
HAL Id: hal-03842174
https://hal.sorbonne-universite.fr/hal-03842174

Submitted on 7 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cooperative Co-Evolution and Adaptive Team
Composition for a Multi-Rover Resource Allocation

Problem
Nicolas Fontbonne, Nicolas Maudet, Nicolas Bredeche

To cite this version:
Nicolas Fontbonne, Nicolas Maudet, Nicolas Bredeche. Cooperative Co-Evolution and Adaptive Team
Composition for a Multi-Rover Resource Allocation Problem. European Conference on Genetic Pro-
gramming, Apr 2022, Madrid, Spain. pp.179-193, �10.1007/978-3-031-02056-8_12�. �hal-03842174�

https://hal.sorbonne-universite.fr/hal-03842174
https://hal.archives-ouvertes.fr

Cooperative Co-Evolution and Adaptive Team
Composition for a Multi-Rover Resource

Allocation Problem

Nicolas Fontbonne1, Nicolas Maudet2, and Nicolas Bredeche1

1 Sorbonne Université, CNRS, ISIR, F-75005 Paris, France
2 Sorbonne Université, LIP-6, F-75005 Paris, France

Abstract. In this paper, we are interested in ad hoc autonomous agent
team composition using cooperative co-evolutionary algorithms (CCEA).
In order to accurately capture the individual contribution of team agents,
we propose to limit the number of agents which are updated in-between
team evaluations. However, this raises two important problems with re-
spect to (1) the cost of accurately estimating the marginal contribution of
agents with respect to the team learning speed and (2) completing tasks
where improving team performance requires multiple agents to update
their policies in a synchronized manner. We introduce a CCEA algo-
rithm that is capable of learning how to update just the right amount of
agents’ policies for the task at hand. We use a variation of the El Farol
Bar problem, formulated as a multi-robot resource selection problem, to
provide an experimental validation of the algorithms proposed.

Keywords: ad hoc autonomous agent teams · multi-agent systems ·
marginal contribution · team composition · multi-robots · cooperative
co-evolutionary evolutionary algorithms (CCEA) · evolutionary compu-
tation · evolutionary robotics

1 Introduction

When multiple individuals get together to solve a task, it is sometimes diffi-
cult to identify who is actually contributing, and who is not. This is especially
problematic when the benefits are equally shared among individuals, including
with free-riders who invest a minimal amount of effort. Nature abounds from
such examples and various strategies evolved to mitigate the detrimental cost of
free-riding, such as partner choice or reputation [11,22].

The problem of identifying the marginal contribution of individuals has also
been studied extensively in cooperative game theory [18]. However, exact meth-
ods such as computing the Shapley value [17] require strong assumptions (e.g.
ability to replay coalitions) and unrealistic computation time, which have led
to a flourishing research into the design of approximate methods [21, 23, 24].
The basic idea of such methods is to identify the individual’s contribution by
computing the difference between the group performance with and without this

2 Fontbonne et al.

very individual (e.g. by removing it or by replacing it with an individual with a
default strategy).

In this research, we are interested in ad hoc autonomous agent teams where
agents must act together without pre-coordination [19], which implies that the
environment is non-stationary as all agents learn in parallel. This requires using
methods that can only alter individuals’ strategy, with neither a default strategy
being known nor the possibility to remove temporarily one particular individual.

Such problem settings have been explored in evolutionary computation for
multiagent systems, and notably with Cooperative Co-Evolutionary Algorithms
(CCEA) which were first introduced in [13, 14] and largely explored since then
(see [10] for a review of variants and applications). In particular, CCEA have
been explored in setups involving multiple robotic agents in tasks such as explo-
ration and foraging [7] and environment monitoring [15,16,25].

In this paper, we address the problem of isolating team members so as to
identify their contribution within the collective. On the one hand, one could
allow only a single agent to learn at a given time, making it possible to measure
accurately its contribution as other agents’ strategies would remain stationary.
On the other hand, several (or all) of the agents’ policies could be iterated at
the same time, possibly speeding up learning thanks to parallelization.

