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Abstract. Animal societies exhibit complex dynamics that require multi-level

descriptions. They are difficult to model, as they encompass information at different

levels of description, such as individual physiology, individual behaviour, group

behaviour and features of the environment. The collective behaviour of a group of

animals can be modelled as a dynamical system. Typically, models of behaviour are

either macroscopic (differential equations of population dynamics) or microscopic (such

as Markov chains, explicitly specifying the spatio-temporal state of each individual).

These two kind of models offer distinct and complementary descriptions of the observed

behaviour. Macroscopic models offer mean field description of the collective dynamics,

where collective choices are considered as the stable steady states of a nonlinear system

governed by control parameters leading to bifurcation diagrams. Microscopic models

can be used to perform computer simulations or as building blocks for robot controllers,

at the individual level, of the observed spatial behaviour of animals. Here, we present

a methodology to translate a macroscopic model into different microscopic models.

We automatically calibrate the microscopic models so that the resulting simulated

collective dynamics fit the solutions of the reference macroscopic model for a set of

parameter values corresponding to a bifurcation diagram leading to multiple steady

states. We apply evolutionary algorithms to simultaneously optimize the parameters of

the models at different levels of description. This methodology is applied, in simulation,

to an experimentally validated shelter-selection problem solved by gregarious insects

and robots. Our framework can be used for multi-level modelling of collective behaviour

in animals and robots.

Keywords: collective behaviour, decision-making, multi-level modelling, evolutionary

algorithms, biohybrid systems

1. Introduction

A ”mixed society” is defined as a group of robots and animals that are able to integrate

and cooperate: each robot is influenced by the animals, but can, in turn, influence the

behaviour of the animals and of the other robots. Individuals, natural or artificial, are

perceived as equivalent, and the collective decision process results from the interactions
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between natural and artificial agents [1, 2, 3, 4]. Robots are useful for a number

of reasons [5, 6]: validating models in silico [7], inducing stimuli to observe animal

feedback [8, 3, 9, 10], modulating animal collective behaviour [2], etc. Earlier research

works have used robots in mixed societies to study individual and collective animal

behaviours: robots have been mixed with a large and growing number of animal species;

including cockroaches in [8, 2], chicks in [3, 11], honeybees in [9], fruit flies in [12], fish

in [13, 14, 10, 15, 16, 17, 18, 19, 20] and multi-species societies in [21]. See also [22] for

a recent review on mixed societies.

Groups of animals are able to reach collective consensus when presented with

mutually exclusive alternatives. Over the years, scientists have compiled a large

collection of dynamics observed in collective decision-making systems based on

experimental observations. These systems can be complex and it can be challenging

to build models that appropriately describe the observed behaviours.

Animal societies are systems with a very large parameter space. They can be

modelled in numerous ways, using information about individual physiology, individual

behaviour, group behaviour and features of the environment [23, 24, 25]. The collective

behaviour of a group of animals can be viewed as a dynamical system, that exhibits

dynamics at several levels of organization (hierarchical organization). One of the

difficulties in the modelling process is to find the appropriate levels of description.

In such systems, complementary approaches to modelling (macroscopic vs.

microscopic; analytical vs. simulation) can be used: different models deliver the data

necessary for the robot design process, provide explicit and analytic descriptions of

observed collective behaviour, yield predictions that may be used for the modulation of

the collective behaviour of the society, and ease the development of robot controllers.

Models describing dynamical systems can typically be categorized into two groups,

describing two different levels of abstraction: macroscopic and microscopic (Fig. 1).

There are many studies, mainly in physics, examining methods and applications for

both groups of models and the relations between them. Macroscopic models describe

the system at the population level [26]. They formalize the dynamics of the system

mathematically, but they generally cannot describe the state of individual agents. They

cannot be used directly to drive the behaviour of agents in simulation, or to drive the

behaviour of robots in experiments. Microscopic models explicitly describe the state of

each individual agent (e.g. agent-based models of flocking, like the Vicsek model [27]).

They can capture the individual behaviours and their relations with the environment

and, moreover are easier to implement into robotic controllers.

These two kind of models offer complementary descriptions of the system. In this

context, collective choices can be described by the stable steady states of a nonlinear

system and are governed by control parameters leading to bifurcation diagrams. These

diagrams give the mean field asymptotic solutions of the system. Microscopic models

can be used to simulate the observed spatial behaviour of animals [28, 2, 29].

However, working with several models at different levels of abstraction can be

difficult and requires appropriate modelling frameworks and methodologies [24, 25].
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In particular, these models must be designed and calibrated to all exhibit the same

individual and collective dynamics. This poses the problem of navigating between

models of different levels of abstraction [24, 23].

1.1. Objectives

In this article, we present a methodology that automates the calibration of microscopic

target models on the basis of a reference macroscopic model, so that the dynamics

of the microscopic model can be described with the same bifurcation diagram as the

dynamics of the macroscopic model. The scientific question that we address in this

paper is thus the following: how to automatically calibrate models at different

level of description to exhibit the same collective dynamics, at all levels

of description, for specific sets of parameter values corresponding to a

bifurcation diagram leading to multiple steady states.

These tasks are usually performed empirically or manually by different authors,

sometimes for the same experimental system. Here, our methodology aims to formalise

and automate these tasks and at the same time to optimise the parameters of the models

according to the experimental data and the different collective behaviours observed.

The proposed method is general and does not depend on the specific details of

the models presented here. The selected models serve as a case study because for this

experimental system all three types of models exist in the literature.

