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Electrochemistry is central to many applications, ranging from biology to energy science. Studies now involve
a wide range of techniques, both experimental and theoretical. Modelling and simulations methods, such
as density functional theory or molecular dynamics, provide key information on the structural and dynamic
properties of the systems. Of particular importance are polarization effects the electrode/electrolyte interface,
which are difficult to simulate accurately. Here we show how these electrostatic interactions are taken into
account in the framework of the Ewald summation method. We discuss, in particular, the formal set up
for calculations that enforce periodic boundary conditions in two directions, a geometry that more closely
reflects the characteristics of typical electrolyte/electrode systems and presents some differences with respect
to the more common case of periodic boundary conditions in three dimensions. These formal developments
are implemented and tested in MetalWalls, a molecular dynamics software which captures the polarization of
the electrolyte and allows the simulation of electrodes maintained at a constant potential. We also discuss the
technical aspects involved in the calculation of two sets of coupled degrees of freedom, namely the induced
dipoles and the electrode charges. We validate the implementation, first on simple systems, then on the well-
known interface between graphite electrodes and a room-temperature ionic liquid. We finally illustrate the
capabilities of MetalWalls by studying the adsorption of a complex functionalized electrolyte on a graphite
electrode.

I. INTRODUCTION

The simulation of electrochemical systems has become
an important topic in chemical physics. This is mainly
driven by the need for understanding the molecular mech-
anisms at play in devices such as batteries,1 electrocat-
alysts,2–5 supercapacitors,6 etc. Such simulations con-
cern bulk electrode materials7 and electrolytes,8 whose
properties need to be well characterized and rational-
ized, but more and more efforts are devoted to the de-
scription of electrode/electrolyte interfaces.9 Until re-
cently, very little was known of the latter at the molecu-
lar scale and the only available picture was provided by
theories such as the Gouy-Chapman-Stern one.6 How-
ever, these theories are limited to simple systems,10 and
the use of concentrated electrolytes (e.g. ionic liquids)

a)Electronic mail: mathieu.salanne@sorbonne-universite.fr

and complex electrode materials in current electrochemi-
cal devices requires much more sophisticated techniques,
among which molecular dynamics (MD) simulation is the
most widespread. Depending on the target properties,
the flavor of the MD can be adapted: Classical MD, in
which the forces are derived from an analytical interac-
tion potential, is preferred when the objective is to obtain
the structural, thermodynamic and transport properties
of chemically inert systems, while ab initio MD, based on
electronic structure calculations, most often in the frame-
work of Density Functional Theory, for the evaluation of
the interactions, is more adapted for studying systems
undergoing chemical reactions such as chemisorption.11

Among the various methods used to simulate electro-
chemical interfaces,9 one of the most popular was in-
troduced by Siepmann and Sprik.12 It consists in rep-
resenting the electrode atoms using Gaussian charges,
whose magnitude fluctuates in order to satisfy a constant
potential condition within a given electrode, while the
charge distribution within the electrolyte is represented
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using point charges. A difficulty when studying interfaces
in MD is the handling of periodic boundary conditions
(PBCs), in particular for long-ranged interactions. Usual
implementations in MD codes correspond to 3D PBCs,
so that interfacial systems become an infinite collection
of slabs. This effect can be canceled using corrections
such as the one introduced by Yeh and Berkowitz,13 and
introducing a wide layer of vacuum between periodic im-
ages.14 Another approach is to derive explicitly the equa-
tions for 2D-periodic systems. Reed and Madden have
thus formulated Ewald-type expressions for electrochem-
ical systems made of point charge electrolytes and Gaus-
sian charge electrodes.15 Their equations were later cor-
rected by Gingrich and Wilson.16 This constant poten-
tial method was first implemented with 3D PBCs in the
popular MD code LAMMPS,17,18 and technical improve-
ments were recently proposed to improve the efficiency
of the simulations, such as the use of particle-particle-
particle-mesh solver approach19 or the use of a doubled
cell approach.20

However, the inclusion of polarization effects often im-
proves the accuracy of the description of liquid elec-
trolytes.8 In particular the dynamic properties of con-
centrated electrolytes, such as the diffusion coefficients,
are better reproduced when including polarization.21–23

