xp corresponding to a sphere with a tame puncture and a
wild puncture at which ϕ2 has a pole of order p > 2. See Figure 5. Spheres with a single
wild puncture cannot be cut into these building blocks and lead to other interesting
theories Yp. This exhausts su(2) class S.

Examples of theories with wild punctures. Just for this explanation we denote by
(p1 p2 . . . pk) the class S theory obtained for a sphere with k punctures at which ϕ2 has
poles of order p1, . . . , pk, respectively. Let us exemplify both effects above starting from
SU(2) Nf = 4 SQCD, realized as (2 2 2 2) in this notation, namely by taking C to be a
sphere with four tame punctures. We first decouple hypermultiplets.

• SU(2) Nf = 3 SQCD arises from (2 2 4), a sphere with two tame punctures and one
wild puncture of order 4, obtained as a collision of two tame punctures.

• SU(2) Nf = 2 SQCD appears in two ways in class S. First, as (4 4) obtained from
(2 2 4) by colliding the two tame punctures. Alternatively, as (2 2 3): one can
decouple the hypermultiplet by tuning a mass parameter of the wild puncture in
the (2 2 4) description of the Nf = 3 theory, and this reduces the pole of ϕ2 at
the wild puncture from order 4 to order 3. A consistency check is that the two
constructions lead to equivalent SW geometry.

• SU(2) Nf = 1 SQCD then appears as (4 3).

• Pure SU(2) SYM appears as (3 3) with two minimally wild punctures.

There are further collision limits, which turn out to realize AD theories. By colliding
the two wild punctures in the (4 3) realization of SU(2) Nf = 1 SQCD we get a single wild
puncture of rather high order (7): this is the Y7 theory mentioned above. The AD point
(most singular point) of the Coulomb branch of SU(2) Nf = 2 is obtained by colliding
punctures (4 4) → (8) or (2 2 3) → (2 5), both punctured curves C turning out to give the
same 4d SCFT (namely Y8 ≃ X5). For SU(2) Nf = 3 we find the collision (2 2 4) → (2 6),
which is X6. Of course, these limits all translate to tuning parameters on the gauge
theory side and were thus found a long time ago [2, 363], but the class S realization
embeds them in a broader setting.
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Exercise 7.1. Recall the SW curve (4.13) of the su(2) class S theory for a four-punctured
sphere: x2 = u2(z) with

u2(z) =
q
zm

2
1 + q(q−1)

z−q m2
2 + z−q

z−1m
2
3 + zm2

4 − u

z(z − q)(z − 1) . (7.20)

This theory has a description as SU(2) SQCD with gauge coupling τ = (log q)/(2πi) and
Nf = 4 flavours of masses m1 ±m2 and m3 ±m4.

1. Decouple one hypermultiplet: take m1 +m2 → ∞, keeping m1 −m2 and m3 ±m4
and Λ = q(m1 + m2) fixed. You should get u2 = P (z)/(z4(z − 1)2) for some quartic
polynomial P .

2. Decouple a second hypermultiplet in two ways. First, take m1 −m2 → ∞, keeping
Λ′2 = Λ(m1 −m2) and other masses fixed. Second, instead, take m3 +m4 → ∞, keeping
z̃ = z(m3 +m4) and x̃ = x/(m3 +m4) and Λ′2 = Λ(m3 +m4) and other masses fixed.
Map one SW curve to the other and check the difference of SW differentials λ is inessential
(residues are masses, no Coulomb branch dependence).

3. Decouple a third and a fourth hypermultiplet and rescale z → zΛ2 to get the
well-known curve of pure SU(2) SYM: z2x2 = u+ Λ2(z + 1/z) with λ = xdz.

CFT side. On the 2d CFT side, the limits that produce wild punctures correspond to
colliding primary vertex operators V̂α. The collision of n ≥ 2 vertex operators yields
irregular operators denoted In−1, which depend on the original n momenta (suitably
rescaled). Their Ward identities with the stress tensor involve poles of the same order 2n
as the pole of ϕ2 on the gauge theory side that arises in the same collision. This matching
is consistent with the fact that ϕ2 can be understood as the semiclassical limit of T :

T (z)In−1(0) =
2n−2∑
k=n−1

Λk
zk+2 In−1(0) + · · · ≃

r→∞
r2ϕ2(z)In−1(0) + . . . . (7.21)

By the state-operator correspondence, these operators give coherent states of the Virasoro
algebra [94] (alternatively called Whittaker vectors or Gaiotto states) and generalizations
thereof called irregular states (sometimes Bonelli–Maruyoshi–Tanzini (BMT) states) [366,
367].

Wild punctures and AD theories. The decoupling of hypermultiplets starting from
SU(2) Nf = 4 SQCD or N = 2∗ SYM, and its effect in the AGT corespondence, were
studied in [94, 368–375]. Higher-level irregular states (BMT states) of the Virasoro
algebra were investigated in [366, 367, 376–380], and generalizations to W-algebras in [99,
378, 381–383]. On the CFT side, collisions of primary operators and direct definitions
of irregular states were made by Rim and collaborators [377, 379, 380, 384–391], and
others [68, 392–401].
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Further directions. Some AD theories were found at particular points on the Coulomb
branch of Lagrangian gauge theories, and as appearing in S-dual descriptions in [2, 169,
363–365, 402]. Class S constructions of a variety of AD theories and related topics are
in [6, 8, 403–410] and in Xie’s work with collaborators [411–423]. It is not expected
that class S theories exhaust all possible 4d N = 2 theories (see e.g. [424]). Besides a
classification of Lagrangian field theories [425, 426], and a program to classify theories
according to their Coulomb branch geometry [427–435], other constructions of 4d N = 2
theories have been explored [406, 414, 416, 417, 419, 436–447].

An interesting tool to check the AGT correspondence even in the absence of Lagrangian
descriptions of the class S theories is to compute central charges and anomalies. The
central charge of Toda CFT (and generalizations) was matched with a reduction to 2d of
the anomaly 8-form of the 6d (2, 0) theory X (g) in [19, 22, 448, 449]. Reducing instead
on C gives the a and c conformal anomalies of the 4d class S theories [100, 117, 120,
450–453].

8 Operators of various dimensions
Wilson [454] and ’t Hooft [455] loop operators, and dyonic loops combining them [456],
play an important role in studying phases of 4d gauge theories. Surface operators are
less studied yet very rich; for instance the moduli space of some surface operators is
the UV curve of the class S theory. Finally, domain walls describe interfaces between
two 4d theories, or boundary phenomena. A large source of such operators in the AGT
correspondence are the half-BPS codimension 2 and codimension 4 defects of the 6d (2, 0)
theory X (g). Another source is to orbifold the 6d setup, with an orbifold group that must

Main examples of gauge theory and CFT operators

• Codimension 2 case: coupling to a tinkertoy matches
with inserting a vertex operator; symmetry-breaking walls
match with Verlinde loops; Gukov–Witten surface operators
change the Toda CFT.
• Codimension 4 case: vortex string surface operators
match with degenerate vertex operators; Wilson–’t Hooft
loops match with degenerate Verlinde loops; orbifold singu-
larities at poles of S4

b change the Toda CFT.

respect orientation since X (g) is a
chiral theory. These defects can
be inserted into the AGT correspon-
dence with various orientations rela-
tive to the product spacetime M4×C.
We have already covered at length
the case where a codimension 2 de-
fect inserted at a point in C wraps
the whole 4d spacetime: indeed these
are simply the punctures and twist
operators described throughout this
review, especially in section 7.

We refer to Table 1 in the introduction for a full list of possibilities that have been
investigated, and references. Here, we organize our discussion by increasing dimension on
the 4d side, starting with a discussion of point-like operators in subsection 8.1, then line
and loop operators in subsection 8.2 (see the review [457]), 2d operators in subsection 8.3
(see the review [458]), and 3d walls and interfaces in subsection 8.4.
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8.1 Local operators in 4d

Codimension 4 operators of X (g) are labeled by representations of g and the effect of
wrapping such an operator over all of C has not been fully understood. In fact, for most
of the geometries we describe in the following, the main ideas have been understood in
certain theories such as for g = su(2), but not in full generality.

Coulomb branch operators. The order k holomorphic differentials ϕk(z) = uk(z)dzk
that define the SW curve can be calculated from the classical limit of Toda CFT correlators.
In this limit, where the radius of S4

b is large, or ϵ1, ϵ2 → 0, or equivalently 2d CFT
conformal dimensions are large, the quadratic differential u2 is given by the insertion of
the energy-momentum tensor, and more generally uk by the spin k current Wk:61

uk(z) ∝ ⟨Wk(z)V̂µ1 . . . V̂µn⟩
⟨V̂µ1 . . . V̂µn⟩

as ϵ1, ϵ2 → 0. (8.1)

For su(2) see the original AGT paper [5] or the more explicit [459] for instance.
Consider now a pants decomposition of C, and the corresponding description of

T(g, C,D) as a collection of tinkertoys and vector multiplets gauging some symmetries.
Let φ be the scalar in one of the vector multiplets (corresponding to a tube), and consider
gauge-invariants such as Trφl in the A-type case, and more generally all Casimirs of g.
Classically, they appear as coefficients of the differentials ϕk and can thus be retrieved as
certain weighted integrals of ϕk. Going back to general ϵ1, ϵ2, the operator Trφl on the
4d side corresponds to a suitable weighted integral of currents W̃l [19].62 For instance,
inserting Trφ2 takes a derivative of ZS4

b
with respect to gauge couplings [460–462], namely

to the shape of C, which indeed translates to an integrated insertion of the holomorphic
stress-tensor T = W̃2.