We propose to automate the calibration of microscopic models, using information

both at the macroscopic level (a pre-existing macroscopic model) and the microscopic

level (pre-established knowledge of the animal individual behaviour). The objective of

this approach is to automatically calibrate this new microscopic model (i.e. optimize the

parameters) to exhibit collective dynamics that fit the predictions of the macroscopic

model, with the added ability of accurately simulating the microscopic interaction

between individuals.

Methodologies to calibrate microscopic models directly from experimental data,

by using optimization algorithms, were already presented in [23, 30]. Our presented

methodology improves upon these works by optimizing a microscopic model to

correspond to the dynamics exhibited by an entire bifurcation diagram.

This means that in this type of system, several states can coexist for the same

parameter values. Moreover, the calibration takes into account the variation of one or

more bifurcation parameters which make the system’s states appear or disappear, i.e.

different types of coexisting collective behaviour.

Our methodology calibrates models with generalization capabilities, enabling them

to exhibit different dynamics for different experimental parameters.

In the following, we apply our methodology to the collective decision-making

problem described in [28, 2], where a group of cockroaches must reach a consensus on a

preferred resting site (a shelter). These papers introduced an experimentally validated

ordinary differential equations (ODE) model of cockroach shelter-selection dynamics.
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Here, starting from a mean-field ODE model (macroscopic), we use experimental data

on individual cockroach behaviour from [31, 7] as a-priori microscopic information. We

show how our method can be used to calibrate a target model using these two sources

of information. We consider two target models: a Markov-Chain (MC) agent-based

microscopic model [29] and an agent-based Hybrid model, combining macroscopic and

microscopic information, that was already used with manually defined parameters in [2].

These models drive the behaviour of virtual agents in simulation. We use evolutionary

algorithms to automatically calibrate the parameters of the MC and Hybrid models.

They are validated by comparing their shelter-selection dynamics to those exhibited by

the MF model.

In [2], Halloy et al integrate robots into a group of cockroaches to modulate their

collective behaviour. Here, we consider this problem in simulation, with cockroaches

agents and a small number of robotic agents. The cockroach agents are driven by the

MC and Hybrid models optimized previously in animal-only simulations. The robotic

agents are driven by MC and Hybrid models with human-calibrated parameters. We

show that it is possible to program the robots to modulate the collective behaviour

of the whole society. As such, we show that our methodology could help the design of

robotic controllers to modulate the collective behaviour of societies in biohybrid systems

(societies of animals and robots).

Macroscopic models can convincingly describe collective dynamics, but cannot

be implemented directly in robotic controllers. Robot controllers are intricately

microscopic, as they describe the behaviour of individual agents. One major challenge

must be overcome to design appropriate robotic behaviour in mixed-societies

of animals and robots: how to go from the collective decision dynamics

observed in animals to an algorithmic implementation in robots. In previous

studies on mixed societies, this process has been carried out empirically. For example,

in [2] collective decision-making in cockroaches is modulated using robots. The authors

used observation both to build a macroscopic model and to program the robot behaviour

by tinkering. Although the results are promising, designing the robot behaviour proved

very challenging, suggesting that automation would be highly beneficial.

The relevance of our approach is not limited to the field of animal collective

behaviour and biohybrid systems, as it tackles the problem of automatically moving

between models at different levels of description (from macroscopic to microscopic),

a key problem in the modelling of nonlinear dynamical systems. It is especially

relevant to the design of mixed-societies robotic controllers. Moreover, in a

large portion of the literature, the calibration of model parameters is only done for

specific solutions – typically only one state of the system. Here, with our methodology

we can automatically calibrate all models for a set of states of the system corresponding

to a bifurcation diagram.
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Figure 1: Differences between macroscopic and microscopic models Models of

dynamical systems can be separated into two categories: macroscopic and microscopic.

Macroscopic models describe the global state of the system (i.e. the state of a

population). They usually take the form of sets of equations (e.g. ODE) encapsulating

a mean-field hypothesis. Microscopic models (usually agent-based) describe the state of

each individual agent. The agent motion strategy is often represented as a Markov chain.

Macroscopic and microscopic models complement each other, describing dynamics at

different levels. Microscopic models can include spatial information about the agents,

which enables them to be used to simulate the modelled behaviour.

2. Methods

We simulate the experimental set-up from [28, 2] (Fig. 2): this set-up is composed of a

circular arena with two identical shelters (resting sites). Each shelter is sufficiently large

to host the entire insect group. Two species of cockroaches are considered: P. americana

and B. germanica. The cockroaches choose collectively to rest under one of these shelters

[32, 28]. Individuals have no a priori information about the shelters occupation and

spatial position, and decide only between staying under a shelter and leaving it to search

for another. The cockroaches tend to aggregate under the shelters.

This set-up is well adapted to the study of collective decision-making because it

allows to quantitatively analyse the interplay of social and environmental mechanisms

leading to collective choices. Group-living animals have to choose between alternative

resource sites. In this context, a central question includes determining which individuals

induce the decision, when and how [28, 2].

We consider three models of cockroach collective behaviour in a shelter selection

problem (Table 1): a macroscopic mean-field model (MF model), a microscopic markov

chain model (MC model), and a hybrid model combining macroscopic and microscopic

levels of abstraction. All three models can handle time-discrete data. The MF model

does not include extended spatial information on individuals, while the MC and Hybrid

models include explicit spatial information. Because the latter also include a microscopic

component, they can be implemented as robotic controllers. A classification of models

according to their level of abstraction can be found in [23].
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Figure 2: Experimental set-up used in [2]. It includes two identical shelters

and both cockroaches (P. americana, approximate size: ∼ 4cm, surface: 600mm2,

or B. germanica, size: ∼ 0.25cm, surface: 3mm2) and robots (surface: 1230mm2 in

P. americana set-ups, 6.15mm2 in B. germanica set-ups) in a circular arena (diameter:

1m for P. americana, 14cm for B. germanica).

