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ABSTRACT
In this paper, we explore how robots in a swarm can individually ex-
ploit collisions to produce self-organizing behaviours at the macro-
scopic scale. We propose to focus on two behaviours that modify
the orientation of a robot during a collision, which are inspired
by positive and negative feedback observed in Nature. These two
behaviours differ in the nature of the feedback produced after a colli-
sion by favouring either (1) the alignment or (2) the anti-alignment
of the robot with an external force, whether it is an obstacle or
another robot. We describe a social learning algorithm using evo-
lutionary operators to learn individual policies that exploit these
behaviours in an online and distributed fashion. This algorithm
is validated both in simulation and with real robots to solve two
tasks involving phototaxis, one of which requires self-organized
aggregation to be completed.

CCS CONCEPTS
• Computing methodologies → Evolutionary robotics; • The-
ory of computation→Multi-agent reinforcement learning.
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1 INTRODUCTION
Nature abounds with examples where self-organizing active units
can be observed, whether it is at the microscopic scale with ar-
tificial colloids or bacteria [14], or at the macroscopic scale with
animals [9], including humans [17]. One notable self-organizing
behaviour is that of self-alignment, where individual units orient
themselves with respect to one another to collectively move in
the same direction [4], which at the microscopic scale is produced
though collision-based interaction rather than sensing.

In this paper, we consider swarm robotics as one such kind of
system composed of active units. In swarm robotics, each robot
interacts with its immediate surrounding, and it is expected that
self-organization at swarm level can be attained to address a user-
defined task [3, 5, 13, 16, 32] and previous works have indeed taken
inspiration from active matter for multi-robot morphogenesis [18,
24, 28], coordination [21, 22] and clustering [10].

We propose to take advantage of physical interactions between
the robot and its surrounding. We exploit two simple behaviours
triggered when a collision occur, with both behaviours displaying
an opposite reaction when confronted to an external force:

• alignment, where a robot orients to align with the external
force experienced. In practical, the robot will turn away from
the point of collision until no external force is experienced
anymore. In case of collisionwith awall, the robot will escape
by following the wall, as no more collision occur anymore;

• anti-alignment, where a robot orients to align with the op-
posite of the external force experienced. The robot will turn
towards the point of collision, until a stable equilibrium is
reached. A robot colliding with a wall will thus turns towards
the wall up to the point the self-propulsive force and the
external force cancel each other. I.e. the robot will be stuck
facing the wall.

In the following, we simulate collision-based alignment and
anti-alignment on both simulated and real robots. However, we
have already observed such behaviours to independently emerge
naturally from physical interactions between robots using dedicated
exoskeletons (see [31] for details). To harness such morphological
computation mechanisms, we present a social learning algorithm
that is distributed over the robots and runs in an online fashion,
accounting for the robots’ limited communication capabilities. This
algorithm allows to learn efficient policies while having already
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deployed the robot swarm, which is an essential feature whenever
the environment and/or the exact outcome of physical interactions
are unknown before deployment.

2 METHOD
2.1 Active Matter Physical Model
The specificity of an active unit is to be propelled in a direction
of its own, defined by design. In the absence of obstacle or noise,
the active unit then naturally moves along this direction. This
description is however too simple. On one hand, one must include
the existence of various sources of noise, which primarily act on the
orientation of the self-propulsion. On the other hand, experiments
with model systems have demonstrated the existence of a coupling
between the orientation 𝒏 of the self-propulsion and the actual
velocity 𝒗 of the active unit [12, 31]. This coupling takes the form
of a torque, which aligns or anti-aligns 𝒏 with 𝒗. The minimal
equations describing the above behaviour read:

𝑚
𝑑𝒗

𝑑𝑡
= 𝐹0𝒏 − 𝛾𝒗 + 𝑭𝑤 , (1)