The charge-dipole and dipole-dipole interactions are
also long-ranged, so one needs to treat them appropri-
ately.24,25 In the presence of electrodes with Gaussian
charges, the only derivation available was proposed by
Pounds in his PhD thesis.26 A second difficulty lies in the
self-consistent calculation of the electrode charges and
of the induced dipoles for a given configuration of the
electrolyte. In general, the two problems are solved by
using conjugate gradient minimization techniques (even
though in the case of electrode atoms, their position is
often fixed which allows the use of more efficient meth-
ods such as matrix inversion or mass-zero constrained
dynamics,27,28 but now the two problems are coupled:
the charges depend on the dipoles and vice versa. In a
first attempt to include both effects in simulations, we
have used a recursive approach in which the two mini-
mizations are performed one after each other until the
two problems are converged.29,30 However, this increases
considerably the computational time, limiting the abil-
ity to simulate large systems so that only molten salts
could be studied. Borodin and co-workers proposed to
update the electrode charges much less frequently than
the atomic positions (typically every 250 fs),31 but they
did not discuss the use of appropriate multiple time step
techniques32,33 to achieve this.

MetalWalls is a MD software dedicated to the sim-
ulation of electrochemical interfaces.34 Here we intro-
duce the recent implementations allowing for the inclu-
sion of the interactions between polarizable electrolytes
and metallic electrodes that are represented with fluctu-
ating Gaussian charges. In the first section, we provide
the derivation of the energies associated with these in-
teractions within a 2D-Ewald framework. The second

section discusses the optimization problem, for which we
show that Jacobi preconditioning allows an efficient use
of the conjugate gradient method. The implementation
is then validated by simulating simple systems for which
we can obtain reference results. Finally, we provide some
results for two electrochemical systems. Firstly, we sim-
ulate a typical ionic liquid (1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide, EMIM-TFSI) between
graphite electrodes, a system for which accurate non-
polarizable force fields are available for comparison. Sec-
ondly, we study the adsorption of redox-functionalized
ionic species, again on graphite, using a polarizable inter-
action potential recently parameterized in our group.35

II. INTERACTION MODEL

The model implemented in MetalWalls includes differ-
ent electrostatic components. The electrolyte is modeled
as a set of Np point charges and Nd point dipoles at po-

sitions {ri}Np

i=1 and {rJ}Nd

J=1, respectively. Denoting by
δ3(r−ri) the three-dimensional Dirac’s delta centered at
the point ri, the charge distribution of a point charge is
simply given by

̺qi (r) = qiδ
3(r − ri) (1)

so that, given the definition of the electric potential

V (r) =

∫

R3

d3r′
̺(r′)

|r − r′| (2)

the set of point charges generates a potential in space
given by

V q(r) =

Np
∑

i=1

qi
|r − ri|

(3)

Dipoles can be modeled as two opposite point charges
connected by a rigid rod of length δ, so that the charge
distribution can be written as

̺µJ (r) = −qJδ
3(r − rJ + δ/2) + qJδ

3(r − rJ − δ/2) (4)

Using again Eq. (2) and taking the limit of δ → 0 (point-
dipole approximation), the potential generated by the set
of point dipoles is given by

V µ(r) =

Nd
∑

J=1

µJ · (r − rJ)

|r − rJ |3
(5)

where µJ is the point dipole associated to the particle J .
Electrodes are modeled using the so-called fluctuating

charge model12, which considers the metallic electrodes
composed by Ng Gaussian-distributed charges

̺Qα (r) = Qα

(

η2α
π

)
3

2

exp
[

−η2α(r −Rα)
2
]

(6)
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placed at fixed sites {Rα}Ng

α=1, with ηα being a model
parameter (which can be changed to tune the electrode
metallicity36). The potential generated by this set of
charges is given by

V Q(r) =

Ng
∑

α=1

Qα

|r −Rα|
erf(ηα|r −Rα|) (7)

The interaction energy for a system of Gaussian-
distributed charges, point charges and point dipoles is
composed by the six contributions