Correlation functions on S4
b with (products of) Trφj inserted at one pole and Tr φ̄k

at the other can be computed by supersymmetric localization, although the operators
complicate instanton counting. By a conformal transformation the round case b = 1 leads
to results on flat space correlators with exactly one antichiral operator [192, 463–467],
which provide detailed checks of various field theory ideas such as resurgence [192, 468],
large-charge expansions [469–476], and more [477]. These specific correlators have not
been pursued on the 2d CFT side of the correspondence.

Orbifold C2/ZM . Next we consider another operation whose effect is to make one
point singular inside R4, or both poles of S4

b : orbifolding by a group ZM acting as
(exp(2πi/M), exp(−2πi/M)) on C2. Supersymmetric localization still works: one must
simply restrict all modes to ZM -invariant ones, and instanton counting to ZM -invariant

61The numerical coefficient depends on conventions.
62The spin l current W̃l is polynomial in the Wk to account for the difference between Casimirs Tr φl

and coefficients in a characteristic polynomial det(x − φ).
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instanton counting. This appears to correspond to the coset CFT

ŝu(N)k × ŝu(N)M
ŝu(N)k+M

× ŝu(M)N
û(1)M−1 , k = −N − Mb2

1 + b2 , (8.2)

with a fractional level k, which for M = 1 reduces nontrivially to the usual Toda CFT.
The case N = M = 2, essentially super-Liouville CFT, is studied in [20, 23–25, 27, 29, 30,
32, 478, 479], see also [63] with a surface operator. Instanton counting on C2/Z2 and on its
blow up, where one has instantons at two fixed point of an U(1) isometry, are related [230,
233, 480, 481]. This leads to a decomposition of super-Liouville CFT into a Liouville and
time-like Liouville pieces [317, 482–484]. The general N,M extension is partially worked
out in [22, 26, 28, 31, 34] and the coset (8.2) studied further in [485–487]. Another
perspective is to realize R4/ZM by dimensional reduction of R4 × S1, which corresponds
to taking q to a root of unity [21, 33, 35–37] in the q-deformed AGT correspondence of
subsection 9.1.

8.2 Line operators

We now place a codimension 4 operator of the 6d theory along L × γ, where L is one
of the circles {y3 = y4 = 0, y5 = const} or {y1 = y2 = 0, y5 = const} in S4

b allowed by
supersymmetry, while γ is a closed loop in C with no self-intersection. Upon dimensional
reduction, the operator inserts loop operators in the AGT correspondence: a loop operator
labeled by γ and placed on L ⊂ S4

b in the partition function, and a loop operator
on γ in the Toda CFT correlator. This setup is studied for su(2) in [38–43], for more
general g in [45–52], for networks of such operators [44, 51–54], and for the algebra of line
operators [343, 488, 489], see also [490, 491]. Line and loop operators play an important
role in characterizing phases of 4d gauge theories [454–456], and refining the global
structure of the gauge group [492]; for class S see [38, 50–52, 493–500]. Exact expectation
values of loop operators in 4d N = 2 gauge theories are calculated using supersymmetric
localization in [10, 501, 502] and reviewed in [457], with important subtleties being
clarified later in [503–508]. Other considerations about line defect observables in 4d
theories include [509–515].

Wilson loop operators. Since γ ⊂ C has no self-intersection we can cut C along it
and get a (possibly disconnected) surface C ′ with two additional punctures (with some
data, say D1, D2). As discussed near (1.2), the corresponding class S theory T(g, C,D) is
obtained from the theory T

(
g, C ′, {D,D1, D2}

)
corresponding to C ′ by gauging a diagonal

subgroup of the flavour symmetries F1, F2 associated to D1, D2 as in (1.2). In this way
each non-self-intersecting loop γ is associated to a gauge group Gγ = (F1 × F2)diag in
some description of T(g, C,D).

In the limit of weak coupling for Gγ , the loop γ wraps a thin tube. The reduction
of X (g) on this tube gives 5d N = 2 SYM on an interval, and the codimension 4 defect
gives a line operator, specifically a Wilson loop, which depends additionally on a choice of
representation R of g. In fact this is the clearest way to see that codimension 4 operators
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of X (g) should depend on such a representation of g. Further reduction to 4d gives
a half-BPS Wilson loop measuring the holonomy of the corresponding gauge field Aγ
along L, plus some contribution from scalar superpartners to ensure supersymmetry:

Wγ,R = TrR
(
Pexp

∫
L

(
Aγ + scalarsγ

))
. (8.3)

The gauge group Gγ and the Wilson loop only depend on the homotopy class of γ.
On the 2d CFT side the corresponding object is a certain 1d topological defect

along γ called a degenerate Verlinde loop operator. Verlinde loops are constructed as
monodromies of a vertex operator Vω. The specific choice corresponding to Wγ,R is to
take a momentum ω = −b±1ΩR, where ± depends on the choice of circle L, while ΩR is
the highest weight63 of the representation R. For this choice of ω, the vertex operator Vω
is degenerate in the sense that it is annihilated by various combinations of W-algebra
generators. Incidentally, the most general degenerate momentum ω = −bΩ − b−1Ω′

corresponds to inserting Wilson loops along both allowed circles.
Concrete checks of the correspondence are straightforward. The Wilson loop is

compatible with supersymmetric localization [10] and inserts a simple a-dependent factor
in (1.7). The Verlinde loop Lγ acts diagonally on a complete set of states inserted along γ
hence appears in the correlator (1.9) simply as a function of the internal momentum α
(related to a). They match:

⟨Wγ,R⟩T(g,C,D)
S4

b
=
∫

da TrR(eaγ )Zcl(a, q, q)Zone-loop(a)Zinst(a, q)Zinst(a, q)

=
∫

dα f(α)C(α)F(α, q)F(α, q)

=
〈
V̂µ1 . . . V̂µnLγ

〉Toda(g)

C
.

(8.4)

Dyonic loop operators. Now consider a pants decomposition of C that does not
include γ among its cuts. The 2d CFT side is still given by a Verlinde loop along γ, but
its expression in the given basis of conformal blocks is no longer diagonal: it is〈

V̂µ1 . . . V̂µnLγ
〉Toda(g)

C
=
∫

dαC(α)F(α, q)
∑
h

Lγ(α, α+ h)F(α+ h, q) (8.5)

where h ranges over a finite collection64 of momenta related to the weights of R.
The corresponding loop operator in 4d is described in this S-duality frame as a ’t Hooft

or dyonic loop instead of a Wilson loop. Rather than being defined by an insertion in
the path integral like the Wilson loop (8.3), a ’t Hooft loop on L is defined by imposing
a singular boundary condition on the gauge field that prescribes a non-zero monopole
charge 1

2π
∫
F on a two-sphere S2 surrounding L. Dyonic loops involve additionally a

Wilson loop insertion along the same circle L. The path integral ranges over such singular
63Weights are in h∗, which we identify with the Cartan subalgebra h ⊂ g using the Killing form.
64The fusion of a degenerate operator Vω with another vertex operator has a finite number of terms.
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field configurations instead of the usual smooth ones, and supersymmetric localization
still applies [501] and reproduces (8.5), provided one correctly accounts for monopole
bubbling [503–508].

Interestingly, Verlinde loops must be generalized to Verlinde networks (involving
fusion of degenerate vertex operators) to reproduce half-BPS dyonic loops with the most
general electric and magnetic charges [46, 51, 52, 516].

Algebra of line operators. In light of (8.5), dyonic loops or Verlinde networks can
be understood as difference operators acting on functions of internal momenta α, or
equivalently acting on functions on the Coulomb branch B. Inserting dyonic loops at
different latitudes y5 yields a product of difference operators, which is non-commutative
because the loops cannot be reordered while preserving supersymmetry. The OPE of loop
operators provides skein relations that express these products as linear combinations
of dyonic loops and defines an algebra Aϵ1,ϵ2 of loop operators (we recall ϵ1 = b/r and
ϵ2 = 1/(rb)). Teschner [309, 517] emphasized early on the importance of this algebra in
the AGT correspondence; see the reviews [489, 518]. The earlier work [519] concentrated
on 4d N = 4 SYM.

Each pants decomposition of C gives a representation of Aϵ1,ϵ2 as difference operators,
in which certain loops are diagonalized (8.4) while others remain nondiagonal (8.5). The
modular kernels, which relate conformal blocks in different pants decompositions, simply
map between eigenbases of various loop operators, and they can be worked out from
Aϵ1,ϵ2 . The eigenbases themselves (instanton partition functions) are then solutions of
a Riemann–Hilbert type problem that can be solved. Their ϵ1, ϵ2 → 0 limit is then the
low-energy prepotential (5.30). All of this rich content hidden in Aϵ1,ϵ2 led the authors
of [309] to call it the “non-perturbative skeleton” of T(g, C,D).

In the Nekrasov–Shatashvili (NS) limit ϵ2 → 0 of the algebra Aϵ1,ϵ2 , the difference
operators become differential operators on B, which further become coordinates on a
torus fibration over B, in the classical limit ϵ1, ϵ2 → 0.65 The geometry simplifies in the
NS limit, where S4

b degenerates to R2 × S2
b . Near the loops along the equator of S2

b the
geometry is R3 ×b S

1 with a twisted periodicity around S1, and the twist is removed in
the classical limit. Precisely this geometry was considered in [167, 502, 510, 520–523]
(on “framed BPS states”). On untwisted R3 × S1, vacuum expectation values of the loop
operators define coordinates on the Coulomb branch M of the class S theory on R3 × S1,
which is the aforementioned torus fibration over B. The twisted periodicity of R3 ×b S

1

quantizes this algebra of coordinates into an algebra of differential operators, the NS limit
of Aϵ1,ϵ2 .