𝜏
𝑑𝒏

𝑑𝑡
= 𝜁 (𝒏 × 𝒗) × 𝒏 +

√
2𝛼𝜉𝒏⊥ . (2)

where𝑚 is the mass of the active unit, 𝐹0𝑛 is the self-propulsive
force, 𝛾 is a friction coefficient and 𝑭𝑤 is an external force, such
as the one exerted by a wall. 𝜏 is the characteristic time of the
orientational dynamics and 𝛼 is the amplitude of the noise 𝜉 (𝑡),
assumed to be Gaussian, with correlations ⟨𝜉 (𝑡)𝜉 (𝑡 ′)⟩ = 𝛿 (𝑡 − 𝑡 ′).
Finally, the orientation dynamics (Eq. (2)) contains the key ingre-
dient, specific to the model, namely the presence of an aligning
(when 𝜁 > 0), respectively anti-aligning (when 𝜁 < 0), torque of
the orientation 𝒏 towards the velocity 𝒗. In free space, the active
units performs a persistent random walk, with a short time ballistic
dynamics characterized by a velocity 𝑣0 = 𝐹0/𝛾 and a long time
diffusive dynamics with a diffusion constant 𝐷 = 𝛼/𝜏2. The effect
of the sign of 𝜁 on the dynamics of an active unit when it encoun-
ters a wall is illustrated on Figure 1. When 𝜁 > 0, the active unit
follows the wall; when 𝜁 < 0, it points into the wall and remains
stuck. A positive alignment was also shown to be at the root of
the emergence of collective motion in a system of vibrated polar
discs [20, 30].

2.2 Robotic Implementation
We implemented two behaviours, which we call alignment and anti-
alignment. Both are defined with respect to the robot rotation in
response to the relative position of a collision (with another robot,
or with an obstacle such as a wall). The detection of collision is
achieved by using short-range proximity sensors or bumpers on
the front-side of a round-shaped robot. Action is taken by setting a
rotational velocity (using a 2-wheel differential setup) resulting in
the robot turning either towards or away from the collision point,
depending on the behaviour considered.

• Implementation of alignment: using front sensors, a detected
collision triggers evasion by rotating in the opposite direc-
tion.

• Implementation of anti-alignment: similar to alignment, front
sensors are used to detect collision. However, rotation is now

Fw

F0

aligning 
torque (!>0)

Fw

F0

anti-aligning 
torque (!<0)

Alignment Anti-alignment

Figure 1: Illustration of the two variations of the active unit
model, with 𝐹0 the self-propulsive force and 𝐹𝑤 the external
force (applied from the contact point with the wall). Left: the
unit’s self-propulsive force aligns with the external force re-
sulting from the collision (e.g. the unit escapes as soon as it no
longer experience collision). Right: the unit’s self-propulsive
force anti-aligns with the external force, ultimately ending
up with the unit facing the external force (e.g. the unit get
stuck facing a the wall). See text for the full explanation.

Alignment Anti-alignment

Figure 2: Trajectory obtained with either behaviour. The cir-
cle shows the location of the robot at the end of its trajectory.
Left: the robot goes forward (with diffusion) and aligns with
walls to escape. Right: the robot goes forward (with diffusion)
and orients itself to face the wall.

triggered to face the collision event. In case of symmetry, no
rotation action is triggered.

With either behaviour, the robot keeps going forward even dur-
ing rotation. This means that a robot may exert a force on the
obstacle in front (i.e. it can theoretically push small objects or
robots).

As a default behaviour, which is applicable in the absence of a
collision event, the robot simply goes straight-forward to which a
small diffusion is added with a limited amount of Gaussian noise in
the orientation velocity. It should be noted that while we explicitly
implement diffusion, this is usually given for free when using real
robots due to motor and/or wheel wear, as well as (if applicable)
deviation of odometry or IMU through time.

Figure 2 illustrates our implementation in a pseudo-realistic
robotic simulation [8] of both straight-forward translation with
diffusion (left and right images), alignment (left) and anti-alignment
(right) behaviours. Diffusion during translation is achieved by adding
Gaussian noise of mean 0 and standard deviation of 1.0, with maxi-
mum value in [−3°, +3°] degrees. Maximal rotation speed during
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alignment or anti-alignment is within [−30°, +30°] (i.e. the robot
may rotate for 30° in-between calls to the robot controller), Max-
imal speed is 1/6𝑡ℎ the diameter of the robot in-between calls to
the robot controller. Assuming 10 control updates per second, this
corresponds to a robot with a translation speed of maximum 𝑥1.7
diameter per second and a rotation of maximum 300° per second,
which is the same order of magnitude of typical autonomous robots
such as the Kilobots [23] or Mona Robots [1]. For example, the
Mona robot (� ≈ 8.2𝑐𝑚, version with an ESP32 microcontroller)
rotates at a maximum of 180 deg per second and translates forward
at a maximum of 𝑥1.6 diameter per second.