Name Experimentally Validated Wall-Following Behaviour Constant Speed

Mean Field (MF) yes [28, 2] no yes

Markov Chain (MC) yes [31, 7] yes no

Hybrid partially [2] no yes

Table 1: Comparison of the models studied. The MF model is a global

description of the problem. The MC model is an agent-based model using a Markov

chain representation. The Hybrid model combines macroscopic information (nonlinear

propensities drawn from the MF model) and spatial information (with an approach

similar to that of the MC model).

2.1. Mean field description: Ordinary differential equation model

Halloy et al. [2] describe a mathematical model of the collective dynamics of mixed

groups of cockroaches and robots in a shelter-selection problem (from [28]). This model

was designed to take in account the following experimental facts: (i) individuals explore

their environment by moving randomly, and randomly reach the shelters; (ii) they

rest in shelters according to their quality (in this set-up, it is mainly determined by

darkness); (iii) the presence of conspecifics influences their behaviour, through social

amplification of their resting time; and (iv) no long-range (across shelters) interactions

occur among individuals. This model describes mixed groups of animals and robots,

in set-ups with two shelters; animals and robots exercise an equivalent influence on

the collective decision-making process, and exhibit similar and homogeneous behaviour.

The model is used as a quantitative explanation as well as an overall (macroscopic)
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guidance for the design of the robot and its controller. The model takes in account the

fact that robots and insects do not occupy the same surface.

The following set of ODEs represents the evolution of the number of individuals in

each shelter (and outside), in a set-up with two shelters:

dxi

dt
= xe µi

(
1− xi + ωri

Si

)
︸ ︷︷ ︸

Probability of animals to join site i

−xi
θi

1 + ρxi+βri
Si

n︸ ︷︷ ︸
Probability of animals to leave site i

(1)

dri
dt

= re µri

(
1− xi + ωri

Si

)
︸ ︷︷ ︸

Probability of robots to join site i

−ri
θri

1 + ρr
γxi+δri

Si

nr︸ ︷︷ ︸
Probability of robots to leave site i

(2)

C = xe + x1 + x2, R = re + r1 + r2, M = R + C (3)

We use a mean field description of the system, instead of a exact representation, to

take the fluctuations of the system into account. Table 2 describes the parameters of

this ODE model.

Variables xi and ri represent respectively the numbers of cockroaches and robots

present in shelter i; and xe and re the numbers outside the shelters. Parameters C

and R are respectively the total numbers of cockroaches and robots (state variables).

Parameter M is the total number of agents (cockroaches and robots). Parameter Si is

the carrying capacity of shelter i. The parameter ω corresponds to the surface of one

robot expressed as a multiple of the surface of one cockroach. Equations 1 and 2 take into

account the probabilities of animals and robots to join or leave (corresponding to 1/mean

resting time) a site. The parameter µi is the maximal kinetic constant of entering the

shelters for insects; µri is the equivalent parameter for robots. The parameter θi is the

maximal probability of leaving a shelter for insects (θri for robots). The parameters ρ

and n characterise the influence of the insect conspecifics (ρr and nr for robots). When

both shelters are identical (as it is the case in this study), the parameters describing

them are equal: S1 = S2; µ1 = µ2; µr1 = µr2; θ1 = θ2; θr1 = θr2. Parameters γ, β and δ

are respectively the influence of cockroaches on robots, of robots on cockroaches, and of

robots on robots. The greater they are, the greater the mutual influences. The influence

of animals on animals is equal to 1.0, and is not considered in [2]: the assumption is

made that this parameter is imposed by biology, and cannot be changed in experiments.

However, parameters γ, β and δ can be modulated by changing the design of the robots,

either in term of hardware or control (behaviour). In [2], the robots are coated with a

pheromone, as the interaction dynamics of cockroaches societies is mainly chemotactile.

A higher concentration of pheromone corresponds to a higher value of β.

Because of crowding effects, the probability of an individual joining a shelter

decreases with its level of occupancy. We define a measure σ = S/C, corresponding

to the sites’ carrying capacity as a multiple of the total population.
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When no robots are present (R = 0) and only animals are considered, two different

dynamics are observed. The bifurcation point is close to σ = 0.8 for P. americana, and

σ = 1.0 for B. germanica. Before the bifurcation point (0.4 ≤ σ < 0.8 for P. americana,

0.4 ≤ σ < 1.0 for B. germanica), only one configuration exists, corresponding of an

equipartition of the individuals (x1/C = x2/C = 1/2, xe = 0). After the bifurcation

point (σ > 0.8 for P. americana, σ > 1.0 for P. americana), two stable configurations

exist, corresponding to all individuals in one of the shelters (either x1 ≈ 0, x2 ≈ 1, xe ≈ 0

or x1 ≈ 1, x2 ≈ 0, xe ≈ 0) [28]. Only results with a population of 50 cockroaches are

represented in Fig. 3, but similar dynamics are observed with different population sizes.