Balancing between providing accurate estimation of an individual contribu-
tion and parallelization of learning actually depends on the context at hand.
When rewards are sparse and depend on a single individual’s behavioural inno-
vation, it is preferable to bootstrap learning with large-scale exploration. How-
ever, whenever team performance increases it is more efficient to turn towards
a more conservative search so as to retain previous improvements. Finally, one
less obvious situation arises when the synergy between individuals is required to
improve performance, for example when two robots are required to open a door,
none of which would gain any benefit by acting alone.

The rest of the paper is organized as follows. Section 2 presents the problem
of team composition in CCEA. Section 3 presents two CCEA algorithms that
enable to tune the number of learning agents within one learning step. The two
algorithms differ with respect to how the balance between contribution estima-
tion accuracy and learning parallelization is set: fixed, or self-adaptive. Section 4
presents the problem used for evaluation, which is a modified version of the fa-
mous Bar El Farol problem [1] formulated as a multi-robot resource allocation
problem where coordination is required (i.e. several resources must be harvested
and harvesting is extremely beneficial it the optimal fixed number of robots is
met). Results are presented in Section 5 for both the ad hoc version of and the
self-adaptive versions of the algorithm.

2 Cooperative Coevolutionary and Team Composition

In its most simple setup, cooperative co-evolutionary algorithms (CCEA) rely
on a collection of independent evolutionary algorithms, with each dedicated to
optimizing the policy of one particular agent of the team [4,5]. Each independent

Title Suppressed Due to Excessive Length 3

algorithm works to improve the performance of one agent’s control parameters
using an assessment of the team performance.

Each algorithm maintains a population of parameter sets, which define can-
didate policies for the agent this algorithm is in charge of. At each generation,
performance assessment is computed for various teams. Then, each instance of
the CCEA tries to improve its agent’s performance by using classic evolutionary
operators of selection, mutation and recombination.

The problem faced by CCEA is thus a black-box optimization problem, with
the additional twist that evaluation is for the whole team, and optimization is
performed at the individual level, thus implying a weak link between team eval-
uation and the actual individual behaviour. Defining θ as the vector containing
the parameters provided by each algorithm of the CCEA, F as the fitness func-
tion used to assess team performance and f the fitness value, we have:

F : team parameters θ −→ fitness value f

Figure 1 illustrates the learning loop of a simple multi-agent black-box op-
timization procedure for cooperative co-evolution. A given algorithm in charge
of a particular agent i will provide policy parameters θi for this agent to be
evaluated in a team. These parameters will be evaluated alongside parameters
provided by the other agents. The team is then evaluated and a fitness value is
returned.

Environment

Learning
algorithm:

Fig. 1: The learning loop of interaction. All agents submit their own parameters inde-
pendently for evaluation. They are evaluated at the same time on the environment or
task. This return the fitness f of the whole team. Finally this feedback is used by all
agent to update their parameters submission for next iteration.

After an evaluation, each agent has to evaluate if the new set of parameters
proposed θi has contributed to the team fitness in a negative, positive or neutral
manner. It is necessary to extract from the fitness f = F (θ), the part which
depends only on the parameters of the agent i, F i(θi).

4 Fontbonne et al.

From an agent’s viewpoint, an increase in team performance may be due
to others, and may even shadow a decrease in the very contribution the agent
performs. In order to mitigate the intrinsically noisy fitness evaluation due to
team heterogeneity (team composition changes over time), multiple evaluations
of the same set of policy parameters will be performed for a given agent, so that
different versions of θi can be ranked and further selected to create new candidate
policies for the next generation. However, obtaining an exact assessment of one
individual’s contribution to the team remains elusive unless all other individuals
follow static policies. Considering teams formed of n team agents, with each
agent’s evolutionary algorithm maintaining a population of p candidate policies,
complexity would be O(pn) at each generation.