2.3 Task
In this work, we evaluate the efficiency of the proposed behaviours
for addressing phototaxis with a group of robots. The objective is
for robots to maximize the light received, which implies standing
in the region which is closer to the light source. Previous works in
swarm and collective robotics have addressed phototaxis using ad-
hoc bio-inspired algorithms [2, 16, 19, 21, 25] as well as evolutionary
swarm robotics algorithms [11, 26, 27].

Phototaxis can be instantiated in various fashions, depending on
the structure of the environment, the number, location and nature
of light sources, etc. In particular, the light source can diffuse and
gradually loses intensity through space, or project a spot with
uniform light intensity. In the case of a diffusive light source, the
question of competitive access to the best spot may arise when
multiple individuals are considered.

In the following, we endow each robot with the capability to
perform a self-assessment of phototaxis score, which can be imple-
mented on-board each robot. Individual performance accounts for
the amount of light intensity perceived through a photosensor in
the last N steps. The phototaxis score is computed as:

𝑠𝑐𝑜𝑟𝑒𝑇 =

𝑇∑︁
𝑡=𝑇−𝑁

𝑙𝑢𝑚𝑇 (3)

with 𝑙𝑢𝑚𝑇 , the amount of light measured at the current time 𝑡
by the robot’s onboard photosensor, normalized in [0, 1]. At any
moment 𝑡 , the current photosensor value can be queried as:

𝑙𝑢𝑚𝑇 = 𝑝ℎ𝑜𝑡𝑜𝑠𝑒𝑛𝑠𝑜𝑟 .𝑔𝑒𝑡𝑆𝑒𝑛𝑠𝑜𝑟𝑉𝑎𝑙𝑢𝑒 (), 𝑙𝑢𝑚𝑇 ∈ [0, 1] (4)

2.4 Control
The control function is kept to the minimum, as a linear combi-
nation of sensory inputs which output sign is used to select the
behaviour. It is actually a Perceptron with only two inputs (incl.
one bias) and one output, which is computed as follows:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐻 (𝜃0 ∗ 𝑃ℎ𝑜𝑡𝑜𝑠𝑒𝑛𝑠𝑜𝑟𝑉𝑎𝑙𝑢𝑒 + 𝜃1) (5)
With 𝐻 the Heaviside step function and 𝑃ℎ𝑜𝑡𝑜𝑠𝑒𝑛𝑠𝑜𝑟𝑉𝑎𝑙𝑢𝑒 the

photosensor normalized value with 1.0 denoting a sensor satu-
rated with light. The Heaviside step function outputs either 0 or 1,
which value is used to select either the alignment behaviour or the
anti-alignment behaviour. Remember that whatever the behaviour
is used, the robot will always go forward (with diffusion) in the
absence of collisions.

𝜃0 and 𝜃1 are the policy parameters, with 𝜃1 acting as a bias
value to enable a non-zero output in the absence of light. The search
space is very small, with only two parameters, and the optimization
problem is basically to tune both parameters with respect to the
light intensity threshold relevant for phototaxis and aggregation
close to the light source. These parameters can be set by hand in a
controlled environment by measuring light intensity at the frontier
of the region where the robots should find a way to stop, possibly
by anti-aligning with an obstacle nearby.

However, if the environment is unknown, we face two prob-
lems. Firstly, the light intensity threshold must be discovered by the
robots following a trial and error in order to maximize the efficiency
of phototaxis. Secondly, and most importantly, we consider robots
with limited communication capabilities. This has an important
impact as the light intensity threshold optimization must be con-
ducted in an online and distributed manner, which we will describe
hereafter.

2.5 Learning
In order to learn the control parameter values, we rely on a dis-
tributed online evolutionary learning algorithm [7, 29] where each
robot uses particular policy parameter values, which can be ex-
changed with other robots and selected with respect to their perfor-
mance. In this class of problems, an algorithm is implemented on
each robot. The whole robot swarm running the algorithm shares
some similarities with an island model for parallel evolutionary
optimization, only with a highly dynamic reconfiguration of the
communication network that depends on robots’ actions and prox-
imity with one another.

This mimics the process of social learning where an individ-
ual’s innovation diffuses to neighbours and possibly invades the
whole population [6]. This makes it possible to deploy the robot
swarm without the need to a priori know the exact characteristics
of the environment (e.g.: minimum and maximum light intensities,
photosensor dynamic range, robot motor dynamics, etc.).