As described near (3.14) the R3 ×S1 Coulomb branch M can be seen alternatively as
the Hitchin moduli space on C, or as the moduli space of flat GC connections on C (where
the Lie algebra of GC is the complexification of g). The last point of view fits nicely with
the 3d/3d correspondence discussed in subsection 9.3, which involves GC Chern–Simons
theory. Further works on the Hitchin system, opers, and Darboux coordinates on M
include [50, 343, 356, 366, 415, 488, 524–535] (some are reviewed in [536]); a different

65Similar to how momentum p ∼ i∂x in quantum mechanics is a coordinate in classical mechanics.
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technique is based on spectral networks, which abelianize flat connections on C [537–549];
see also [49, 550–552].

8.3 Surface operators

Surface operators are reviewed in [458] (for early references, see [553, 554]). Surface
operators compatible with supersymmetric localization on S4

b can be inserted along
two squashed spheres intersecting at the poles or some two-tori, expressed in Cartesian
coordinates of an R5 as follows:

S4
b :=

{
y2

5 + b2(y2
1 + y2

2) + b−2(y2
3 + y2

4) = r2},
S2
b :=

{
y1 = y2 = 0, y2

5 + b−2(y2
3 + y2

4) = r2},
S2

1/b :=
{
y2

5 + b2(y2
1 + y2

2) = r2, y3 = y4 = 0
}
,

T 2
θ,φ :=

{
y5 = r cos θ, y2

1 + y2
2 = (rb−1 sin θ cosφ)2, y2

3 + y2
4 = (rb sin θ sinφ)2}.

(8.6)

The latter case has not been studied so we concentrate here on the spheres, on which the
surface operators preserve a 2d N = (2, 2) subalgebra of 4d N = 2. Such operators arise
either from a codimension 4 operator of X (g) at a point z ∈ C or from a codimension 2
operator wrapping all of C. (See also [516] on foams of surface operators, [555, 556] on
duality defects, [557] for a holographic approach.) The space of couplings of the first type
of surface operators is exactly the UV curve C, thus it gives a definition of C directly
from the 4d N = 2 theory.

Vortex string operators. We begin with surface operators arising from a codimen-
sion 4 operator of the 6d theory placed at a point z ∈ C and one of the two possible
spheres S2

b (sign “+” below) or S2
1/b (sign “−” below). This class of operators is sometimes

called M2-brane surface operators because it arises from the addition of M2 branes in the
M-theory construction of class S theories. They can also arise via Higgsing a larger 4d
theory if the Higgsed field has a non-trivial space-dependent profile [558–560]. Their AGT
interpretation is explored in [39, 55–63, 66–71, 561, 562], in part based on their exact
partition functions, studied in [69, 563–576]. The same operators are important in the
5d version and S1 × S3

b version of the correspondence [64, 65, 190, 570, 571, 577–580];
see also [537, 539, 581–590] for other considerations on this class of surface operators.

As we have learned from studying loops, codimension 4 operators carry a choice
of representation R of g. On the 2d CFT side we thus want a point operator labeled
by R: the natural guess is a degenerate vertex operator Vω with ω = −b±1ΩR, the sign
± being determined by which squashed two-sphere we use on the 4d side. This suggests
an equality

⟨surface operator⟩T(g,C,D)
S4

b
=
〈
V̂µ1 . . . V̂µnV−b±1ΩR

〉Toda(g)

C
. (8.7)

The right-hand side can be written as an analytic continuation of an (n + 1)-point
correlator ⟨V̂µ1 . . . V̂µn+1⟩ of non-degenerate vertex operators. The analytic continuation

87



in the corresponding class S theory T ′ was first understood in [558] in Lagrangian
cases66: it amounts to considering a supersymmetric “vortex string” configuration in T ′

in which certain hypermultiplet scalars acquire space-dependent VEVs concentrated in
codimension 2. In the low-energy limit, the non-zero scalars Higgs some gauge symmetries
of T ′ down to those of T , and the configuration is effectively described by a surface
operator in the theory T .

Description as a 4d-2d coupled system. Besides this vortex string construction of
surface operators obtained from codimension 4 operators of X (g), these surface operators
can be described by coupling to the 4d theory a 2d N = (2, 2) gauge theory living on
the defect. In this context the left-hand side of (8.7) is the partition function of the
4d-2d coupled system on squashed spheres. A simple example is that of SU(2) SQCD with
Nf = 4 and a defect labeled by the K-th symmetric representation. The 2d theory then
consists of chiral multiplets in doublet representations of 4d flavour and gauge groups,
and in fundamental and antifundamental representations of a 2d U(K) gauge group:

ZS2
b

⊂S4
b

 2 2 2

K

4d

2d

 =
〈
V̂µ1 V̂µ2 V̂µ3 V̂µ4V−Kb/2

〉Liouville

S2
. (8.8)

The position z of V−Kb/2 matches the Fayet–Iliopoulos (FI) parameter of the 2d U(K)
gauge group. Such a 2d description of the most general R in su(N) Lagrangian theories
is proposed in [68] and checked by comparing limits z → zi in gauge theory to the known
OPE of V−b±1ΩR

and V̂µi . More general degenerate insertions V−bΩ−Ω′/b translate to
intersecting defects with extra 0d fields living at the poles where the defects intersect [69].
An important difficulty in checking equalities like (8.8) is to compute contributions
Zinst,vort from the poles of S4

b , which involve both instantons of the 4d theory and
vortices of the 2d theory [574]. Incidentally, in an ϵ1, ϵ2 → 0 limit this 4d-2d analogue of
Nekrasov’s partition function gives both the 4d theory’s effective prepotential F and the
2d theory’s effective twisted superpotential W, obtained earlier in [55, 565]:

logZinst,vort = F

ϵ1ϵ2
+ W
ϵ1

+O(1). (8.9)

Gukov–Witten operators: monodromy defects and orbifolds. Next we discuss
surface operators called M5-brane surface operators, or codimension 2 operators, or
orbifold surface defects, studied in [72–85, 120, 318, 358, 362, 553, 570, 576, 591–598]
and in [359, 360] from the little string theory viewpoint. We have already encountered
codimension 2 defects of X (g), since they are the origin of tame punctures that impose
certain boundary conditions on the differentials ϕk. Wrapping these codimension 2
operators on C thus gives surface operators that impose certain singular boundary
conditions on the 4d fields. Specifically, this yields N = 2 versions of Gukov–Witten (GW)
surface operators [553], which impose that 4d gauge fields A behave as A ∼ αdθ as r → 0

66It would be good to clarify the situation for the most general class S theories.
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with a prescribed α ∈ t in the Cartan algebra of g, where (r, θ) are polar coordinates
transverse to the defect.

If A is an SU(N) gauge field, say, let us denote eigenvalues of α = diag(α1, . . . ) as
αi with multiplicities Ni, i = 1, . . . ,M so that ∑iNiαi = 0 and ∑iNi = N . Then the
4d gauge group breaks to

(∏
i U(Ni)

)
/U(1) at the defect. The instanton moduli space

with such a monodromy defect is equivalent as a complex manifold to the moduli space
of instantons on an orbifold C × (C/ZM ) [599]. Here, ZM embeds into both rotations
of C with charge +1 and the gauge group SU(N) with charges i with multiplicity Ni,
thus reproduces the expected symmetry breaking. The Nekrasov partition function Zinst
is obtained from the usual one by restricting to ZM -invariant instantons. It matches
conformal blocks of the affine SL(N) algebra (for the full defect that has all Ni = 1) [72,
73], or its Drinfeld–Sokolov (DS) reductions [74] more generally.

The GW defects can also be described by coupling suitable 2d N = (2, 2) gauge
theories to the 4d theory. For pure 4d N = 2 SYM,

ZS2
b

⊂S4
b

[
N Kn−1 · · · K14d 2d

]
=
〈
V̂µ1 V̂µ2 V̂µ3 V̂µ4

〉generalization of Toda CFT

S2

(8.10)
where Ki = N1 + · · · + Ni. While the symmetry algebra is understood, the relevant
(non-chiral) CFTs generalizing Toda CFT is not.

Interestingly, conformal blocks of the affine SL(2) algebra are related to conformal
blocks of the Virasoro algebra with additional degenerate vertex operators, as pointed
out early on in an AGT setting in [600]. This, and its N > 2 analogues, leads to some
identifications between the two types of surface operators up to a suitable integral
kernel [532, 601].

One should be careful in reading some early 2010’s literature on surface operators
in the AGT context, as the two types of surface operators are hard to distinguish in the
su(2) case. The “codimension 2” orbifold C × (C/ZM ) considered here should also not
be confused with the “codimension 4” orbifold C2/ZM discussed on page 83, for which
ZM rotates both factors. Just as for the C2/ZM orbifold, the C× (C/ZM ) orbifold ought
to arise as a limit of a 5d gauge theory on C2 ×q S

1 for a suitable root of unity limit of
q, t.

8.4 Domain walls

The AGT correspondence also allows for half-BPS 3d operators that separate the 4d
spacetime into two parts or give it a boundary. A good starting point is [43].