Parameter Value for P. americana Value for B. germanica Optimized Description

P 2 Number of sites

Si Carrying capacity of shelter i

C 50 Number of agents

xi Number of agents in shelter i

xe Number of agents outside the shelters

M
F

µi 0.0027s−1 0.001s−1 Maximal kinetic constant of entering a shelter

θi 0.44s−1 0.01s−1 Maximal rate of leaving a shelter

ρ, n 4193, 2.0 1667, 2.0 Influence of conspecifics

M
C

lc [1.0, 500.0] cm yes Mean length of path

ac [−π, π] yes Geometric mean, angle of departure

τc,exit ]0.0, 10.0[ s yes Mean time an agent follows a wall

vc,c ]0.0, 3.0[ cm.s1 yes Mean speed in central zone

vc,p ]0.0, 3.0[ cm.s1 yes Mean speed in peripheral zone

sc,i,n [0.0, 1.0] yes Probability of stopping in shelter i with n neighbours

τc,i,n ]0.0, 1000.0[ s yes Mean stop duration in shelter i with n neighbours

d ]0.8, 1.0[m yes Diameter of the central zone

H
y
b
ri
d

θi ]0.0, 0.50] s−1 yes Maximum rate of leaving a shelter

ρ, n [500, 5000], 2.0 yes Influence of conspecifics

l [1.0, 500.0] cm yes Mean length of path

a [−π, π] yes Geometric mean, angle of departure

v ]0.0, 3.0[ cm.s−1 yes Constant speed of agents

Table 2: Parameters in the MF, MC, and Hybrid models. The parameter

values for the MF model are from [2] and [28]. We only consider the case where

M = 50. In set-ups with two shelters, the MF, MC, and Hybrid models have 18, 46 and

20 parameters respectively. The parameter values used for the MC and Hybrid models

were obtained through the calibration process described in Sec. 3 and Supplementary S1.

The animal influence on animals is equal to 1.0, and is kept constant in [2]: we assume

that this parameter is imposed by biology and cannot be changed in experiments. All

parameters of the MC and Hybrid models are optimized, using the method described

in Supplementary S1, to exhibit the collective dynamics described in the reference MF

model.
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Figure 3: Bifurcation diagrams and distributions of 50 (C) B. germanica

(Panels A and B) or P. americana (Panels C and D) cockroaches in the

first shelter as a function of σ [28]. The bifurcation diagrams are represented as

bi-dimensional histograms of the results of using 1000 resolutions for each parameter

set. In the bifurcation diagrams (Panels A and C), the (greyscale) colour intensity of

each bin of the histograms corresponds to the frequency of observed experiments. The

diagrams are symmetric for all tested values of σ, so only one shelter is represented. The

bifurcation point is close to σ = 0.8 for P. americana, and σ = 1.0 for B. germanica.

Before the bifurcation point (0.4 ≤ σ < 0.8 for P. americana, 0.4 ≤ σ < 1.0 for

B. germanica), only one configuration exists, an equipartition of the individuals between

the two shelters (x1/C = x2/C = 1/2, xe = 0). After the bifurcation point (σ > 0.8

for P. americana, σ > 1.0 for P. americana), two stable configurations exist, with all

individuals concentrated in one of the two shelters (either x1 ≈ 0, x2 ≈ 1, xe ≈ 0 or

x1 ≈ 1, x2 ≈ 0, xe ≈ 0).
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Peripheral zone:
 Wall-following behaviorCentral zone:

 Random-walk behaviorEnter a shelter

Leave a shelter

Under a shelter: Stop

Probability of stop:

Mean stop duration:

Mean speed:

Mean time following wall:
Mean speed:

Figure 4: Markov chain model of the cockroach individual behaviours. The

arena contains two zones: the peripheral zone (where agents display a wall-following

behaviour), and the central zone (where agents display a random-walk behaviour).

Shelters are in the central zone. When an agent enters a shelter, it has a probability of

stopping for a random duration before exiting the shelter. The probability of stopping

under a shelter depends on the number of neighbours present in the shelter, and can

differ for each shelter. Only 10 neighbours are considered in our experiments. In set-ups

with two shelters, this model has 46 parameters per population.

2.2. Markov chain model

We use the Markov chain described in [29] as an agent-based model of cockroach and

robot behaviour. This model is inspired by the agent-based aggregation models in [31, 7]

that describe the collective behaviour of cockroaches in a similar set-up.

Cockroaches tend to follow the walls of the arena when they are already close

to them. The model defines two zones in the arena. The ring area that borders the

walls of the arena is called the peripheral zone, while the rest of the arena is labelled

as the central zone. In the peripheral zone, agents follow a wall-following behaviour

for a random number of time steps (the mean time is denoted τc,exit). In the central

zone, agents follow a random-walk behaviour, with trajectories composed of a recurring

alternation of straight lines (of randomly chosen length, with a mean length of lc) and

rotations (of randomly chosen angles, with a geometric mean of ac). The shelters are

all in the central zone. We do not model the actual trajectories of cockroaches.

When agents enter a shelter, they have a probability of stopping (parameter sc,i,n)

for a random duration (parameter τc,i,n) before moving away from the shelter. Similarly

to [7], this probability depends on the number of agents present under the shelter,

as cockroaches are gregarious during their resting period. However, in this model (as

opposed to [31, 7]), the probability of stopping when under a shelter differs between

shelters: this model is more general, and can be used to describe more complex

behaviours with asymmetric decision-making dynamics [29]. When the cockroaches

are not under a shelter, their movements are not influenced by the presence or absence

of neighbours.

Figure 4 represents the Markov chain used in this model. The relevant model

parameters are found in Table. 2.