The artificial social learning algorithm we use is built on the
algorithm introduced in [15], referred to as the HIT algorithm (for
Horizontal Information Transfer). It is distributed over the robots,
and evolutionary optimization is conducted by passing messages
in-between neighbours. It uses local mutation and robot-to-robot
transfer of policy parameter values. The use of mutation allows
individuals to innovate by exploring new values for the parameter.
Parameter values that improve performance can then be copied by
robots within reach of the onboard communication device.

We extend the HIT algorithm by enabling each robot to store
candidate policy parameters from several other better-performing
robots before selecting and possibly mutating new policy parame-
ters (rather than selecting the first better-performing set of policy
parameters received, as in the original algorithm). Our algorithm is
termed HIT-Res, which uses a "reservoir" where incoming policy
parameters are stored. HIT-Res is described in algorithm 1, which
important features are the following:

• performance self-assessment is performed on-board (in the
current paper, we use equation 3). In order to ensure a reli-
able evaluation, a maturation period is defined during which
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the robot does not send nor receive information. The mat-
uration period is used to compute a reliable average score
with respect to the task compared to instantaneous noisy
evaluations (see Line 10);

• innovation is achieved through mutation: whenever policy
parameters are updated, a mutation event may occur that
can possibly introduce new values in the policy parameters.
Mutation has both a probability to occur and an amplitude
in terms of the number of parameters concerned (Line 20);

• diffusion is ensured by the transfer operator, which uses the
robot’s communication apparatus to (continuously) transmit
part or all of the policy parameters (and the current perfor-
mance self-assessment) to other robots within reach, if any.
It is important to note that robot-to-robot transfer is the only
way for robots to run the learning algorithm (i.e. there is no
central computer to conduct learning) (Line 11 − 14);

• policy parameters received from other robots are stored in a
reservoir (i.e. a list), from which the selection operator picks
a candidate set of policy values for updating some (or all)
the robot’s policy parameters. Selection only occurs for can-
didate solutions whose performance dominates that of the
current policy (if none is better, the reservoir is emptied,
and no selection occurs). This feature differs from the origi-
nal HIT algorithm by sampling several possible candidate
solutions, rather than just one (Line 16);

In this work, the choice of a lightweight social learning algorithm
and the low-dimensional policy search space (though continuous) is
motivated by a frugal approach to distributed online reinforcement
learning, which is nonetheless easily deployable in a swarm of
robots with limited computation and communication capabilities.

3 RESULTS
3.1 Learning in Simulation
We use a multi-robot simulation tool [8] to implement both the
alignment and anti-alignment behaviours, as well as the HIT-Res
social learning algorithm. Learning and policies are implemented
in Python, the simulation core is implemented in C++. Table 1 sum-
marizes the technical details of the robots and arena, and the source
code is available at https://github.com/YoonesMir/gecco2022-sourcecode.

The phototaxis environment is implemented by placing a diffu-
sive light that can be perceived from anywhere in the arena, but
with decreasing intensity depending on the distance to the source.
With respect to the objective function described in Equation 3, we
introduce a proxy value for computing the light intensity 𝑙𝑢𝑚𝑝𝑟𝑜𝑥𝑦

𝑡

as the normalized distance between the robot 𝑥 and the light source
𝑙 at time 𝑡 . This is written as:

𝑙𝑢𝑚
𝑝𝑟𝑜𝑥𝑦
𝑡 = 1 − 1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥

√︃
(𝑥𝑡 − 𝑥𝑙 )2 + (𝑦𝑡 − 𝑦𝑙 )2 (6)

With (𝑥𝑡 , 𝑦𝑡 ) the position of the robot at time 𝑡 and (𝑥𝑙 , 𝑦𝑙 ) the
position of the light. 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥 gives the maximum possible dis-
tance between the robot and the light source in a closed arena,
which ensures that 0 ≤ 𝑑𝑡 ≤ 1. We set 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑚𝑎𝑥 to be equal to
the diagonal length of the arena.