Symmetry-breaking wall. A first construction [43] is to place a (tame) codimension 2
defect of X (g) on the equator of S4

b , times a closed loop γ ⊂ C. The gauge theory
description is understood in terms of the gauge group Gγ defined on page 84. The
boundary conditions for the 4d vector multiplet are similar to those near a GW surface
defect, and they define a symmetry-breaking wall where gauge symmetries reduce to a
subgroup H ⊂ Gγ . On the CFT side the situation is similar to loop operators, and one
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gets the Verlinde loop on γ constructed by inserting the vertex operator Vα associated to
the defect and moving it around γ.

The continuous parameters of α (of the codimension 2 defect) are FI parameters of
the unbroken gauge symmetry H on the wall. General vertex operators can also include
a discrete part, and correspondingly tame codimension 2 defects that are not full can
be dressed with additional codimension 4 defects living on their world-volume. In the
present construction this leads to Wilson loop operators in representations R1 and R2
of H on the two circles of subsection 8.2. These loops are stuck on the domain wall
unless R1 (resp. R2) are representations of G itself.

Janus wall. Our second construction does not involve codimension 2 or 4 operators.
Instead, we place X (g) on S4

b × C with the complex structure of C varying with the
latitude of S4

b [43]. This preserves half of the supersymmetry and in the limit where
the variation happens sharply at the equator (or a parallel) we get a so-called Janus
domain wall [602–607] in the 4d theory. This is a half-BPS interface between class S
theories with different gauge couplings. The partition function with this interface has
the usual factorized form (1.7) with holomorphic and antiholomorphic contributions
from the poles, but the gauge couplings used in each factor are not complex conjugates.
Correspondingly, the CFT correlator (1.9) changes to using different complex structures
for the holomorphic and antiholomorphic factors.

S-duality wall. Tuning gauge couplings we can get theories that are S-dual. By
switching to the same S-duality frame on both sides we get a 3d operator called the
S-duality wall [608] that has the same theory (and same gauge couplings) on both sides.
Inserting an S-duality wall in a 4d theory amounts on the 2d side to performing a modular
transformation (fusion, braiding, S-move) on holomorphic (or antiholomorphic) conformal
blocks. This is related to special cases [87, 89, 609, 610] of the 3d/3d correspondence
we discuss in subsection 9.3. The S-duality wall has an interplay with loop operators: it
translates in a suitable sense from Wilson loops on one side of the wall to ’t Hooft loops
on the other side.

For instance, the S-duality wall of 4d N = 4 SYM is equivalent to coupling a 3d
N = 4 theory T [G] to SYM on both sides of the wall [608], and the S-move kernel is
expected [86] to match the S3

b partition function of T [G]. For g = su(N), the wall theory
is a 3d N = 4 linear quiver,

ZS3
b

[
N N−1 · · · 1

]
= (WN algebra S-move kernel). (8.11)

The known braiding kernel [611, 612] for Virasoro four-point conformal blocks led
to a description [88] of the S-duality wall of 4d N = 2 SU(2) SQCD with Nf = 4, as 3d
N = 2 SU(2) SQCD with Nf = 6, suitably coupled to the 4d theories on both sides.

Bootstrapping the braiding kernel of WN four-point conformal blocks led to a descrip-
tion [90] for the S-duality wall of SU(N) SQCD as U(N − 1) SQCD (with a 3d monopole
superpotential understood in [613]), coupled by cubic superpotentials to the 4d theories
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on both sides of the wall,

Z

 U(N−1) 2N

N

N

4d

4d

 = (WN algebra braiding kernel). (8.12)

Just like the T [G] theories, this 3d N = 2 theory (in isolation, after decoupling the 4d
fields) admits numerous dualities [614]. Duality walls of 5d theories were studied in [615,
616].

Boundary CFT. We mentioned orbifolds earlier. Instead of orbifolding the 4d space
one can orbifold by a Z2 symmetry that acts as a reflection with respect to the equator
of S4

b and a reflection on the Riemann surface (so as to preserve chirality of X (g)).
This leads to an AGT correspondence for Riemann surfaces with boundaries and for
non-orientable surfaces [91, 92]. On the gauge theory side, one obtains simultaneously
some gauge fields defined on the squashed hemisphere HS4

b and others on the squashed
projective space RP4

b . The hemisphere partition function was evaluated in [617] while the
projective space partition function is obtained in [91] by the gluing technique explored
further in [249, 250].

The inclusion of boundary operators has not been fully elucidated. It would also be
interesting to go beyond the g = su(N) case treated so far, for instance understanding
how the double-cover construction discussed below (5.38) interacts with the Z2 quotient
that produces the Riemann surface boundaries.

AGT correspondence in some other geometries

• For 5d N = 1 lifts of class S theories, Zinst and ZS5 match
q-deformed Toda conformal blocks and correlators. A lift
to 6d matches (q, t)-deformed Toda theory.
• The S3 ×S1 partition function (superconformal index) of
T(g, C,D) matches a TQFT correlator on C.
• Twisted reductions of X (g) on C3 are 3d N = 2 theories
whose ZS2×S1 , ZS3 or lens space partition functions match
complex gC Chern–Simons theory on C3 at level 0, 1 or k.
• The 6d (1, 0) SCFT of M5 branes probing a Zk singularity
defines class Sk 4d N = 1 theories similar to class S.

9 Other geometries
Class S theories T(g, C,D) are ob-
tained by compactifying the 6d (2, 0)
theory of type g on M4 × C with
C a Riemann surface with punc-
tures which extra data D. So far
we have extensively discussed the
case M4 = S4

b and its building block
M4 = R4

ϵ1,ϵ2 , for which the partition
function is equal to a 2d CFT correla-
tor or conformal block, respectively.

We first discuss 5d lifts of these
4d observables to (deformations of) R4 × S1, S4 × S1, and S5, which are connected
to q-deformations67 (subsection 9.1). We then change the geometry, first relating the

67The parameter q appearing in the 5d lift is unrelated to the gauge couplings parameters describing
the complex structure of C. We will actually not need a notation for this gauge coupling any longer.
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supersymmetric index, which is the partition function on M4 = S3 × S1, to (a general-
ization of) a q-Yang–Mills TQFT correlator (subsection 9.2), then compactifying instead
on products M3 × C3 and M2 × C4 in which the “internal” manifold C is a hyperbolic
three-manifold (subsection 9.3) or a four-manifold (subsection 9.4). In this last subsection
we also mention generalizations with less supersymmetry and a few geometric setups
that have been less fruitful.

9.1 Lift to 5d and q-Toda

Here we briefly survey how lifting the 4d N = 2 theories to 5d N = 1 amounts to a
q-deformation of the 2d theories. For a review, see [151].68

Instanton partition functions. The 4d N = 2 Omega background used to define
Nekrasov’s instanton partition function [12, 13] is conveniently expressed in terms of a 5d
N = 1 lift: placing the theory on R4 × S1 with twisted boundary conditions around S1

such that R4 rotates by q and t in two two-planes, and with an additional twist by
an R-symmetry to preserve some supersymmetry. More precisely, this definition for
|q| = |t| = 1 can be extended to complex q, t by turning on additional supergravity fields.
The 5d lift deforms all factors in Zinst from rational functions to trigonometric functions
of masses and Coulomb branch parameters. It is natural to ask how the Toda CFT side
of the AGT correspondence can be deformed to accomodate for this.

One finds that the 5d (also called K-theoretic) Zinst is a chiral block for a q-deformed
W-algebra [35, 113, 229, 340, 341, 618–620]: the relevant deformations of the Virasoro
algebra and of W-algebras were constructed long ago [621–624] (see [625] for a modern
construction).69 When mass and Coulomb branch parameters are suitably quantized the
equality can be proven using Dotsenko–Fateev integral representations of qWN conformal
blocks [67, 304, 307, 342, 626] (also used in [627]). See also [272, 628].

The 5d N = 1 quiver gauge theories admit realizations in terms of webs of (p, q)
fivebranes in IIB string theory [7]. Applying S-duality exchanges the role of D5 and
NS5 branes, thus equating Zinst for a SU(N)M−1 linear quiver gauge theory to an
SU(M)N−1 one (see [629] for a proof for M = N = 2). This 5d spectral duality
(also called fiber-base duality [630]) relates in general chiral blocks of different qWN

theories [631, 632], it implies certain instances of 3d mirror symmetry [585], and relations
between spin chains [633]. When reading the literature, one should keep in mind which
of the two spectral duality frames is adopted, see [634] for a nice explanation.

The 4d case is retrieved as the limit q → 1 with t = q−β and fixed −β = b2 = ϵ1/ϵ2
giving the 4d deformation parameters. Other interesting limits than q, t → 1 exist,
especially taking q and t a k-th roots of unity one obtains Nekrasov partition functions
on C2/Zk ALE space studied in [29, 33, 35–37, 85, 635]. Another simplifying limit is the
Hall-Littlewood limit q → 0 [281, 282].

68I thank Fabrizio Nieri for answering my questions thoroughly.
69As in 4d, working with U(N) rather than SU(N) gauge groups makes Zinst more tractable; corre-

spondingly one works with the Ding–Iohara algebra, a slight extension of (the universal envelopping
algebra of) the qW-algebra of type g [267].
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An unrelated application of Zinst and qWN conformal blocks is to construct solutions
of q-Painlevé equations [636–639], as in the 4d case.