We use two different parameter sets of the MC model to describe either cockroaches

or robot behaviour. However, all cockroaches are considered to exhibit an homogeneous
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behaviour (all cockroach agents share the same parameters). Similarly, all robots agents

share the same parameters. We make this choice for simplicity reasons: the main

message of this paper can be explored without the need to take individual variability

into account.

2.3. Hybrid model

Here, we introduce a model of the collective behaviour of cockroaches using information

at both macroscopic and microscopic levels of abstraction. We call this multi-level

model the ’Hybrid’ model. This model was already used with manually defined

parameters in [2], but was not formally described previously. This hybrid model

was done to facilitate the development of the behavioural architecture of the robots

[33, 2]. Compared to the MC model, which presents a biomimetic description of

the insects trajectories, the Hybrid model is a compromise between biomimetism and

ease of implementation as robotic controller. The robot control architecture is a

behaviour-based controller [34] composed of a multi-level collection of behaviours. Each

behavioural building block can take inputs from the robot sensors and/or from other

behavioural building blocks, and send outputs to the robot actuators and/or to other

behaviours. The behaviours are arranged in a hierarchy in which the behaviours on the

higher levels integrate or arbitrate the ones on the lower levels. At the higher level the

Hybrid model is used as a building block that takes into account the speciality of the

agents, and thus allows to build the robot controller. The Hybrid model is a crossover

between the macroscopic MF model, which easily describes collective behaviour and site

occupation, and the microscopic MC model, which details the spatio-temporal behaviour

of single agents. As such, it is a multi-agents model (like the MC model), but it also takes

into account macroscopic information (like the MF model). For ease of implementation,

the hybrid model does not include a wall-following behaviour, and only considers simple

arenas with no distinctions between central zone and peripheral zone. The agents can

have two states: moving, or resting under a shelter. In contrast to the MC model, the

agents move with a constant speed v.

The Hybrid model builds on the MF model, introducing several parameters from

the MF model (Table 2). The Hybrid model has a smaller dimensionality than the

MC model: in set-ups with two shelters, the MC models has 46 parameters (43 without

counting wall-following dynamics), while the Hybrid model has 20 parameters. It allows

the Hybrid model to be easier to calibrate than the MC model.

Figure 6 describes the Hybrid model using a Markov chain representation of the

behaviour of a single agent. When the agents are not under a shelter, they follow a

random-walk behaviour (microscopic behaviour). As in the MC model, this random-

walk behaviour involves trajectories composed of a recurring alternation of straight lines

of randomly chosen length, with a mean length of l, and rotations of randomly chosen

angles, with a geometric mean of a. When agents enter a shelter, they stop, and have a

probability of leaving the shelter at each subsequent time-step. This probability, taken
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from Eq. 1 and 2, is computed using macroscopic information. For the cockroaches

agents, this probability of leaving the shelter is defined as:

θi

1 + ρxi+βri
Si

n (4)

For the robotic agents, this probability of leaving the shelter is defined as:

θri

1 + ρr
γxi+δri

Si

nr
(5)

This behaviour can be described as macroscopic, as it requires information about the

density of agents under the shelter. This combination of microscopic and macroscopic

components makes it a multi-level (or hybrid) model.

As in the MC model, we use two different parameter sets of the hybrid model to

describe either cockroaches or robot behaviour. However, all cockroaches are considered

to exhibit an homogeneous behaviour (all cockroach agents share the same parameters).

Similarly, all robots agents share the same parameters.

Figure 5 presents examples of the trajectories of single cockroaches in a simulation

with a population of 50 cockroaches with the Hybrid model.

Figure 5: Two example trajectories of a one simulated cockroach, using the

Hybrid model, in a population of 50 cockroaches. The arena contains two shelters.

Each grey line represents the (random-walk) trajectory of one agent. These trajectories

are not meant to fit the natural trajectories of actual cockroaches: we designed our

models to reproduce qualitatively the observed random exploration. The opacity of the

line reflects simulation time. The timeframe of all simulations is 8 hours.
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Parameterized 
Random walk

Stop under shelter

MacroscopicMicroscopic
Encountering

 site Probability of leaving site:

Leaving site

Figure 6: Markov chain representation of the Hybrid behavioural model

Table 2 gives the parameters of the model. The model describes two kinds of behaviour:

when the agents are not under a shelter, they will exhibit a random-walk behaviour,

following a recurring alternation of straight lines and rotations. This behaviour can be

described as microscopic because agents use only local information to determine their

course of action. When agents encounter a shelter, they stop. At each subsequent time-

step, the stopped agent has a probability of θi

1+ρ
xi+βri

Si

n (for cockroaches) or θri

1+ρr
γxi+δri

Si

nr

(for robots) of leaving the shelter and returning to random-walk behaviour. This

behaviour can be described as macroscopic, as it requires information about the

density of agents under the shelter. This combination of microscopic and macroscopic

components makes it a multi-level (or hybrid) model.

2.4. Models calibration

To use the MC and Hybrid models describing animal behaviour in simulation, we must

calibrate them to exhibit the same decision-making dynamics as the MF model. As the

MF model is parametrized using experimental data, it allows the MC and Hybrid models

to accurately describe the (macroscopic) site-selection dynamics of the cockroaches. The

calibration process is described in Fig. 7.