Algorithm 1: The HIT-Res algorithm (Horizontal Informa-
tion Transfer with Reservoir).
Data:
𝜋 : Policy function,
𝜃 : Policy parameters (random initial values), dim(𝜃 ) =𝑚,
𝛼 : transfer rate ∈ [0, 1],
𝜎 : mutation rate ∈ [0, 1],
𝑉𝑚 : mutation volume ∈ [1, dim(𝜽 )],
𝑇 : evaluation time,
𝑅 [𝑇 ] : Empty reward buffer of size 𝑇 ,
𝑟 : Null reward scalar,
𝐺 : Null score value (=

∑𝑇−1
𝑘=0 𝑅 [𝑘]),

a : Null action vector,
o : Null observation vector,
𝜗 : a subset of 𝜃 (𝑣𝑎𝑟𝑡ℎ𝑒𝑡𝑎 ⊂ 𝜃 )
𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 : messages received from other robots
𝐾 : maximum number of messages stored in the reservoir

1 begin
2 𝑡 = 0
3 while True do
4 o, 𝑟 = sense()
5 𝑅 [𝑡 mod 𝑇 ] = 𝑟
6 a = 𝜋 (o|𝜽 )
7 act(a)
8 𝑡 = 𝑡 + 1
9 if 𝑡 > 𝑇 then
10 𝐺 =

∑𝑇−1
𝑘=0 𝑅 [𝑘]

11 𝜗 = get_random_subset(𝜃 , 𝛼)
12 broadcast(𝜗 , 𝐺)
13 if 𝑛𝑒𝑤_𝑚𝑒𝑠𝑠𝑎𝑔𝑒 then
14 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 .add( {𝜗𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 , 𝐺𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔} )
15 if 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 .length() ≥ 𝐾 then
16 𝜗𝑢𝑝𝑑𝑎𝑡𝑒 ,𝐺𝑢𝑝𝑑𝑎𝑡𝑒 = 𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 .select_best()
17 𝜃 .update_with( 𝜗𝑢𝑝𝑑𝑎𝑡𝑒 ) if

𝜎 < 𝑟𝑎𝑛𝑑𝑜𝑚() then
18 𝜗 .mutate(𝑉𝑚)
19 end
20 𝑡 = 0 𝑅.empty()
21 end
22 end
23 end
24 end
25 end

Two experimental setups are devised according to the position
of a diffusive light:

• changing-light setup: the light source is placed outside the
arena, and its position alternates between two opposite walls
every 100000 iterations, which is the time it takes for a robot
to move from one wall to the opposite approx.25 times. It is
expected robots will converge towards the light source, and
follow it when moved;

https://github.com/YoonesMir/gecco2022-sourcecode
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arena 1000𝑝𝑖𝑥 × 1000𝑝𝑖𝑥
robot diameter 32𝑝𝑖𝑥
initial positions uniform random
max. translation speed 4px/step
max. angular speed ±30 deg/step
translation diffusion 3 × 𝑁 (𝜇 = 0, 𝜎 = 1) deg/step
Table 1: Technical details for the robot simulation

Perceptron
Inputs (light+bias) 2
Output 1
Search space R2

Initialization range [−1, 1]
HIT-Res
Evaluation time (𝑇 ) 400
Transfer rate (𝛼) 0.5
Mutation rate (𝜎) 0.01
Mutation volume (𝑉𝑚) 0.5
Reservoir size 3

Table 2: Parameters for policy and learning.

• center-light setup: the light source is placed in the center of
the arena. The challenge, in that case, is that a single robot
will never remain close to the light source only by itself as
there is no such stopping behaviour.

In the following, we present results with 60 robots running the
HIT-Res algorithm with a reservoir size of 3 (see Table 2 for all pa-
rameters). Learning in each setup is evaluated with 32 independent
runs. The robots’ initial positions and orientation are randomly
drawn, as well as policy parameter values (uniform distribution in
both cases).

Fig.3-top shows results in the changing-light setup. Results show
that performance increases over time for all runs, reaching a plateau
even before the light is moved to the opposite wall for the first
time (100000𝑡ℎ iteration). After the light is moved, performance
decreases immediately as most robots are now positioned at the
opposite end of the arena with respect to the light. Performance
drops and then recovers, confirming a phototaxis behaviour. Note
that each boxplot compiles results from 400 iterations, capturing
both the actual drop after the light is moved and the first steps of
recovery. Performance going up afterwards indicates that learning
is still ongoing at least for some robots. During the next occurrence
of light relocation, the performance drop is very small which is due
to the time taken by the now efficient robots to follow the light.