In order to provide results in a reasonable time, CCEA generally relies on
a partial evaluation of agents’ policy contribution, by evaluating a subset of
all possible team compositions at each iteration. Though such implementation
breaks down complexity, CCEA algorithms have been shown to have a tendency
to prematurely converge to stable states because of a deceptive fitness landscape
created by the choice of collaborators for evaluation [6,12]. Several methods have
been proposed to address these issues, including novelty-based rewards to escape
local minima [7] or automatically merging populations when agents’ behaviours
are similar to address scalability issues [8, 9]. However, the contribution of one
specific agent remains approximated rather than precisely measured.

3 Cooperative Co-Evolutionary Algorithms with Limited
Team Composition Update

In the simplest case, the global fitness F (θ) is the sum of each agent’s individual
fitness F i(θi) for the current team:

F (θ) =
∑

i∈agents

F i(θi)

With θi the policy parameters for agent i, and θ = (θ0, . . . , θi, . . . , θN−1),
i.e. the team policy parameters composed of the policies of N agents.

Whenever a single agent updates its policy parameters, the variation in over-
all fitness F (θt+1) − F (θt) will be equal to the variation in the fitness due to
the change in behaviour of the agent concerned δF i. This can be written as:

F (θt+1)− F (θt) = F−i(θ−i
t+1) + F i(θit+1)− F−i(θ−i

t)− F i(θit)

= F i(θit+1)− F i(θit)

= δF i

(1)

With F−i(θ−i) the performance of all individuals minus the agent i, assuming
θ−i is stationary between t and t + 1. Though an exact value for the contribu-
tion of agent i remains unavailable, δF i gives a proxy which provides sufficient

Title Suppressed Due to Excessive Length 5

information to measure both the direction and amplitude of the change due to
agent i’s new policy.

Assuming agents are independent, the above equation holds true and can
be used as long as only one agent’s policy is changed at a time. However, this
assumption incurs two important limitations:

– The computational cost of iterating over a single agent’s strategy at a time
is high (see previous Section), and there is a trade-off between the quality of
one agent’s contribution estimation and the expected gain at the level of the
team (e.g. whenever a single robot is needed to significantly improve team
performance, trying with all robots is relevant);

– The task may require coupling between the agents’ behaviour, and any team
fitness improvements may require that several agents change their policy
parameters simultaneously (e.g. moving a heavy object can only be done
with two robots). If not, a CCEA can get stuck on a local minimum if we
assume independence between agents and change only one agent at a time.

In order to address these issues and still retain the benefit of accurate esti-
mation of the agents’ contribution, we propose a CCEA algorithm where it is
possible to modulate the number of agents that are updated in-between team
evaluations. We use a collection of (1+1)-GA algorithm where each (1+1)-GA
algorithm i provides the policy parameters θi for its corresponding agent i, and
the whole team is evaluated using all agents with their policy parameters, i.e.
θ = (θ0, . . . , θN−1).

Algorithm 1: CC-(1+1)-GAkfixed

Introducing k mutants per iteration

1 k ← number of team members to be updated;
2 N ← total number of agents;
3 θparent ← parameters initialisation;
4 fparent ← F (θparent);
5 for gen < nb max generation do
6 ID ← randomly sample k agents;

7 θIDchild ← mutate(θIDparent);

8 fchild ← F (θIDchild, θ
−ID
parent);

9 if fchild ≥ fparent then
10 θIDparent ← θIDchild;
11 fparent ← fchild;

12 end

13 end

Algorithm 1 details the complete CCEA, which runs multiple instance of
(1+1)-GA in parallel, which we will refer to as the CC-(1+1)-GAkfixed

algorithm
from now on. Each (1+1)-GA algorithm maintains a population of two individ-
uals [3], a parent θiparent and a child θichild. Both are candidate policy parameters

6 Fontbonne et al.

for agent i. The parent is replaced when the child fares better, and a new child
is created by applying mutation on the new parent. Whenever a child fails to
outperform its parent, it is replaced by a new child mutated from the current
parent. The mutation operator depends on the problem (e.g. Gaussian mutation,
bit-flip, uniform draw).