Compact partition functions. Let us now glue instanton partition functions together.
While the partition function on S4 involves a pair of instanton contributions from the
two fixed point of the supercharge squared, the partition function of 5d N = 1 theories
on S5 combines three K-theoretic instanton partition functions because the supercharge
has three fixed circles [640]. Schematically,

ZS5 =
∫

daZpertZinst,1Zinst,2Zinst,3. (9.1)

The squashed S5 has three axis lengths ω1, ω2, ω3 and here the different Zinst,i are
computed in the Ω background with parameters (q, t) given by (ω2

ω1
, ω3
ω1

), (ω1
ω2
, ω3
ω2

), (ω1
ω3
, ω2
ω3

),
respectively.

The picture that emerges [64, 339, 577] is that there exists a q-deformed version of
Toda CFT, called q-Toda theory,70 that has qWN symmetry and whose correlators should
match with S5 partition functions. The fact that three chiral factors need to be combined
leads to a remarkable “modular triple” of q-Virasoro algebras [114] (for N = 2), similar
to the modular double combining Uq(sl(2)) with q = e2πib2 and q = e2πi/b2 in 2d CFT. A
non-local Lagrangian for q-Liouville is proposed in [114].

Half-BPS operators with 3d N = 2 supersymmetry played an important early role
right from the start. On the squashed S5 they can be inserted along three distinct S3 that
intersect pairwise along S1. The first explorations of the correspondence for ZS5 concerned
the case of a single 3d operator in a simple 5d bulk theory, which can be obtained by
Higgsing a larger 5d theory [64, 577, 641]. Just as the analogous surface operators in
the standard AGT correspondence, these 3d operators correspond to degenerate q-Toda
CFT vertex operators. They are useful to bootstrap structure constants of q-Toda, and
show up in a Higgs branch localization expression of the instanton and S5 partition
functions [189, 190, 642], again completely analogous to the 4d story [188, 571], albeit
more technically involved. A mathematical take on this is in [284].

Codimension 4 operators of the 5d theory, specifically Wilson loops, are studied
in [643]; they translate in q-Toda to stress tensor and higher-spin operator insertions.

Geometric setup. The correspondence is partially understood geometrically through
6d (2, 0) little string theories. Contrarily to the SCFTs X (g), little string theories can only
be reduced on zero-curvature surfaces, so the choice of Riemann surface and punctures
is restricted. When reducing on a cylinder with full punctures at the two ends, one
would expect a 4d reduction but the string winding modes give instead a 5d N = 1
theory on the T-dual circle times R4. The correct limits to reproduce the 4d/2d AGT
correspondence and a dual version were discussed in [644, 645].

70One should be careful that many papers talk about q-Liouville or q-Toda theory even when they
only consider chiral blocks, which only involve the q-Virasoro and qWN symmetry algebras.
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It is not clear at this point what q-Toda theory really is, in particular whether it
is fundamentally a 2d theory that can only be placed on zero-curvature surfaces, as
suggested by the little string construction, or whether it should be thought as a 1d theory
in order to obtain an effective Lagrangian [114].

Elliptic lift. Lifting one dimension up, 6d partition functions on R4 ×T 2 (twisted) and
S5 × S1 (superconformal index) [646] are related to the elliptic deformation (q, t)-Toda:
see [272, 306, 647–660].

9.2 Superconformal index and 2d q-YM

We now move on to partition functions of 4d N = 2 class S theories on M4 = S3 × S1.

Supersymmetric index. See the review [661] for superconformal class S theories and
[662] for general 4d N = 1 theories. We shall not write too much here, but we rather
point to another course in this school [663]. The AGT relation to q-YM is also surveyed
briefly in [118].

The S3 × S1 partition function is defined and computable for 4d N = 1 theories with
an anomaly-free U(1) R-symmetry. Up to a factor involving the Casimir energy of the
theory, expressible in terms of a and c anomalies, the partition function coincides with
the supersymmetric index, defined to be the Witten index of the theory quantized on
S3 × R. Once refined by fugacities ui for mutually commuting rotations, flavour, and
R-symmetries (with charges Ki), the index is written as

I(u) = Tr
[
(−1)F e−βH̃∏

i

uKi
i

]
(9.2)

where (−1)F counts bosonic and fermionic states with opposite signs, H̃ = {Q,Q†} for
some supercharge Q, and I is β-independent thanks to cancellations between bosonic
and fermionic states when H̃ ̸= 0. This simplification means that I(u) counts (with
signs) short representations of the supersymmetry algebra. Fugacities ui are encoded in
the S3 × S1 partition function as holonomies around the S1 for background gauge fields
coupled to the given symmetry: in particular, fugacities (p, q) for two combinations of
rotations and R-symmetries can be understood as a non-trivial fibration of S3 over S1.

The index formally does not depend on any continuous parameter beyond these:71 it
is an renormalization group (RG) flow invariant and is independent of gauge couplings
for instance, thus can be easily computed in any weakly-coupled Lagrangian description.
In this way I(u) reduces to a simple signed count of local gauge-invariant operators
built from the elementary fields in any given Lagrangian description (in other dimensions
nonperturbative objects must be included). Being an eminently computable RG flow
invariant makes the index a powerful window into nonperturbative physics of 4d N = 1
gauge theories, especially their IR dualities.

71In some contexts, this formal invariance of the index fails, which gives wall-crossing phenomena.
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Computing the index is much harder if we have no Lagrangian description, but part of
the structure remains: if a theory T is defined by gauging a common flavour symmetry G
of two theories T1, T2, then the indices are related schematically as

I[T ](a1, a2) =
∫

[dz]G Ivec(z) I[T1](a1, z) I[T2](a2, z), (9.3)

where we hid the p, q dependence but kept explicit the fugacities a1 and a2 for flavour
symmetries of T1 and T2 commuting with G, which become flavour symmetries of T . The
integral over the fugacity z for the symmetry G is done with a suitable measure Ivec,
which from the localization point of view is the vector multiplet one-loop determinant. In
fact, (9.3) gives a way to compute the index of a non-Lagrangian theory: embed it into a
larger theory that is dual to a Lagrangian gauge theory, whose index is computable [664].

Class S. We now specialize to class S theories, and specifically to superconformal ones.
Since the index cannot depend on gauge couplings, it only depends on the topology of
the Riemann surface C and the type of punctures. Thus, compared to the standard AGT
correspondence, the 2d CFT side should be replaced by a TQFT, as worked out in [665].
Consider the theory T(g, C,D). A flavour symmetry is associated to each puncture zi,
i = 1, . . . , n, and we turn on corresponding fugacities ai. For any pants decomposition
of C we can express T(g, C,D) as the result of gauging flavour symmetries of a collection
of tinkertoys (isolated SCFTs) associated to three-punctured spheres. Through (9.3), the
index then reduces to an integral of superconformal indices of tinkertoys. This precisely
mimics the structure of correlators in a TQFT:

I
[
T(g, C,D)

]
(ai) = ⟨OD1(a1) . . .ODn(an)⟩some TQFT (9.4)

for suitable operators OD that depend on the type of puncture.
In analogy to Liouville CFT bootstrap, which relied on using degenerate vertex

operators that correspond in gauge theory to surface operators, one can bootstrap the
index of all tinkertoy building blocks using surface operators [558]. Adding a surface
operator to the index corresponds to acting with a difference operator Θ on fugacities
associated to any one of the punctures, and by topological invariance it does not matter
which puncture. Expressing the result in an eigenbasis of Θ labeled by representations λ
of g eventually gives

I
[
T(g, C,D)

]
(ai) =

∑
λ

(Cλ)2g−2ϕD1
λ (a1) . . . ϕDn

λ (an) (9.5)

for some structure constants Cλ(p, q, t) and wave functions ϕDλ (p, q, t; a).72 Wave functions
for arbitrary punctures are related to those for full punctures by taking suitable residues
in flavour fugacities [666]. The sum may diverge if there are too few punctures or if they
are too “small”, signalling either that the given class S theory does not exist or that
the index is not sufficiently refined because there are additional flavour symmetries not
associated to any of the punctures.

72Here we introduced a fugacity t for the additional R-symmetry of 4d N = 2 theories.
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The wave functions can be computed order by order in p, q, t, but are not known in
closed form. In the Schur limit q = t correlators are functions of q only (p-dependent terms
are Q-exact), wavefunctions are proportional to Schur polynomials, and the corresponding
TQFT is q-deformed 2d Yang–Mills theory [110]. In the more general Macdonald limit
p = 0, wavefunctions are essentially Macdonald polynomials in q, t and the TQFT must be
deformed by changing the measure in the path integral of q-YM theory [667]. The Hall-
Littlewood limit p = q = 0 turns Macdonald polynomials to the easier Hall-Littlewood
polynomials, which only depend on t. The Coulomb limit (t, p → 0 with fixed p/t and q) is
also interesting. The 2d TQFT description, which remains quite implicit for general p, q, t,
was derived starting from the 6d theory X (g) in [668] (earlier derivations in [669–671]
did not account for instanton corrections).

The correspondence is tested and extended in natural ways: inserting Wilson–’t Hooft
loops at the poles of S3 and correspondingly loops in q-YM [53, 54, 672, 673], inserting
general surface operators [65, 567, 578, 590, 674], replacing S3 by the Lens space
L(p, 1) = S3/Zp [675–677], taking C to have non-zero area [678], generalizing to D-type
gauge groups and non-simply-laced ones (using outer automorphism twists) [679, 680].
The relation with Hilbert series of instanton moduli spaces is explored in [216, 226]. The
superconformal index of many AD type theories is also known by now in the Macdonald
limit [681–685]. The key open question in this direction seems to be getting a handle on
the full parameter space (p, q, t) rather than its p = 0 Macdonald slice.