Uelec = Uµµ + UQQ + U qq + 2UQµ + 2UQq + 2Uqµ (8)

where the superscripts indicate the specific interactions,
so, for example, U qµ is the interaction between the elec-
trolyte’s point charges and the point dipoles. These ener-
gies are derived from the charge distribution density and
from the electrostatic potential of the particular electro-

static components involved through the relation

Uelec =
1

2

∫

R3×R3

d3rd3r′
̺(r)̺(r′)

|r − r′| =
1

2

∫

R3

d3r̺(r)V (r)

(9)
where in going from the second to the third equality, the
definition of the electrostatic potential given in Eq. (2)
has been recognized. In what follows we explicitly report
the expressions for the 2D Ewald decomposition for all
the energy terms appearing in Eq. (8). Some of these
terms are already reported in the literature (see for ex-
ample Ref. 15 for Uqq, UQQ and UQq) and others are
only discussed in the case of 3D PBC (Uµµ and U qµ in
Ref. 37). To the authors knowledge, no derivation or
Ewald decomposition has ever been reported in the liter-
ature for the term UQµ. We report a complete derivation
for energies and forces for this term in the Supplementary
Material.

A. 2D-PBC Ewald decomposition for Energies

Here we summarize the Ewald decomposition in the case of 2D-PBC for all the energy terms involved in the model of
a system of interacting point-charges, point-dipoles and Gaussian charges. This is relevant because, in electrochemical
systems, PBC are usually enforced only in the directions parallel to the electrodes. Assuming the electrodes extending
on the xy-plane, the presence of replicated simulation boxes means that, for every particle in the system, there are
an infinite number of other replicas at relative positions m = (nxLx, nyLy, nzLz) where L = (Lx, Ly, Lz) are the
dimensions of the primary simulation box and, in the chosen geometry, nx, ny ∈ Z while nz = 0. To compute the
energy of the system, a sum over all the replicas (i.e., over all boxes) needs to be performed. This sum will be noted
in what follows by

∑

n and it runs over all the integers from −∞ to +∞ in all the components involved in the PBC.
As commonly done in the Ewald decomposition, the conditional convergence of the Coulomb interaction is solved
for each term of Eq. (8) by dividing the infinite summation over periodic boxes in a short-range part in real space
(denoted by Usr) and a long-range in reciprocal space (denoted by Ulr). Eventual artifacts arising from overcounting
are taken into account through a self-energy term (denoted by Uself). The reciprocal space is characterized by the
wavevectors indexes k ∈ Z

3. The size of the system defines the reciprocal space wavevectors through the relation
h = (2πkx/Lx, 2πky/Ly, 2πkz/Lz), where, once again in the chosen geometry, kx, ky ∈ Z and kz = 0. Due to the 2D
PBC, the long-range term is to be divided in turn in the contribution from k = 0 and k 6= 0, which are denoted by
Ulr,0 and Ulr,∗, respectively. In the following we assume the periodic part of the system to be embedded in a medium
with infinite dielectric constant (the so-called “tinfoil boundary conditions”38) together with global electroneutrality
of the system.
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1. Point charge-point charge interaction: U
qq

The expression is written as a sum of four terms U qq = Uqq
sr + Uqq

lr,0 + U qq
lr,∗ + Uqq

self ,

U qq
sr =

1

2

Np
∑

i=1

Np
∑

j=1

∑′

n

qiqj
|rij +m| erfc

[

α|rij +m|
]

(10a)

Uqq
lr,0 = −

√
π

LxLy

Np
∑

i=1

Np
∑

j=1

qiqj

(

exp
[

−α2z2ij
]

α
+
√
πzij erf

[

αzij
]

)

(10b)

Uqq
lr,∗ =

1

LxLy

Np
∑

i=1

Np
∑

j=1

∫ ∞

−∞

du
∑

k 6=0

qiqj
exp

[

−h2+u2

4α2

]

h2 + u2
exp

[

i
(

h · rij + uzij
)

]

(10c)

Uqq
self = − α√

π

Np
∑

i=1

q2i (10d)

In Eq. (10a) we have introduced the primed sum over the replicated boxes to indicate that for n = (0, 0, 0) the case
i = j is excluded. With some differences in notation these terms have already been reported in Ref. 15.