At each new iteration, k agents are drawn and randomly changed in the
team, with 0 < k ≤ N . The k parameter is used to tune the amount of renewal
k/N for the team composition in-between iterations of the CCEA algorithm.
The k new team members are kept only if they provide an increase in the team
fitness. Therefore, the challenge is to find the most efficient size k of the number
of team agents to be modified at each CCEA steps. So far, k is fixed beforehand
by the user, and may benefits from prior knowledge on the task regarding pos-
sible required coupling between agents, in terms of number of agents to change
simultaneously to reach the global optimum in terms of team efficiency.

However, such prior knowledge may not be available and a relevant value of k
not only depends on the problem (e.g. some problems may require coupling be-
tween agents, others may not), but also on the current state of the optimization
(e.g. broad initial search steps vs. refined tuning near the optimal solution). In
order to address this, we propose the CC-(1+1)-GAkadaptive

, where the k param-
eter is learned during the course of evolution (see Algorithm 2). We propose to
choose the number of team members to be updated by using the adversarial ban-
dit learning algorithm EXP3 (Exponential-weight algorithm for Exploration and
Exploitation [2]) that tracks the success rate of various possible values for k so
far, which means both exploiting the current best value and exploring alternate
values. The goal of the adaptation mechanism is to converge to the best possible
value for k for the context at hand, i.e. the value that leads to the largest increase
of fitness, whether through rare but important increases or through small but
frequent increases.

As described in Algorithm 2, we define a set of J possible values for k
(k0, ..., kJ−1), each associated with a weight W (kj) monitoring the success rate
of a particular kj . Lines 10-13 of the algorithm detail which kj is selected for a
particular iteration. We compute the probability distribution of each kj which
depends on the weight W (kj) and the parameter γ of the algorithm. γ → 1
favours exploration (i.e. the choice of kj will be almost uniform). On the con-
trary, γ → 0 favours exploitation, taken into account the importance of the
weights W (kj). The fitness gain is normalized between [0, 1] (Line 20) and then
used to update the weight W (kj) (Line 21).

4 The Multi-Rover Resource Selection Problem

We define a problem that is a variation of the well-known El Farol bar problem
[1, 24] where each individual must choose a day to go to the bar among M
possible choices with the criterion of not being too numerous each days. In our
setup, we consider the problem where N independent robots must spread over M
resources, and where each resource has an optimal capacity c in terms of number

Title Suppressed Due to Excessive Length 7

Algorithm 2: CC-(1+1)-GAkadaptive

Replacing a varying number of team agents per iteration

1 K ← table of possible number of team members to update simultaneously ;
2 W ← table of weights for each k;
3 P ← table of probability for each k;
4 k ← number of team members to be updated ;
5 N ← total number of agents;
6 θparent ← parameters initialization;
7 γ ← real ∈ [0, 1], parameter for the EXP3 algorithm ;
8 fparent ← F (θparent);
9 for gen < nb max generation do

10 for j = 1, . . . , J do

11 P [j]← (1− γ) W [j]∑J
i=1 W [i]

+ γ
J

12 end
13 kj← random draw in K[] with probabilities P [];
14 ID ← randomly sample k agents;

15 θIDchild ← mutate(θIDparent);

16 fchild ← F (θIDchild, θ
−ID
parent);

17 if fchild ≥ fparent then
18 θIDparent ← θIDchild;
19 fparent ← fchild;

20 R← tanh (fchild
fparent

);

21 W [j]←W [j] exp(γR
P [j]J

);

22 end

23 end

of robots necessary to optimally harvest it. This is illustrated in Figure 2, which
provides an example where each robot chooses a resource.

Team performance f is obtained by adding each resource’s satisfaction ϕc.
For each resource, its satisfaction ϕc depends on the number of robots r who
chose it. This satisfaction is described by the following equation:

ϕc(r) =

{
Mr exp(−r

c) if r = c
r exp(−r

c) else.
(2)

where r represents the amount of robots on the resource, M the total number of
resources, and c controls the optimal number of robots required for the resource.