9.3 3d/3d correspondence

So far we have reduced the 6d (2, 0) theory of type g with a partial topological twist
along a Riemann surface. Reducing it instead on M3 × C3, with a twist along a three-
manifold C3, gives a 3d N = 2 gauge theory on M3. One can add codimension 2
operators of the 6d theory to get analogues of punctures: boundary conditions along
knots K1 ⊂ C3 (which we leave implicit in our notation). This defines a large class
of 3d N = 2 gauge theories73 T(g, C3,K1). Their supersymmetric partition functions
match K1 ⊂ C3 partition functions of complexified Chern–Simons theory. See [150, 686,
687] for reviews and [89, 111, 310, 316, 525, 527, 609, 610, 688–727] for works on this
correspondence and its applications.

Natural building blocks for C3 \K1 are tetrahedra, and each triangulation of C3 \K1
yields an explicit gauge theory description of the 3d N = 2 theory as the IR limit of an
abelian Chern–Simons theory (and deformations by masses or other parameters). More
precisely, this description misses parts of the theory T(g, C3,K1), as pointed out in [698,
699], and these additional branches are still under investigation (see e.g. [725]). Similarly
to how changing pants decompositions in the 4d/2d correspondence amounts to S-duality,
Pachner’s 2-3 move for triangulated 3-manifolds, which trades two neighboring tetrahedra
for three tetrahedra covering the same part of the manifold, yields 3d N = 2 dualities.
Contrarily to S-duality, these are not all-scale dualities but only IR dualities.

73This is not a standard notation; sometimes T(su(N), C3, K1) is denoted TN [C3 \ K1].
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Statement of the correspondence. The 3d/3d AGT correspondence was formulated
in [111, 525], after several papers treating less general geometries: either reducing
T(g, C3,K1) further on S1 [728] (getting a 2d N = (2, 2) theory), or taking C3 to be a
mapping cylinder or torus (Riemann surface fibered over an interval or circle) [87, 610,
729, 730]. The partition function of T(g, C3,K1) on certain manifolds M3 is equal to the
partition function on C3 \K1 of Chern–Simons theory with a gauge group GC whose Lie
algebra is the complexification of g. This, in turn, provides invariants of knots and of
3-manifolds. Complex Chern–Simons theory depends on levels (k, σ), one quantized k ∈ Z
and one continuous σ ∈ R ∪ iR, related to the choice of M3. Its action is straightforward,

S = k + iσ

8π

∫
C3

Tr
(
A ∧ dA + 2

3A ∧ A ∧ A
)

+ k − iσ

8π

∫
C3

Tr
(
A ∧ dA + 2

3A ∧ A ∧ A
)
, (9.6)

where A = A + iΦ is a complex gauge field. However, defining Chern–Simons theory
completely is subtle when the gauge group is noncompact [731], and in fact the 3d/3d
correspondence helps define it for complex gauge group GC [150, 316, 732, 733]. See also
[734, 735] for a few applications of complexified Chern–Simons theory.

The squashed sphere partition function (M3 = S3
b ) corresponds to Chern–Simons

at level k = 1 [111, 310]. The supersymmetric index (M3 = S2 ×q S
1) corresponds to

Chern–Simons at level k = 0 [311, 312, 689].74 The partition function on a squashed lens
space M3 = L(k, 1)b corresponds to a general Chern–Simons level k [316, 732]. (These
supersymmetric partition functions and more are reviewed in [736].)

ZS2×qS1 [T(g, C3,K1)] = ZC3

[
GC at levels

(
0, σ

)
], q = e2π/σ

ZS3
b
[T(g, C3,K1)] = ZC3

[
GC at levels

(
1, 1−b2

1+b2
)
]

ZL(k,1)b
[T(g, C3,K1)] = ZC3

[
GC at levels

(
k, k 1−b2

1+b2
)
]

(9.7)

All three can be decomposed into holomorphic blocks [691, 700, 737], which are partition
functions on the Omega background R2 ×q S

1 or equivalently the cigar D2 ×q S
1, and

are wave functions on the Chern–Simons side. A semi-classical version of this is that the
set of supersymmetric vacua on R2 × S1 matches the space of flat GC connections on
C3 \K1 with suitable boundary conditions along K1.

Boundaries and generalizations. When C3 has 2d boundaries (on which the knot
K1 can end), the 3d N = 2 theory lives at the boundary of (and is coupled to) the 4d
N = 2 class S theory associated to ∂C3 [43, 89, 111, 673]. In particular, when C3 is
a cobordism, namely ∂C3 consists of two disconnected components, it is more natural
to think of the 3d N = 2 theory as a domain wall between the two corresponding 4d
N = 2 class S theories which are only coupled through their common 3d boundary. The
construction is thus functorial with respect to gluing. One particularly simple example of
the setup was described in [43]: consider C3 = R × C where the complex structure of C
varies along the R direction; then on the gauge theory side we have the 4d N = 2 theory

74I don’t know if the differences between [311, 312] have been resolved.
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T(g, C) with a Janus domain wall defined by varying the 4d gauge couplings along one
direction. Further works in this direction include [698, 711].

As known since Witten’s [738], many knot invariants can be expressed as partition
functions or other observables of gauge theories. For a sample of references, see [692,
739–746] and the review [747], as well as calculations of knot invariants through the study
of families of superpolynomials in [748–762].

A different topological twist realizes homological invariants of knots and three-
manifolds (monopole/Heegaard Floer and Khovanov–Rozansky homology) in terms of 3d
N = 2 theory T(g, C3,K1) partially topologically twisted on a Riemann surface [698, 706,
716]. Holographic calculations [717, 719–722, 763–766] probe or use the correspondence
at large N . Dimensional reduction from the 4d N = 2 superconformal index to the 3d
N = 2 sphere partition function translates to dimensional oxydation from 2d q-YM to
a hyperbolic manifold [675, 767]. The 3d/3d correspondence can also be refined using
higher-form symmetries [724]. Half-BPS 2d N = (0, 2) boundary conditions and domain
walls of 3d N = 2 theories were studied in [609] and subsequent papers, and one offshoot
is the 2d/4d correspondence [112] discussed next.

9.4 Some more geometric setups

2d/4d correspondence. Reducing the 6d (2, 0) theory on T 2 × C4 with a partial
topological twist along the four-manifold C4 gives 2d N = (0, 2) supersymmetric gauge
theories. This setting has been somewhat less studied, owing to how the topology of
four-manifolds is more complicated than for the 4d/2d and 3d/3d correspondences. The
relevant twist of the M5 brane action was constructed explicitly in [768, 769].

A dictionary à la AGT is proposed in [112]: the Vafa–Witten partition function
on C4 [770] is the superconformal index of the 2d (0, 2) theory, while 4d Kirby calculus
translates to dualities of 2d N = (0, 2) theories such as [771]. Four-manifolds with a
boundary ∂(C4) correspond to domain walls between the 3d N = 2 theories associated
to ∂(C4) by the 3d/3d correspondence [609] (see also [772]). Four-manifolds of the form
CP1 ×C are considered in [773] and provide an analogue of class S theories. This can be
enriched further by inserting defects of the 6d (2, 0) theory. There are several variants:
compactifying on S2 × C4 [774], generalizing to 6d (1, 0) theories [775], and using a
different twist to connect 4-manifold invariants to 2d N = (0, 2) chiral correlators [776,
777]. The abelian case is studied in detail in [778]. See also [779, 780].

Less supersymmetry. One can learn properties of strongly-coupled 4d N = 1 theories,
for instance analogues of Seiberg dualities, from supersymmetry-breaking deformations
of 4d N = 2 theories and S-duality [139, 170, 781–787]. These developments have led to
finding 4d N = 1 Lagrangian descriptions for 4d N = 2 AD theories that admit no 4d
N = 2 Lagrangian description, as done for instance in [410, 788–801] (see also [802] with
more supersymmetry). They also lead to new 4d N = 2 that may be “minimal” in the
sense of having the smallest central charges (a, c) [797].

Another approach to getting 4d N = 1 theories is to consider more general compacti-
fications of 6d N = (2, 0) SCFTs that amount to placing M5 branes on a complex curve

98



inside a Calabi–Yau three-fold [355, 361, 528, 784, 791, 803–809]. Generalizations of SW
geometry appear to exist [810]. A further reduction yields 3d N = 2 theories [811].

A particularly natural path to lower supersymmetry arises from orbifolds of the M-
theory setup. The 6d (1, 0) theory of M5 branes at a Zk singularity has very interesting
reductions to 4d N = 1 theories called class Sk [615, 674, 812–824], see [825–827] for
M5 branes probing more general ADE singularities. In principle this leads to an analogue
of the AGT correspondence, but the ZS4 partition function of N = 1 theories suffers
some ambiguities, and the instanton partition function is not known (see however a very
interesting proposal [240]).

Beyond these orbifolded M5 branes, there exists a zoo of 6d (1, 0) theories constructed
from F-theory [828, 829], reviewed in [119, 830]. Compactifying them further on a torus
gives 4d N = 2 supersymmetry, reproducing many class S theories [814]. The set-up
has also been studied on a Riemann surface [831–834] or on a torus with fluxes turned
on [820, 825–827] to get 4d N = 1 theories, and with surface operators [579, 833, 835].
The reduction from 6d to 5d is also interesting [836].

Two other rich families of 4d N = 1 SCFTs are bipartite quivers [837, 838], and
D3 branes probing orientifolds of toric singularities [839–843].