2. Point charge-Gaussian charge interaction: U
qQ

No self interaction has to be considered in this case as particles are of different nature. This fact is also highlighted
by the extended notation ri − Rα in place of the corresponding rij of the previous set. We can then write U qQ =

U qQ
sr + U qQ

lr,0 + UqQ
lr,∗, with the following expressions for the various terms:

UqQ
sr =

1

2

Np
∑

i=1

Ng
∑

α=1

∑

n

qiQα

|ri −Rα +m|
(

erfc
[

α(|ri −Rα +m|)
]

− erfc
[

ηα(|ri −Rα +m|)
]

)

(11a)

UqQ
lr,0 = −

√
π

LxLy

Np
∑

i=1

Ng
∑

α=1

qiQα

(

exp
[

−α2(zi − Zα)
2
]

α
+
√
π(zi − Zα) erf

[

α(zi − Zα)
]

)

(11b)

UqQ
lr,∗ =

1

LxLy

Ng
∑

α=1

Np
∑

i=1

∫ ∞

−∞

du
∑

k 6=0

Qαqi
exp

[

−h2+u2

4α2

]

h2 + u2
exp

[

i
(

h · (Rα − ri) + u(Zα − zi)
)

]

(11c)

(11d)

Note also that long-range interactions have the same form as in the case of the point-charge to point-charge case,
with the integrated Gaussian charge Qα in place of the point charge qi. Also these terms were defined in Ref. 15 with
some differences in notation.

3. Point charge-point dipole interaction: U
qµ

The interaction energy between point charges and point dipoles has been previously computed, for example, in
Ref. 24 where 3D PBC are assumed. The extension to the 2D PBC case does not present particular difficulties and we
report it in what follows. Note that, once again, particles involved in the sums belong to different set. Even though
they both refer to electrolyte particles, we could imagine to have point-charge particles which are non-polarizable and
also the opposite situation is possible. To emphasize this aspect we use the extended notation ri − rJ in place of rij
also in this case. For the same reason, no self-interaction term is present and the interaction energy can be split as
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Uqµ = Uqµ
sr + Uqµ

lr,0 + Uqµ
lr,∗. The single terms are written as

Uqµ
sr =

1

2

Np
∑

i=1

Nd
∑

J=1

∑

n

qi(ri − rJ +m) · µJ

|ri − rJ +m|3
[

erfc
[

α|ri − rJ +m|
]

+
2α√
π
|ri − rJ +m| exp

[

−α2|ri − rJ +m|2
]

]

(12a)

Uqµ
lr,0 =

π

LxLy

Np
∑

i=1

Nd
∑

J=1

qiµ
z
J erf

[

α(zi − zJ)
]

(12b)

U qµ
lr,∗ = − i

LxLy

Np
∑

i=1

Nd
∑

J=1

∫ ∞

−∞

du
∑

k 6=0

qi(µJ · h+ µz
Ju)

exp
[

−h2+u2

4α2

]

h2 + u2
exp

[

i
(

h · (ri − rJ) + u(zi − zJ)
)

]

(12c)

4. Gaussian charge-Gaussian charge interaction: U
QQ

The mutual interaction between Gaussian-distributed charges is also given in Ref. 15. Writing, as always, UQQ =

UQQ
sr + UQQ

lr,0 + UQQ
lr,∗ + UQQ

self , we have

UQQ
sr =

1

2

Ng
∑

α=1

Ng
∑

β=1

∑′

n

QαQβ

|Rαβ +m|
(

erfc
[

α(|Rαβ +m|)
]

− erfc
[

ηαβ(|Rαβ +m|)
]

)

(13a)

UQQ
lr,0 = −

√
π

LxLy

Ng
∑

α=1

Ng
∑

β=1

QαQβ

(

exp
[

−α2Z2
αβ

]

α
+
√
πZαβ erf

[

αZαβ

]

)

(13b)

UQQ
lr,∗ =

1

LxLy

Ng
∑

α=1

Ng
∑

β=1

∫ ∞

−∞

du
∑

k 6=0

QαQβ

exp
[

−h2+u2

4α2

]

h2 + u2
exp

[

i
(

h ·Rαβ + uZαβ

)

]

(13c)

UQQ
self =

(

ηα√
2π

− α√
π

) Ng
∑

α=1

Q2
α (13d)

In Eq. (13a) we defined ηαβ ≡ ηαηβ√
η2
α+η2

β

. Also here, note that long-range interactions have the same form as in the case

of the mutual interaction between point charges, with the integrated Gaussian charges in place of the point charges.