We optimize the parameters for the individual cockroaches in the MC and Hybrid

models. The optimization algorithm will identify interesting solutions (i.e. sets of

model parameters). The performance of each proposed solution will then be tested

(”evaluated”), by first computing a collection of simulations where agents are driven by

the model with the parameters sets associated with the solution, and second quantifying

how the agents behaviors in those simulations match the dynamics of the reference (MF)

model. The latter is achieved as follows. We consider simulations with differing values

of the number of robots (N) and of the sites’ carrying capacities (S). This allows us

to compute the bifurcation diagrams of each tested solution (w.r.t. σ = S/N). This

bifurcation diagram will finally be compared to the bifurcation diagram of the reference

(MF) model. The performance score (”Fitness”) of each individual corresponds to

the difference between the solution diagram and the reference diagram measured by

the Hellinger distance. The optimization algorithm will iteratively search for high-

performing solutions, based on this score.

Table 2 lists the parameters of these two optimized models. Instances of the MC
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and Hybrid models using these parameters are simulated for different values of σ. This

yields bifurcation diagrams for each optimized individual, similar to those in Fig. 3.

As there is little a priori information about the parameter space, and as

it is relatively high-dimensional, we use the state-of-the-art CMA-ES evolutionary

optimization method [35] to optimize the parameters of the MC and Hybrid models. To

evaluate the difference between two parameter sets, we use a distance metric between the

two resulting bifurcation diagrams. This method is described in the Supplementary S1.

3. Results

3.1. Models Calibration

Our goal is to find parameter sets of the MC and Hybrid models describing animal and

robot behaviour so that the resulting collective dynamics, observed in simulations, fit the

solutions of the MF model describing animal behaviour. We use use the methodology

presented in Sec. 2.4. We consider two types of simulations, for both P. americana and

B. germanica cockroach species. The first type describes a purely biological system, with

only 50 cockroaches (either P. americana or B. germanica) and no robots. It is used as

the biological reference case. The second type is devoted to biohybrid groups made up

of 45 cockroaches (either P. americana or B. germanica) and 5 robots. The number of

robots is kept small to reflect the settings used in a mixed-society experiment [2], where

a minority of robots can control the whole mixed group behaviour. The parameters sets

of models describing robot behaviour are chosen empirically.

We consider populations of 50 individuals. Similar results are observed with

populations of 16 and 100 (results not shown).

Figure 8 shows to the distribution of agents in the two shelters, using parameters

from the best-performing optimized individuals after 100 optimization runs. Panels A

and C show results from simulations with 50 cockroaches and no robots. Panels B and

D show results from simulations with 45 cockroaches and 5 robots. Only results from

the bifurcation diagram at selected values of σ are shown. More generally, results before

the bifurcation point (σ < 0.8) are similar to results at σ = 0.4, and results after the

bifurcation point (σ ≥ 0.8) are similar to results at σ = 1.2.

Both the MC and Hybrid models can be optimized to approximate correctly the

decision-making dynamics described by the MF model, as shown in Fig. 8. Our

methodology can generate many different parameter sets for the MC and Hybrid models.

Optimized parameters that produce the collective dynamics described by the MF model

can be associated to highly variable agent behaviour. In the MC model, the parameter

d, the diameter of the central zone of the arena, is optimized: when this parameter is

very close to the diameter of the peripheral zone, the resulting agents do not exhibit any

wall-following behaviour. In the MC and Hybrid models, the parameters that influence

stopping behaviour (sc,i,n, τc,i,n, θi) vary less than the other parameters, with only a few

islands of relevant values in the explored ranges.
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Reference:
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Figure 7: Workflow of the automated calibration of models by optimization.

The optimized bifurcation diagram and the reference bifurcation diagram are both

converted to one-dimensional histograms, by normalizing the sum of all bin values to 1.0.

The optimizer will maximizes the fitness, which is computed by the formula: Fitness =

1.0 −Dhellinger(Boptimized/Nu, Breference/Nu) where Nu is the number of columns in the

bifurcation diagrams (10) and Boptimized and Breference are one-dimensional histogram

versions of the respective bifurcation diagrams. The term Nu is a normalization term.

Dhellinger(P,Q) = 1√
2

√∑d
i=1(

√
Pi −

√
Qi)2 is the Hellinger distance [36]. This approach

is described in detail in the Supplementary S1

We show that simulations performed with 45 cockroaches and 5 robots exhibit the

same dynamics as the simulations of groups with 50 cockroaches and no robots (Fig. 8).

In this case the robots are governed by the same behavioural models as the insects, but

do not have the same parameter sets as those used to describe the natural behaviour

of the cockroaches. The detailed microscopic behaviours of the robots, e.g. trajectories

and movement patterns, can be very different from the microscopic behaviours of the

animals. Nevertheless, we show that our methodology can be used to optimize the

parameters of robot behavioural models in biohybrid systems to mimic correctly the

decision-making dynamics of the animals.
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Figure 8: Proportion of 50 agents in the first shelter for chosen values of σ,

using three different models: MF, MC and Hybrid. Panels A and C are obtained

from simulations using 50 cockroaches (Panel A: P. americana ; Panel C: B. germanica).