Miscellaneous. By fine-tuning (and analytically continuing) parameters, one gets the
AGT correspondence for minimal models [277, 487, 844–848] and a “finite” version of
AGT on the mathematical side [849–851].

Class S 4d N = 2 theories have also been localized on other geometries: S2 × S2

corresponds to Liouville gravity [852], S2 × S1 × I to complex Toda CFT [853], S2 × T 2

in [657].
Instead of reducing M5 branes on product geometries, reducing D3 branes yields a

2d/2d correspondence [854–857], while M2 branes give a 1d/2d correspondence [858, 859].
A 3d/3d N = 1 correspondence was also proposed in [715].

10 Conclusions

• BPS/CFT correspondence: SW curves of quite general
4d N = 2 theories are spectral curves of integrable systems.
• Topological strings give Zinst for theories obtained by
reducing (p, q) 5-brane webs, or IIB geometric engineering.
• Matrix models with logarithmic potentials yield Zinst of
Lagrangian 4d N = 2 theories.

There is plenty more to be said about
the AGT correspondence. Most obvi-
ously we have not placed this corre-
spondence in the wider context of the
BPS/CFT correspondence between 4d
N = 2 gauge theories and integrable
models underlying SW geometry. We
have also omitted the connections to
refined topological strings and ma-
trix models.

Integrable systems. The SW solutions of many 4d N = 2 theories can be realized as
the spectral curve of known integrable systems [860–863], such as the periodic Toda spin
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chain, Calogero-Moser, Ruijsenaars, sine-Gordon etc. As a quite general example, for 4d
N = 2 theories of class S it is the Hitchin integrable system [167]. Placing the 4d theory
on the Omega background with ϵ2 = 0 (the Nekrasov–Shatashvili limit) corresponds to
quantizing the integrable system, and turning on ϵ2 yields a further refinement [864]. It
is also understood how to include surface operators in these discussions.

Nekrasov has advocated for seeing these considerations as a BPS/CFT correspondence,
reviewed in [71, 280, 865–867] (see also [70, 189, 190, 239, 628, 645, 868–870]), which
relates supersymmetric gauge theories with 8 supercharges (e.g. 4d N = 2) to integrable
models and 2d CFT. Since this applies beyond class S theories, one can consider the AGT
correspondence as merely an instance of it in which one can make further progress.

Another instance is the Bethe/gauge correspondence, which roughly speaking arises
in the Nekrasov–Shatashvili limit. In this limit, the Omega-deformed 4d N = 2 theories
reduce to a 2d N = (2, 2) theory whose properties match with those of quantum integrable
systems. For instance the twisted chiral ring of the 2d theory gives quantum Hamiltonian,
supersymmetric vacua correspond to Bethe states, and the 2d twisted superpotential is
the Yang–Yang function of the integrable system. The limit was studied in [864, 871–891]
among others.

For further unsorted references regarding integrable models and class S theories,
see [57, 211, 279, 292, 400, 524, 530, 561, 584, 593, 609, 633, 634, 748, 864, 883, 892–949].

Topological strings. Topological strings and their relation with the AGT correspon-
dence are reviewed in [950].

For 4d N = 2 theories realized from IIB geometric engineering [630, 951, 952] or as
dimensional reductions of 5d N = 1 theories living on (p, q) fivebrane webs, instanton
partition functions can be expressed as partition functions Ztop of topological strings, as
reviewed in [953]. As advocated in [954] to explain the AGT correspondence, Ztop can be
further expressed in terms of Penner-like matrix models with logarithmic potentials [955–
961], which match with Dotsenko–Fateev integral representations of conformal blocks.
We return to these matrix models shortly.

The topological string partition function Ztop is computed through the topological
vertex formalism, developped in [962–965] in the unrefined case ϵ1 = −ϵ2, and for general
ϵ1, ϵ2 in two formulations in [966, 967] and [968, 969], whose equivalence is explained
in [970] by realizing the refined topological vertex as an intertwiner of the Ding–Iohara–
Miki (DIM) algebra. See also [911, 971–974] for further tests and subtleties, [975, 976] for
a world-sheet perspective, [977, 978] for a discussion of dualities that ensure that Ztop is
independent of the so-called preferred direction, and [979, 980] for a generalization beyond
A-type quivers by introducing new topological vertices. Sometimes, Ztop can instead
be bootstrapped using holomorphic anomaly equations [879, 953, 981–986], blowup
equations [987], or the quantum curve [988, 989].

The calculation in [339–342] of the partition function of TN theories, hence the
three-point function of Toda CFT, is particularly interesting. Surface operators and their
relation to geometric transition and qq-characters are discussed in [56, 58, 59, 562, 660,
934, 971, 990–992]. Other AGT developments based on the refined topological vertex
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include [229, 846, 988, 993–1006].

Symmetries and special polynomials. The renewed interest in refined topological
strings in the context of AGT led to developping many families of special polynomials
generalizing Jack and Macdonald polynomials, including Macdonald-Kerov functions, gen-
eralized Schur functions, elliptic generalized Macdonald polynomials and more: see [598,
762, 1007–1020] for recent developments.

These developments are based on various underlying symmetry algebras that generalize
W-algebras [131, 330] and would deserve a review of their own by someone more qualified.
My survey of the literature suggests the following main players. I found the references
[268, 1021] useful starting points.

• The (centrally-extended) elliptic Hall algebra Eσ,σ introduced in [1022] is an asso-
ciative algebra generated by um,n for (m,n) ∈ Z2 with u0,0 = 0, and by commuting
generators σ, σ. These are subject to commutation relations expressing [uy, ux]
(for some x, y ∈ Z2) as a polynomial in σ, σ, and the generators uz for z ∈ Z2

in the segment joining x + y to the origin. The algebra may be thought as the
stable limit [1023] Eσ,σ = S̈H∞ of spherical double affine Hecke algebra (DAHA) S̈Hn.
The latter, also called Cherednik algebras, were introduced in [1024] and reviewed
in [1025].
The algebra Eσ,σ admits an action of SL(2,Z) by automorphisms, induced by the
action on Z2. For any coprime a, b, the subalgebra generated by uma,mb, m ∈ Z,
forms a copy of the quantum group Uq(gl1), and these copies are interchanged by
the SL(2,Z) action.
Let MU(N) be the moduli space of non-commutative U(N) instantons on C2

(Gieseker framed moduli space). Its equivariant K-theory admits an action of Eσ,σ
[1021, 1026, 1027].

• The DIM algebra (discovered independently by Ding–Iohara [1028], Miki [1029], and
others [1022, 1026]) is an associative algebra depending on complex parameters with
q1q2q3 = 1. It is generated by ψ−1

0 and ei, fi, ψi for i ∈ Z, with quadratic relations
such as [ei, fj ] = 1

(1−q1)(1−q2)(1−q3)
(
(δi+j>0 − δi+j<0)ψi+j + δi+j=0(ψ0 − ψ−1

0 )
)
.

• The quantum toroidal algebra Üq1,q2,q3(gl1), also called quantum continuous gl∞, is
a quotient of DIM by cubic Serre relations [e0, [e1, e−1]] = 0 and [f0, [f1, f−1]] = 0. It
appeared already in [1029] and is explored in [1030–1032]. It is also a specialization
of the elliptic Hall algebra Eσ,σ at σ = 1 [1032], and as such, it acts on the
aforementioned equivariant K-theory.

• The affine Yangian of gl1 [269, 1033], denoted Ÿh1,h2,h3(gl1) for h1 + h2 + h3 = 0 is
generated by ei, fi, ψi for i ≥ 0 and relations deriving from those of Üq1,q2,q3(gl1).
It is a stable limit of spherical degenerate DAHA. The equivariant cohomology of
MU(N) admits an action of Ÿq1,q2,q3(gl1) [268, 1021].
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• The algebra denoted SHc [268, 269] is isomorphic to the specialization of Ÿh1,h2,h3(gl1)
at h1 = 1 [1033]. It has various constructions, such as the spherical degenerate
DAHA of GL(∞), or the spherical cohomological Hall algebra (COHA) of the quiver
with one vertex and one loop.
Up to topological completions, SHc at particular values of the parameters matches
the universal envelopping algebra of the WN chiral algebra [268]. This leads to an
action of WN on the equivariant cohomology of the instanton moduli space MU(N),
which explains on the 4d gauge theory side the appearance of the WN symmetry of
Toda CFT.

The elliptic Hall algebra, DIM algebra, and their numerous degeneration limits were used
for AGT-related applications in [36, 281, 282, 385, 642, 648, 651, 929, 944, 970, 978,
980, 1012, 1013, 1017, 1034–1043]. As these algebras are intimately related and almost
equivalent for physics applications, it is hard to disentangle which precise algebra is
relevant to any given physics work. The choice is often based on which generators of
the algebra are the most physically meaningful: translating from one presentation of the
algebras to another is highly involved, see for instance [1033, 1044].

Further algebras have also been considered.

• The quantum toroidal algebra Üq1,q2,q3(slk) was introduced in [1045–1047]. The re-
lation between different presentations of Üq1,q2,q3(slk) and its analogue Ÿh1,h2,h3(slk),
and a further classical limit, were explored in [1048–1051]. I do not know if there
is are analogues of the DIM algebra or of the elliptic Hall algebra for this setting.
This class of algebras is relevant to the AGT correspondence in the presence of a
Zk orbifold [1052–1054], see also perhaps [37].