This is confirmed by looking at the trajectories, displayed in Fig.4.
In the second snapshot (last 400 iterations before relocating the
light), robots are shown to remain close to the light source by anti-
aligning to collide with any nearby obstacle (wall or robots). Just
after the light is moved (third snapshot), robots switch to alignment
to explore the environment by aligning with the force exerted by
obstacles and other robots and then back to anti-alignment when
close enough to the light source.
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Figure 3: Results for the changing-light (top) and center-light
(bottom) setups. Boxplots aggregate data from 32 indepen-
dent runs, considering the average score for each run during
400 simulation steps. Outliers are shown as losanges. In the
changing-light setup, the light moves from one wall to the
opposite every 100000 iterations (indicated by vertical lines).
X-axis: iteration of the robot simulation. Y-axis: compilation
of the scores of all robots of the 32 runs. See Section 2.3 for
the score metric.

We perform a similar experimental study with the center-light
setup. Fig.3-bottom shows that performance increases steadily to
reach a plateau when phototaxis has been learned by most robots.
The behavioural strategy is similar to what was observed in the pre-
vious setup with alignment used for exploration and anti-alignment
for aggregating with others, as shown in Fig.5. One important point
here is that in the absence of a wall near the light source, robots
rely on a self-organizing aggregation behaviour to perform photo-
taxis: it is mandatory for at least two robots to collide near the light
source to start forming an aggregate of robots at the right spot.

By looking closer at the robot’s behaviour, self-organized aggre-
gation is actually observed in both the changing-light and center-
light setups. As robots are physical entities, it is necessary that a
consensus is reached that benefits all robots with respect to the
value of the light intensity threshold from which anti-alignment is
triggered. A too large threshold would lead to sparse aggregation,
while a too small one would end up excluding robots that cannot
aggregate in an already overcrowded spot. This is illustrated by
looking at the reaction maps of robots from collective that have
successfully learned to self-aggregate. Reaction maps from Fig.6
shows the behavioural pattern adopted by the majority of robots in
both setups. They are obtained during a post-mortem study by plac-
ing a robot at every location in the environment and monitoring
the selected behaviour. As seen for both setups, the light intensity
threshold at which the anti-alignment behaviour is triggered is far
from the actual light source so as to enable all robots to aggregate.
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Figure 4: Typical robot trajectories for the changing-light setup throughout learning. The light source is initially positioned on
the left. It changes position after 100000 iterations. Each snapshot shows monitoring for 400 simulation steps. (1) trajectories
with initial random policies, light on the right; (2) trajectories of policies learned so far, just before the light is moved; (3)
trajectories just after the light is moved; (4) trajectories at the end of the run.

Figure 5: Typical robot trajectories for the center-light setup
throughout learning. The light source is positioned in the
center. Each snapshot shows monitoring for 400 simulation
steps. Left: trajectories with random initial policies. Right:
trajectories at the end of the run.

It should also be noted that a minor proportion of robots follow less
common behavioural patterns (less than 1/4𝑡ℎ of the robots, not
shown here) where only one behaviour is always triggered. While
some of these robots may fail to aggregate at the right spot, they
are more often to be trapped within an already formed aggregate
(see details in Fig.4 and 5, where aligners are sometimes trapped
within groups of anti-aligners).

We performed two sets of additional experiments to evaluate the
impact of using (1) a reservoir of candidate solutions, and (2) the
Neural Network control architecture. Fig. 7-top shows that using a
reservoir size greater than 1 significantly improves performance.
Increasing the sample size of candidate solutions from others is
beneficial, even though it implies less frequent parameter updates.
Fig. 7-bottom confirms that more complex neural network archi-
tecture including hidden layers is not required in the setups at
hand, possibly due to the alignment and anti-alignment behaviours
simplifying the control problem.

3.2 Validation on Real Robots
We previously used simulation to allow for the large number of
replications necessary to evaluate the social learning algorithm and
the proposed behaviours. However, the question remains open as to
how the alignment and anti-alignment are actually exploitable in a

Figure 6: Reaction Maps for the most common behavioural
strategy, built by measuring a robot’s behaviour selected
(small green dots for alignment, bigger red dots for anti-
alignment) depending on the location with respect to the
light source. Left: Changing-light setup (with light on the
left). Right: center-light setup. Reaction maps are built by
manually placing one robot at each location in the arena
and monitoring its output to determine behaviour activity
depending on the location. This is performed for all robots of
the last iteration for each run and setup. The most common
behavioural pattern is shown here for each setup.

real-world setting. In this Section, we turn our attention to the study
of the dynamics of the behavioural dynamics itself (both individual
and collective), first by implementing an ad hoc phototaxis strategy,
and then by learning phototaxis, as before.