Panels B and D are obtained from simulations using 45 cockroaches and 5 robots (Panel

B: P. americana ; Panel D: B. germanica). Results for MF, MC and Hybrid models

results are shown respectively in red, green, and blue. The bifurcation point is close

to σ = 0.8 for P. americana, and σ = 1.0 for B. germanica. The other σ parameter

values chosen are before the bifurcation point (σ = 0.4 for P. americana , σ = 0.6 for

B. germanica), and just after the bifurcation point (σ = 1.2 for P. americana , σ = 1.8

and σ = 2.0 for B. germanica). The best sets of optimized model parameters are used,

after 100 runs of optimization. The diagram is symmetric for all tested values of σ,

so only one shelter is represented. Calibrated versions of the MC and Hybrid models

behave similarly to the MF model: (1) Before the bifurcation point (0.4 ≤ σ < 0.8

for P. americana, 0.4 ≤ σ < 1.0 for B. germanica), only one configuration exists, an

equipartition of the individuals between the two shelters (x1/N = x2/N = 1/2, xe = 0);

(2) After the bifurcation point (σ > 0.8 for P. americana, σ > 1.0 for P. americana),

two stable configurations exist, with all individuals in only one of the shelters (either

x1 ≈ 0, x2 ≈ 1, xe ≈ 0 or x1 ≈ 1, x2 ≈ 0, xe ≈ 0).
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Figure 9: Examples of modulation of the biohybrid group behaviour

when robots are optimized to change the behaviour of cockroaches (A:

P. americana, B: B. germanica). (red: MF model, green: MC model, blue:

Hybrid model). Results in red, green and blue are the final states corresponding to

the change of steady states induced by the robots. Results in dark red, dark green, and

dark blue correspond to the reference results, from experiments with only insects and no

robots (from Fig. 8). Values of σ are chosen around the bifurcation point (P. americana:

σ = 0.8, B. germanica: σ = 1.0), and just after the bifurcation point (P. americana:

σ = 1.2, B. germanica: σ = 1.8). Results before the bifurcation points are not shown.

.
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3.2. Modulation of collective behaviours

We also test if our methodology could be applied to calibrate robot models so that they

can modulate the collective dynamics of a group of cockroaches and robots. We consider

simulations, for both P. americana and B. germanica cockroach species. In these

simulations, cockroach behaviour is described by the MC or Hybrid models calibrated

to have the same collective dynamics as the reference MF model. Robot behaviour is

also described by the MC or Hybrid models, but with different parameter sets. We

find relevant parameters of models describing robot behaviour empirically, for different

proportion of robots, and for different values of σ. These examples of results of the

modulation of the mixed-society of cockroaches and robots are found in Fig. 9. This

shows that our methodology could be also applied to optimize parameter sets of models

describing robot behaviour for a modulation task. Additionally, Fig. 9 also presents

examples of modulation of a mixed-society described by the MF model. In this case,

we find empirically interesting robot behaviour related parameters of the MF model.

These preliminary results suggest that a larger number of robots than 5 may be needed

to modulate a population of 50 agents. We will investigate how robots models can be

calibrated automatically to modulate the collective dynamics of a mixed-society in a

subsequent study.

4. Discussion

We tackle the problem of moving between models of different levels of abstraction in

the context of animal collective decision-making. Animal collective behaviour can be

described macroscopically (analytical description of the behaviour of the population)

or microscopically (explicit description of the behaviour and states of individuals and

their interactions with the environment). The two types of models are complementary.

Our methodology enables translation from one to the other: we automatically optimize

the parameters of microscopic target models on the basis of a reference macroscopic

model from the literature. We apply this methodology to the cockroach shelter-selection

problem described in [28, 2]. The Mean Field macroscopic model used as a reference is

described in [2].

We consider two target models, both agent-based. The MC model [29] is a

microscopic model inspired by the literature on individual cockroach behaviour [32, 7].

The Hybrid model uses both macroscopic and microscopic information. Both the MC

and Hybrid models can be used both to replay the behaviour of animals in simulation

and for implementation as robot controllers. We automatically generate the parameters

of the MC and Hybrid models for cockroach agents, calibrating them to display the

collective behaviour and site-selection dynamics described in the Mean Field model.

The MC and Hybrid models presented in this study can directly be implemented

into a robot. However, here our approach does not explain how to translate them

automatically into robotic controllers. This question was tackled in [37] by using formal
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methods and supervisory control theory to automatically generate robot controller code

and to validate it so that it translates into robot behaviours matching a given formal

specification.

Here, we use a user-defined metric (the bifurcation diagrams) to compare the results

in simulation of two different pairs of models and parameter sets, during the optimisation

process. As a result, the obtained models and parameter sets only approximate

the collective dynamics of individuals, and not the behaviours (trajectories) of each

individual. This could be further improved by considering the calibration of these

models as a multi-objective process where the first objective would cater to the collective

dynamics, and additional objectives would cater to the individual behaviour of the

individuals. Alternatively, one could design a methodology similar as the like in [38],

where no metric is specified, by co-evolving simultaneously models of robot behaviours

and classifiers of the resulting behaviour in simulation. These classifiers would be trained

to identify whether or not the resulting behaviours of the optimised models are distinct

from the behaviours from reference experiments.

More generally, complex systems exhibit multi-level dynamics (hierarchical

organisation), with both global and local behavioural patterns. Recent studies

have investigated the micro-macro link : the relationship between macroscopic and

microscopic descriptions of multi-level behavioural dynamics [39, 40, 41, 42]. This

problem also applies to the design of swarm group robotic controllers [39, 41, 43, 44, 45].

Our methodology is a first step toward the automatic generation of controllers for robots

in a mixed society of animals and robots. Mixing animals and robots can be useful for

the study of animal behaviour, and even to modulate their individual or collective

behaviour.