• Just as the WN chiral algebra embeds into SHc, suitable specializations of Eσ,σ
contain [1055] qW-algebras and quiver W-algebras, themselves explored further
in [84, 135, 625, 634, 645, 654, 659, 777, 868, 870, 1056–1073].

• A general point of view on BPS algebras is given by COHAs [1066, 1074–1077].

• The Skylanin algebra also appears in related literature. It is a one-parameter
deformation of the quantum group Uq(sl2).

Based on these generalized symmetry algebras there exists an elliptic version of the
refined topological vertex (an intertwiner of the elliptic DIM algebra) [927, 1078–1080] for
use in the 6d lift of the AGT correspondence, as well as a Macdonald refined topological
vertex [656, 660] and an analogue when the 4d spacetime is orbifolded [1053].

Matrix models. The AGT correspondence (including its q-deformed version) can be
explored by studying matrix models [954] since both instanton partition functions and
conformal blocks are Penner-like matrix model integrals with logarithmic potentials. See
the reviews [140, 308].

On the 2d CFT side the matrix model representation arises as Dotsenko–Fateev
free-field representations of conformal blocks, which are available provided the sum of
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Liouville/Toda momenta in each three-punctured sphere is suitably quantized. Internal
momenta in the conformal block translate to choices of contours in the matrix model
integral [289, 1081, 1082]. Moving away from these quantized slices in parameter space
requires analytic continuation, which is only completely under control in the g = su(2)
case since coefficients in various expansions are known to be rational functions of all
parameters in this case.

The link between 4d gauge theory and matrix models shows up as an equality of Zinst
with the matrix model partition functions [1083, 1084] (directly without going through
the topological string Ztop), a matching of the SW curve with the matrix model’s spectral
curve and of the SW differential with the 1-point resolvent [60, 370, 894, 1085, 1086]. Both
this link and the one with 2d CFT generalize to b2 = ϵ1/ϵ2 ̸= −1 in terms of β-deformed
matrix models [1083, 1086], to 5d [618, 1083, 1087], to asymptotically free theories [370,
373, 1088–1091], to su(N) theories [1087, 1092], to quiver gauge theories [1093] and
generalized quivers [1094] (higher genus C), and to an orbifold of R4 [21].

The relations are tested in various limits in [373, 1095–1099] and proven in some
cases [67, 307]. Since the Nekrasov–Shatashvili limit ϵ2 → 0 of Zinst quantizes the
integrable models underlying a 4d N = 2 theory’s SW solution, matrix models give useful
information about integrable models, see for instance [729, 919, 1100–1103]. Matrix
models have also been studied for applications to wild punctures and AD theories,
especially in the classical limit c → ∞ (Nekrasov–Shatashvili limit on the gauge theory
side) in [371, 372, 377, 379, 380, 384, 386–391, 1104–1108].

In another direction, modular properties of (properly normalized) instanton partition
functions under S-duality are studied in [218, 219, 224, 225, 573, 996, 997, 1109–1120]
through matrix model and other techniques. Other works and reviews abound [301, 629,
639, 1121–1134], as well as PhD theses [1135–1137].

Other connected topics. We list disparate subjects that are connected in various
ways with the AGT correspondence. Reference lists are both less complete and less
properly filtered here than elsewhere in the review.

Holographic duals of the 6d N = (2, 0) theory, of 4d N = 2 class S theories, and in
the presence of extended operators are explored in [448, 557, 587, 763, 764, 766, 1052,
1138–1156].

Supersymmetric localization applies to many background geometries, and for a
sample of interesting cases see [240, 503, 822, 848, 1157–1167] and reviews [1160, 1163].
Resurgence and Borel summability of various expansions of Zinst (and of other exact
results from supersymmetric localization) are studied in [468, 514, 1168–1173]. These
give some insight on how applicable resurgence techniques are in QFT.

There are numerous interplays with other properties of 4d N = 2 theories.

• Topological anti-topological fusion (tt∗ equations) [999, 1174–1176].

• The chiral algebra that appears as a protected subsector of 4d N = 2 theories [172,
423, 580, 681, 683, 792, 795, 949, 1067, 1177–1217] (see also [293, 1218–1222] and
references thereto).
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• Gauge/Yang–Baxter equation (YBE) [674, 713, 1223–1229] reviewed in [1230]. See
also [1231].

• The way class S theories are built by combining building blocks through gauging
suggests to introduce a notion of theory space [1232, 1233].

• Conformal bootstrap: besides the constructions discussed in this review, another
interesting method to find QFTs, specifically unitary CFTs, is the conformal bootstrap
program started in [1234] and applied to 4d N = 2 theories in [1235]. Some AD
theories in particular are located at corners of the regions of parameter space
allowed by the bootstrap.

The AGT correspondence has increased the interest in several old questions about
2d CFT.

• Computing conformal blocks, correlators, and fusion matrices, either through
recursion relations [227, 294, 371, 619, 1118, 1236–1244], using holography in the
large c limit [298, 479, 891, 1245–1262], or Chern–Simons theory [1263].

• Studying variants of Toda CFT, parafermionic Liouville CFT etc. [1264–1266].

• Some (disputed) links to the fractional quantum Hall effect [1141, 1267–1272].

• Isomonodromy problems, as it is now known that conformal blocks (and hence
Nekrasov partition functions), Fourier transformed with respect to internal momenta,
give solutions to Painlevé equations arising in isomonodromy problems for Fuchsian
connections [233, 394, 398, 401, 591, 910, 925, 946, 989, 1002, 1106, 1120, 1130, 1131,
1169, 1173, 1246, 1259, 1273–1305]; likewise the chiral blocks of the q-deformed
Virasoro algebra and qW-algebras give solutions of q-Painlevé equations [636–638].

Incidentally, the Liouville CFT has finally been defined mathematically from its path
integral: see [1306, 1307] and references therein. Other mathematical references include
the study of 6j symbols of (the modular double of) Uq(sl2) [88], relations to the geometric
Langlands correspondence or deformations thereof [517, 644, 1063, 1064, 1308, 1309].

Final thoughts. The construction of new theories by dimensionally reduction in
various geometrical setups has proven very fruitful. It has led to many new quantum field
theories that can be used as building blocks for yet more discoveries. The large number of
dualities uncovered in this way can be further enriched by considering extended operators
in their various incarnations. I hope that readers will participate in this exciting journey
charting the space of quantum field theories!
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Table of acronyms

ABJM Aharony–Bergman–Jafferis–
Maldacena (M2 brane worldvolume
theory)

AD Argyres–Douglas (strongly coupled 4d
N = 2 theories)

ADHM Atiyah–Drinfeld–Hitchin–Manin
(construction of instantons)

AGT Alday–Gaiotto–Tachikawa (4d/2d
correspondence)

ALE asymptotically locally Euclidean space
(resolution of C2/Γ)

BMT Bonelli–Maruyoshi–Tanzini (irregular
states in 2d CFT)

BPS Bogomol’nyi–Prasad–Sommerfield
(supersymmetric)

CFT conformal field theory
COHA cohomological Hall algebra
DAHA double affine Hecke algebra
DIM Ding–Iohara–Miki (algebra)
DOZZ Dorn–Otto–Zamolodchikov–

Zamolodchikov (three-point function
in Liouville CFT)

DS Drinfeld–Sokolov (reduction of
W-algebras)

FI Fayet–Iliopoulos (parameter in
supersymmetric action)

GW Gukov–Witten (surface defect)

IR infra-red (low energy/long distance)
JK Jeffrey–Kirwan (residue prescription)
KK Kaluza–Klein (reduction on circle)
LMNS Losev–Moore–Nekrasov–Shatashvili

(formula for the instanton partition
function)

NS Nekrasov–Shatashvili (b → 0 limit, i.e.,
ϵ1 → 0)

OPE operator product expansion
QFT quantum field theory
RG renormalization group
SCFT superconformal field theory
SQCD super-QCD (SYM plus matter)
SW Seiberg–Witten (curve Σ and

differential λ giving IR description and
prepotential F of 4d N = 2 theories)

SYM super-Yang–Mills (for us, 4d N = 2
vector multiplet)

TQFT topological quantum field theory
UV ultra-violet (high energy/short

distance)
VEV vacuum expectation value
YBE Yang–Baxter equation
YM Yang–Mills (non-supersymmetric)
YRISW Young Researchers Integrability School

and Workshop

A Special functions
In the main text we use the following special functions.

• The Gamma function Γ(x) = ∏reg
n≥0

1
x+n has poles at −Z≥0 and obeys the shift

formula Γ(x+ 1) = xΓ(x).
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• The Barnes Gamma function Γb(x) = ∏reg
m,n≥0

1
x+mb+n/b has poles at −bZ≥0 −

b−1Z≥0 and obeys the shift formula Γb(x+ b)/Γb(x) =
√

2πbxb−1/2/Γ(xb).

• The double-sine function Sb(x) = Γb(x)
Γb(b+1/b−x) has poles at −bZ≥0 − b−1Z≥0, zeros

at bZ≥1 + b−1Z≥1, and obeys the shift formula Sb(x+ b)/Sb(x) = 2 sin(πbx).

• The Upsilon function Υb(x) = 1
Γb(x)Γb(b+1/b−x) has zeros at −bZ≥0 − b−1Z≥0 and

bZ≥1+b−1Z≥1, and obeys the shift relation Υb(x+b)/Υb(x) = b1−2bxΓ(bx)/Γ(1−bx).

Note that Γb, Sb,Υb are invariant under b → 1/b.
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