We use a small group of Mona robots [1], an open-source robotic
platform using C++. The Mona robot is a round-shaped robot of
� ≈ 8.2𝑐𝑚 with two motorized wheels and a front passive ball
wheel. It carries 5 infrared sensors distributed on the front of the
robot which are used to measure the distance to nearby obstacles
(left, front-left, front, front-right and right sensors). We use the ESP-
32 microcontroller version (ver.2021) and we manually soldered an
additional photosensor on top of the robot in our lab.

We start by focusing on the validation of the behaviours, which
means we upload the policy described in the previous Section that
selects either behaviour depending on a light intensity threshold.
The light intensity input is no longer simulated but uses the raw
value provided by the photosensor (cf. Equation 3 and Equation 4).
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Figure 7: Analysis of the impact of reservoir size (top) and
neural networks architecture (bottom) on performance. Only
average are shown, and compile data from 32 independent
runs per variant, for the changing light setup (left column)
and the center light setup (right column). Top: using a reser-
voir size of 1, 2, 3 (same data from Fig.3) and 4. Bottom: using
a neural networks without hidden layer (same data from
Fig.3, 2 parameters), with one hidden layer of two neurons (7
parameters) and two hidden layers of two neurones each (13
parameters).

To account for sensor noise, light intensity is smoothed over one
second (10Hz sampling rate).

Experiments are performed in two setups which are close to the
previously cited, with a few differences to account for two types of
light projections (diffusion or light cone):

• border-light with diffusive light: a light source is positioned
close to a wall, similar to the changing-light setup described
before, but without changing its position during the experi-
ment. We use a softbox light system placed on one side of the
arena (approx. 60 𝑐𝑚 height, pointing to the nearest wall).

• center-light with a light cone: similar to the center-light
setup presented earlier, the light source is positioned in the
center of the arena. However, the light source is concen-
trated within a circular area without diffusion (the robot’s
photosensor is either strongly stimulated, or not at all). An
overhead video projector is placed 110 𝑐𝑚 above the arena
that projects a light cone of � ≈ 40 𝑐𝑚 in the center.

Figure 8 shows the experimental setup. The arena has a black
non-reflective flat ground, delimited by metallic walls of higher
height than the robots. The softbox for diffusive light is on the left
and the overhead projector is on top of the image, next to a Pixelink
camera system for visual monitoring. Technical details are provided
in Table 3.

We performed 10 experiments for the border-light setup using 7
robots with a hand-written policy that selects between alignment

Figure 8: Arena with 7 Mona robots, equipped with a softbox
light for diffusive light (no.1, left in the picture), overhead
projector for light cone projection (no.2, up), overhead Pix-
elink camera for tracking and monitoring (no.3) and black
occulting sheet for blocking external light interference (front
part is temporarily removed for the picture).

Arena
arena 89𝑐𝑚 × 72𝑐𝑚
diameter of spotlight cone 40𝑐𝑚
robot
robot diameter 8.2𝑐𝑚
max. translation speed 6.6𝑐𝑚/𝑠𝑒𝑐
max. rotation speed 90°/𝑠𝑒𝑐
policy update 10𝐻𝑧
𝑃𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 (per policy update) 0.05
𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒𝑑𝑖 𝑓 𝑓 𝑢𝑠𝑖𝑜𝑛 +/−9°

Table 3: Technical details for the real robotic setup

and anti-alignment depending on the current light intensity being
below or above a fixed threshold. Robots start in a circle in the
center of the arena, except for one which is in the center. All robots
start with random orientation, and positions on the circle vary
from one run to the other. A typical run (run no.2) is shown in Fig.9
through a series of snapshots. The first snapshot shows the initial
conditions for this run, and the following snapshots each show the
time when one robot has converged to a stationary position. Note
that any robot that remains in the same location is actually still
trying to move and to anti-align with the obstacle it faces (whether
it is a wall or another robot).