Few works in the literature on animals and robotics attempt to tackle the problem

of transitioning from models of one level of abstraction (reference model) to another

level of abstraction (target model). Moreover, these studies have generally considered

the transition from microscopic to macroscopic models [41, 46, 47]. The transition

methodology adopted by these studies is incremental, and relies on the creation of

intermediate models, dealing with both macroscopic and microscopic information, and

that share some parameters with both the reference and the target models. In [41],

this methodology is applied to go from a microscopic model to a macroscopic model of

the behaviour of a swarm of autonomous robots in a collaborative task. The resulting

model outperforms human-calibrated macroscopic models. In [46], a time-continuous

kinetic mean field version of the Couzin-Vicsek model is obtained from its discrete

microscopic version. In [47], continuous macroscopic models of pedestrian behaviour are

obtained from discrete microscopic agent-based models. Little work in the literature has

investigated how to automate and generalize the transition between models at different

levels of abstraction. The transition process can also be more challenging if the reference

and target models have no (or few) common parameters, or if their formulation is too

different.

Our approach can be applied to other modelling problems involving a transition
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between different levels of description: either from a macroscopic one to a microscopic

one, or the other way around, provided that the considered models at several levels of

abstraction already represent the same kind of dynamics. This approach is illustrated

here with three models that we designed to represent the same studied system: a

macroscopic model that deals with the dynamics of site occupancy, and two models

with microscopic components that mirror this problem by describing how a focal agent

can move from a resting state under a site to a random walk in the middle or at the

edge of the arena. To generalise to other systems, it is necessary to first design several

models that would represent a particular system, but at different levels of abstraction.

Then our approach can be used to calibrate the parameters of these models so that they

exhibit the exact same dynamics, with respect to a given bifurcation diagram from a

given reference model (that can be at any level of abstraction).

In particular, it may be possible to apply our approach to model, calibrate, and

modulate the collective behaviour of other species. For instance, it could be used

to calibrate models of fish behaviour to match what would be observed in collective

decision making experiments. The work of Couzin et al. [48] is a good example of

a fish collective behavioural study where models at different levels of abstraction are

introduced to describe various features of the observed experiments. In the latter, the

authors investigate consensus in fish groups, and asses whether a strongly opinionated

minority can exert its influence on group movement decisions. The authors propose

two models of the observed behaviours: an adaptive-network model (macroscopic and

analytical) and a spatially explicit model (microscopic and in simulations). The authors

present the phase diagram of the studied system based on the results of the adaptive-

network model. Our approach could have been applied here to calibrate other models

(for instance the spatially explicit model proposed by the authors) to directly match

the dynamics of this phase diagram. Another example would be the work of Calovi et

al. [49], that presents an in-depth analysis of three prominent collective decision-making

dynamics of fish: swarming, schooling and milling. That study relies on a fish collective

dynamics model from the literature [50] and the authors compute its phase diagram.

In this setting, our approach could be used to calibrate another model (microscopic

and/or macroscopic) to exhibit the dynamics of a reference phase diagram. These two

studies are similar to the present article in the sense that they focus on dynamics with

a co-existence of three states (two stables and one unstable states) that correspond to

collective choices. All three works rely on bifurcation or phase diagrams to present the

transition between these states. These diagrams could in turn be used as reference of

our methodology to calibrate any models describing these dynamics.

In our simulation, both the MC and hybrid models exhibit relatively similar

performances – however their differences in design imply different challenges to

implement them as robotic controllers in experiments (”sim-to-real” task). Both models

can easily be implemented and calibrated on robots, as the only major difference between

the two models is the type of parameters used. Our algorithm does not use complex

features in its implementation on robots: it is only required that each robot knows the
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number of robots in its neighbourhood. In this case, the implementation of the Hybrid

model and the MC model have approximately the same level of complexity. In a robot

implementation, the parameters of the behavioural models often need to be adjusted to

obtain the same results as in simulation. In the case of the MC model, all parameters will

be related to the local interactions of the robot, which may make calibration easier than

for the hybrid model (which deals with both macroscopic and microscopic information);

however, the Hybrid model has fewer parameters than the MC model, which may make

the Hybrid model easier to calibrate in robotic experiments. Overall difficulties will

depend on the problem and personal preferences.

Another study could include an application of this methodology to more complex

set-ups, with more than two shelters and more than two population types. Our

methodology could also be extended by generating microscopic Markov Chain models

from scratch, without a priori structural knowledge (i.e. the type and number of states).
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[8] G Sempo, S Depickère, JM Amé, C Detrain, J Halloy, and JL Deneubourg. Integration of an

autonomous artificial agent in an insect society: experimental validation. In From Animals to

Animats 9, pages 703–712. Springer, 2006.

[9] T Landgraf, M Oertel, D Rhiel, and R Rojas. A biomimetic honeybee robot for the analysis of

the honeybee dance communication system. In IROS, pages 3097–3102, 2010.

[10] Leo Cazenille, Bertrand Collignon, Yohann Chemtob, Frank Bonnet, Alexey Gribovskiy, Francesco
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[27] T Vicsek, A Czirók, E Ben-Jacob, I Cohen, and O Shochet. Novel type of phase transition in a

system of self-driven particles. Physical review letters, 75(6):1226, 1995.
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[48] Iain D Couzin, Christos C Ioannou, Güven Demirel, Thilo Gross, Colin J Torney, Andrew Hartnett,

Larissa Conradt, Simon A Levin, and Naomi E Leonard. Uninformed individuals promote

democratic consensus in animal groups. science, 334(6062):1578–1580, 2011.

[49] Daniel S Calovi, Ugo Lopez, Sandrine Ngo, Clément Sire, Hugues Chaté, and Guy Theraulaz.
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