The satisfaction function diverges from the original formulation of the El
Farol Bar problem as the best team performance always implies that the number
of robots per resource must be optimal (exactly c robots per resource), even if
it implies some resources are left aside or only partially filled. The satisfaction
boost for the r = c case ensures that filling a maximum number of resources with
the c robots is the optimal strategy. An example of such function with c = 10 is
plotted on figure 3.

8 Fontbonne et al.

0 1 2 3 5 64

+ + + + ++10 1012 144 2 8=

= 66.483

Fig. 2: The N = 60 robots are represented here as little rovers that each must choose
between M = 7 resources. Here the selected agent chooses resource 5. When all robots
have made their choices, the satisfaction for each resources are computed and summed
to obtain the fitness f of the team.

0 10 60

number of agents r on resource m

0.00

25.75

3.66

φ
3
(r
m

)

Fig. 3: Satisfaction function with c = 10 of a given resource, depending on the number
of robots that picked it

The fitness of a team is then the sum of the satisfaction for all resources:

f =
∑

m∈[0,M−1]

ϕc(r
m)

Where rm is the number of robots at resource m. The robots must coordinate
to optimally fill a maximum number of resources.

To increase the value of this function, it is then necessary to move individuals
from crowded resources to resources with fewer robots, up to the extent that
resources with the exact number of robots are favoured.

The number of robotsN , the number of resourcesM , and the optimal number
of robots per resource c can be modified to change the structure of the problem.
In the next section, different instances of this problem are used to study various
properties of the Algorithms we proposed in the previous Section. In particular,
it is possible to set up the problem so that either single or multiple changes in

Title Suppressed Due to Excessive Length 9

the team composition may always yield too few or too many permutations in
the team distribution over resources for team performance to increase.

5 Results

5.1 Experimental setting

We use the Multi-Rover Resource Selection problem, with different number of
resources M , number of agents N , and optimal number of robots per resource
c. The three setups used are:

– Setup 1 with N = 120, M = 300, and c = 30. There are many resources,
each requiring a large number of robots. The maximum performance could
be reached by a team of exactly M × c = 300 × 30 = 9000 agents. Given
the limited number of agents, they must spread over a few of the resources
(N/c = 120/30 = 4 resources) so that the team reaches optimal performance;

– Setup 2 with N = 900, M = 300, and c = 3. The number of robots involved
makes it possible to reach the optimal team performance value for this setup
(N = M × c) if all agents are uniformly spread over the resources;

– Setup 3 with N = 60, M = 7, and c = 10. There exists several configu-
rations of pairing agents and resources which are local optima and cannot
be escaped by updating only one agent in the team. Figure 4 gives an ex-
ample of a sub-optimal configuration for which using k = 1 is detrimental.
When the algorithm gets into such a configuration, all possible updates of
a unique agent will decrease the team fitness. Escaping such a local opti-
mum requires either exploring new configurations at the cost of a (hopefully
temporary) decrease in team performance (see [7] for example using novelty
search in CCEA, which is out-of-scope of the current paper) or modifying
several agents at the same time (which is possible with k > 1).

In the following, we use both the CC-(1+1)-GAkfixed
algorithm with either

k = 1, 10 or 30, and the CC-(1+1)-GAkadaptive
algorithm (using EXP3) for learn-

ing the value of k in {1, 10, 30}. All experiments are replicated 32 times. Mean
and standard deviation for all algorithm variants are traced. Evaluations is used
on the x-axis to provide a fair comparison in terms of computational effort.

5.2 Fixed vs. Adaptive Methods for Team Composition Update

Starting with the three variants of the CC-(1+1)-GAkfixed
Algorithm, we can

observe different learning dynamics depending both on the value of k and the
setup at hand.