Fig.11-left tracks the number of robots that remain stationary
near the light source (≤ 3×�𝑟𝑜𝑏𝑜𝑡 away from the wall) throughout
the duration of the experiment, for each of the experiments. As
expected, the number of robots increases through time and a growth
that is close to linear and dampen near the end. This is expected
as phototaxis can be achieved by each robot independently from
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0 sec 12 sec 18 sec 36 sec 72 sec 77 sec 85 sec 94 sec

Figure 9: Phototaxis with diffusive light from the side using
7 Mona robots. The light is visible at the bottom (i.e. it is po-
sitioned above the left wall in Fig.8, video capture is rotated).
Robots are visible as white circles when close enough to the
light.

0 sec 8 sec 11 sec 24 sec 31 sec 109 sec

Figure 10: Phototaxis with a cone of light in the center us-
ing 6 Mona robots. Robots are visible as white circles when
standing in the light cone.

the other since it only requires to anti-align with the wall which is
closest to the light source.

We performed 10 experiments for the center-light setup using 6
robots (one robot had to be removed due to a technical problem).
Robots start in a circle in the center of the arena, outside the light
cone. All robots start with random orientation and positions on the
circle vary from one run to the other.

A typical run (run no.1) is shown in Fig.10, with the first event
involving two robots (2nd snapshot). As exposed in the previous
Section, phototaxis with a centered light using alignment and anti-
alignment behaviours can never be achieved by a single robot. Ag-
gregation in an empty space necessarily requires (at least) two
robots both performing anti-alignment so that each robot consti-
tutes an obstacle to the other. Once two robots form a stationary
group, other robots may join in. As the group grows bigger, the
possibility to join in also increases (larger surface occupied).

Fig.11-middle tracks the number of robots that remain stationary
in the light cone area for each of the experiments. Similar to the
previous setup, the number of stationary robots grows over time,
but with the first step towards successful group phototaxis always
involving two robots, which naturally takes more time than when
a robot only needs to come close to a wall. In the experiments,
we actually observed the diffusive dynamics to be critical during
moving without obstacles (see Sections 2.1 and 2.2, as well as noise
due to the robots’ mechanical design1. Such noise in the supposed
straight-forward default behaviour that occurs in the absence of
obstacle is what makes it possible to get away from walls and
explore the environment.

Finally, we implemented the social learning algorithm from the
previous Section on the Mona robots, with some adaptations to
comply with hardware constraints. We implemented communica-
tion using the onboard WiFi device (The robots do not feature a
local communication device). However, there is a significant time
delay for establishing communication between robots (≈ 1𝑠𝑒𝑐)

1motors are not completely synchronized nor aligned, no odometer was available for
feedback control.
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Figure 11: Number of robots standing in the light area
throughout the experiment. Left, border-light setup: station-
ary robotswithin 3 robot diameters from thewall fromwhere
light diffuse (7 robots, 10 indep. runs). Middle, center-light
setup: stationary robots within the spotlight (6 robots, 10 in-
dep. runs). Right: border-light setup with learning (7 robots,
3 independent runs). Thick black curve shows average. A
coloured discontinuous line corresponds to one run.

during which the robots cannot move. As this strongly limits the
amount of information that can be transferred from one robot to
another, a robot picks a random other robot to communicate with
and selects the policy parameters for transfer only if they have
a better score attached. The delay between each communication
attempt is such that the robot’s performance self-assessment can
be completely refreshed.

Results with 7 robots running the social learning algorithm in the
border-light setup are shown in Fig. 11-right. We use a transfer rate
of 1.0 (which is more elitist than before) to speed up convergence
and a mutation rate of 0.05. Learning is shown to make the robots
converge close to the light, using a similar strategy as when using
an ad hoc strategy. Learning takes of course significantly more time
than before ( ≈ ×2 to ×10) as the light intensity threshold must
be optimized. In the final steps of the experiments, we observe
that the learned behavioural strategy exploits the alignment and
anti-alignment behaviours for a phototaxis task, similar to what
was predicted in Section 3.1 for setups when the environment is
initially unknown.

4 CONCLUSION
The work presented here is at the interface of swarm robotics and
active matter, and provides two take-home messages. Firstly, simple
collision-based aligning and anti-aligning behaviours can be used to
perform macro-actions such as obstacle avoidance, self-aggregation
and exploration, thus leaving the robot’s policy with the task to
arbitrate between seemingly simple behaviours. Secondly, social
learning can be deployed in a group of simulated and real robots to
perform online distributed evolutionary learning that can fine-tune
the behavioural strategies of robots with limited communication
capability deployed in unknown environments.
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