In the first setup (Fig. 5(a)), we observe a clear benefit for using k = 10 and
k = 30 during the first iterations. But this initial gain in performance does not
allow it to converge faster when using k = 1. In particular, a value of k = 30 is
extremely deleterious for the convergence as it fails to reach the optimum value
within the allocated evaluation budget. This tendency is even more visible in the

10 Fontbonne et al.

Current solution

10 10 10 10 7 8 5

10 10 10 10 7 7 6

Beneficial mutations from the current solution

= 113.251One optimal solution

10 10 10 10 10 10 0

= 154.509

= 113.109

10 10 10 10 6 8 6

= 113.186

Fig. 4: The resource selection problem has local minimums that can’t be escaped by
mutating only one agent. In this example, 60 agents must spread on 7 resources by
being 10 on 6 of them. In the state where 4 resources are selected by 10 agents, 2 are
selected by 7, and 1 by 6, modifying the selection of one agent can only decrease the
fitness of the system.

100 101 102 103 104

number of evaluations

114.5

115.0

115.5

116.0

f

(a) setup 1

100 101 102 103 104 105

number of evaluations

20000

40000

60000

80000

100000

(b) setup 2

k=1 k=10 k=30 adaptive k

100 101 102 103 104

number of evaluations

25

50

75

100

125

(c) setup 3

Fig. 5: Performance of the CC-(1+1)-GAkfixed algorithm with either k = 1, k = 10
and k = 30, as well as CC-(1+1)-GAkadaptive with k ∈ {1, 10, 30}. Performance f is
plotted as mean (solid lines) and standard deviation for the three setups considered
with respect to the number of fitness evaluations. Curves are plotted on a x-log scale.
There are 32 replications for each algorithm and for each experiment.

second setup (Fig. 5(b)). Using larger values for k provides a slight advantage
at the beginning but is quickly lost for both k = 10 and k = 30.

The outcome is rather different in the third setup (Fig. 5(c)) as using k > 1
allows to reach better performances and prevent the algorithm to get stuck on

Title Suppressed Due to Excessive Length 11

a local optimum. Indeed, the algorithm becomes stalled when using k = 1, the
structure of the problem making it impossible to improve team performance
without considering coupled synergies when updating team members.

Figures 5(a) and (b) show that the CC-(1+1)-GAkadaptive
Algorithm follows

the curves of the best performing algorithms using a fixed value of k. Figure 5(c)
also shows that the adaptive algorithm is able to adapt to a situation where the
CC-(1+1)-GAkfixed

algorithm would fail because of its fixed k value (here, using
k = 1 withholds convergence to an optimal team composition). Overall, dynami-
cally modulating the number of policies updated in the team composition always
results in performance curves closely matching the best out of the algorithmic
variants using a fixed value of k. This remains true even when the best variant
with a fixed k value is outperformed by another variant with a different value of
k, which confirms the relevance of the adaptive algorithm to act as an anytime
learning algorithm. In other words, the CC-(1+1)-GAkadaptive

Algorithm presents
the best choice when the problem and the evaluation budget are not known.

5.3 Dynamics of Adapting the Number of Team Agents to Update

We analyze how the CC-(1+1)-GAkadaptive
Algorithm is changing the value of

k throughout evolution for the three setups at hand. Figure 6 represents the
median value of k over the 32 repetitions for each of the three experimental
setups. We observe that the algorithm switches between the different values for
k, and follows different dynamics depending on the setup.

In the first setup, the method slightly favours k = 1 and k = 10 after a few
iterations of exploration. This bias is consistent with the performances observed
for k fixed, where the k = 30 version is less efficient (see Fig. 5). In the second
setup, the value of k decreases during the learning process to stabilize at k = 1,
allowing for some fine-tuning of team composition. The third setup displays

100 101 102 103 104

number of evaluations

1

10

30

m
ed

ia
n
k

(a) setup 1

100 101 102 103 104 105

number of evaluations

(b) setup 2

100 101 102 103 104

number of evaluations

(c) setup 3

Fig. 6: Median value of k over the 32 repetitions for the first (left), second (middle)
and third setups (right). Curves are plotted on a x-log scale.

somewhat different dynamics for the value of k, quickly switching from one value

12 Fontbonne et al.

to the other. The difference in performance between the different group sizes is
not large enough to make a radical choice, and the method chooses k uniformly
at each step without impacting the performances.

5.4 Sensitivity of meta-parameters

As described in Algorithm 2, CC-(1+1)-GAkadaptive
uses two meta-parameters,

which are:

– K = (k0, ..., kJ−1), the set of possible values for k;
– the egalitarianism factor γ that determines at each step whether k should be

chosen at random (uniform sampling), or selected with respect to the weights
of the k values, obtained from the cumulative fitness gain for each particular
value of k. The value of γ balances between exploitation and exploration, and
the EXP3 algorithm for multi-armed bandit problems has been extensively
studied elsewhere [2, 20];

In the previous section, these meta-parameters were fixed as follow: the set
of possible k was limited to {1, 10, 30}, the egalitarianism factor γ was set to 0.1.

100 101 102 103 104

114.5

115.0

115.5

116.0

f

∞ =
1

0.1

0.01

0.001

100 101 102 103 104 105

20000

40000

60000

80000

100000

∞ =
1

0.1

0.01

0.001

100 101 102 103 104

25

50

75

100

125

∞ =
1

0.1

0.01

0.001

100 101 102 103 104

number of evaluations

114.5

115.0

115.5

116.0

f k 2
{1, 30}
{1, 10, 30}
[1, 30]

100 101 102 103 104 105

number of evaluations

20000

40000

60000

80000

100000

k 2
{1, 30}
{1, 10, 30}
[1, 30]

100 101 102 103 104

number of evaluations

25

50

75

100

125

k 2
{1, 30}
{1, 10, 30}
[1, 30]

setup 1 setup 2 setup 3

exploration
team

 recom
position

Fig. 7: Sensitivity of the algorithm to meta-parameters. Each column represents one of
the different experimental setups. On the rows, one of the meta-parameter is fixed and
the other one is varying. On the top, the set of k are fixed but γ varies. At the bottom,
γ is fixed but the set of k varies.

Title Suppressed Due to Excessive Length 13

Figure 7 shows the sensitivity of the algorithm with respect to the different
meta-parameters. From top to bottom, the sensitivity to γ and the set of possible
k. The general conclusion from this study is that the algorithm is robust and
remains a relevant choice for anytime learning. Learning curves remain close to
what has been shown previously, with some exceptions for extreme values. In
particular, we can observe that:

– γ does not have a significant impact on the algorithm, provided that it
is not too small nor too high to efficiently modulate the exploration and
exploitation of k’s

– the algorithm is somewhat also sensitive to the cardinal of the set of possible
values for k. When there are too many possibilities to explore, the evaluation
of each choice takes more time and is, therefore, less accurate if the context
changes too fast. The effect of this exploration can especially be observed
for the second setup where the algorithm is less accurate when the value for
k can be chosen among 30 possible values (k ∈ [1, 30]).

6 Conclusion

In this paper, we present a cooperative co-evolutionary algorithm (CCEA) that
implements a collection of (1+1)-GA algorithms, each endowed with the task to
optimize the policy parameters of a specific agent while performance is assessed
at the level of the team. Our algorithm acts on team composition by continuously
updating a limited number of team agents, depending on the task at hand and
the level of completion. Therefore, the main contribution of this paper is to
describe an algorithm with a self-adapting team composition update mechanism
used throughout learning.

We showed that modulating through time the number of new policies added
to the current team makes it possible to provide efficient anytime learning, with-
out requiring a priori knowledge on the problem to be solved. Moreover, we show
that the algorithm can deal with problems where coupling between agents during
learning is mandatory to improve team performance.

Experimental validation was conducted using a variant of the El Farol Bar
problem, a famous problem in collective decision making, which was modified
to capture a multi-agent resource selection problem. Our algorithm is indeed
also relevant for multi-robotic setups, which have been recently studied using
various CCEA algorithms [7–9, 15, 16, 25], and future works are currently being
conducted in this direction.

Acknowledgements

This work is funded by ANR grant ANR-18-CE33-0006.

14 Fontbonne et al.

References

1. W. Brian Arthur. Inductive reasoning and bounded rationality. The American
Economic Review, 84(2):406–411, 1994.

2. Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–
77, 2002.

3. Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies - a comprehensive
introduction. Natural Computing, 1(1):3–52, 2002.

4. Kenneth A De Jong. Evolutionary computation: a unified approach. In Proceedings
of the 2016 on Genetic and Evolutionary Computation Conference Companion,
pages 185–199, 2016.

5. Agoston E Eiben and James E Smith. Introduction to Evolutionary Computing,
volume 53. Springer, 2003.

6. Pablo Funes and Enrique Pujals. Intransitivity revisited coevolutionary dynamics
of numbers games. In Proceedings of the 7th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’05, page 515–521, New York, NY, USA, 2005.
Association for Computing Machinery.

7. Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. Novelty-driven co-
operative coevolution. Evolutionary computation, 25(2):275–307, 2017.

8. Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. Dynamic team
heterogeneity in cooperative coevolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 22(6):934–948, 2018.

9. Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. Challenges in coop-
erative coevolution of physically heterogeneous robot teams. Natural Computing,
18(1):29–46, 2019.

10. Xiaoliang Ma, Xiaodong Li, Qingfu Zhang, Ke Tang, Zhengping Liang, Weixin
Xie, and Zexuan Zhu. A survey on cooperative co-evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 23(3):421–441, 2019.

11. Ronald Noë and Peter Hammerstein. Biological markets: supply and demand deter-
mine the effect of partner choice in cooperation, mutualism and mating. Behavioral
ecology and sociobiology, 35(1):1–11, 1994.

12. Liviu Panait. Theoretical convergence guarantees for cooperative coevolutionary
algorithms. Evol. Comput., 18(4):581–615, Dec 2010.

13. Mitchell A Potter and Kenneth A De Jong. A cooperative coevolutionary approach
to function optimization. In International Conference on Parallel Problem Solving
from Nature, pages 249–257. Springer, 1994.

14. Mitchell A Potter and Kenneth A De Jong. Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents. Evolutionary Computation, 8:1–29,
2000.

15. Aida Rahmattalabi, Jen Jen Chung, Mitchell Colby, and Kagan Tumer. D++:
Structural credit assignment in tightly coupled multiagent domains. In 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4424–4429. IEEE, 2016.

16. Golden Rockefeller, Shauharda Khadka, and Kagan Tumer. Multi-level fitness
critics for cooperative coevolution. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), pages 1143–1151,
May 9–13, 2020.

17. Lloyd S. Shapley. A value for n-person games. Contributions to the Theory of
Games II (Annals of Mathematics Studies 28), pages 307–317, 1953.

Title Suppressed Due to Excessive Length 15

18. Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

19. Peter Stone, Gal A. Kaminka, Sarit Kraus, and Jeffrey S. Rosenschein. Ad hoc
autonomous agent teams: collaboration without pre-coordination. In Proceedings
of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI’10, page
1504–1509. AAAI Press, 2010.

20. Richard S Sutton and Andrew G Barto. Reinforcement learning, Second Edition:
An introduction. MIT Press, 2018.

21. Kagan Tumer, Adrian K Agogino, and David H Wolpert. Learning sequences of
actions in collectives of autonomous agents. In Proceedings of the first international
joint conference on Autonomous agents and multiagent systems: part 1, pages 378–
385, 2002.

22. Stuart A West, Ashleigh S Griffin, and Andy Gardner. Social semantics: altru-
ism, cooperation, mutualism, strong reciprocity and group selection. Journal of
evolutionary biology, 20(2):415–32, 3 2007.

23. David H. Wolpert and Kagan Tumer. Optimal payoff functions for members of
collectives. Advances in Complex Systems, 4(2/3):265–279, 2001.

24. David H. Wolpert and Kagan Tumer. An introduction to collective intelligence.
Technical report, NASA, 2008.

25. Nick Zerbel and Kagan Tumer. The power of suggestion. In Proc. of the 19th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS
2020), pages 1602–1610, May 9–13, 2020.

	Cooperative Co-Evolution and Adaptive Team Composition for a Multi-Rover Resource Allocation Problem