5. Gaussian charge-point dipole interaction: U
Qµ

As mentioned above, this term has never been reported in the literature. Its form is therefore derived in detail in

the SM. Here we write UQµ = UQµ
sr + UQµ

lr,0 + UQµ
lr,∗ with

UQµ
sr =

1

2

Ng
∑

α=1

Nd
∑

J=1

∑

n

QαµJ · (Rα − rJ +m)

|Rα − rJ +m|3 ×

×
[

erfc
[

α|Rα − rJ +m|
]

+
2α√
π
|Rα − rJ +m| exp

[

−α2|Rα − rJ +m|2
]

+

−
(

erfc
[

ηα|Rα − rJ +m|
]

+
2ηα√
π
|Rα − rJ +m| exp

[

−η2α|Rα − rJ +m|2
]

)

]

(14a)

UQµ
lr,0 =

π

LxLy

Ng
∑

α=1

Nd
∑

J=1

Qαµ
z
J erf

[

α(Zα − zJ)
]

(14b)

UQµ
lr,∗ = − i

LxLy

Ng
∑

α=1

Nd
∑

J=1

∫ ∞

−∞

du
∑

k 6=0

Qα(µJ · h+ µz
Ju)

exp
[

−h2+u2

4α2

]

h2 + u2
exp

[

i
(

h · (Rα − rJ) + u(Zα − zJ)
)

]

(14c)

Once again, Gaussian charges behave, in the long-range, as point charges equal to the integrated Gaussian charge
(compare Eqs. (12b) and (12c) with Eqs. (14b) and (14c)).
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6. Point dipole-point dipole interaction: U
µµ

The last energy contribution for the model discussed in this paper is the mutual interaction between point dipoles.
The expression for the 2D PBC case can be derived as the expression in the 3D PBC case given in Ref. 24. The
interaction energy can be divided as Uµµ = Uµµ

sr + Uµµ
lr,0 + Uµµ

lr,∗ + Uµµ
self and the single contributions are given by

Uµµ
sr =

1

2

Nd
∑

I=1

Nd
∑

J=1

∑′

n

µI · SIJ · µJ

|rIJ +m|3
[

erfc
[

α|rIJ +m|
]

+
2α√
π
|rIJ +m| exp

[

−α2|rIJ +m|2
]

]

+ (15a)

−
[

µI · (rIJ +m)
][

µJ · (rIJ +m)
]

|rIJ +m|2
4α3

√
π
exp

[

−α2|rIJ +m|2
]

(15b)

Uµµ
lr,0 =

2α
√
π

LxLy

Nd
∑

I=1

Nd
∑

J=1

µz
Iµ

z
J exp

[

−α2z2IJ
]

(15c)

Uµµ
lr,∗ =

1

LxLy

Nd
∑

I=1

Nd
∑

J=1

∫ ∞

−∞

du
∑

k 6=0

(µI · h+ µz
Iu)(µJ · h+ µz

Ju)
exp

[

−h2+u2

4α2

]

h2 + u2
exp

[

i
(

h · rIJ + uzIJ
)

]

(15d)

Uµµ
self = − 2α3

3
√
π

Nd
∑

I=1

µ2
I (15e)

where the matrix SIJ is defined by Sξχ
IJ = δξχ − 3(ξIJ+mξ)(χIJ+mχ)

|r2

IJ
+m|

and ξI , χI ∈ {xI , yI , zI}. δξχ is the Kroenecker’s

delta function, which is 1 if ξ = χ and 0 otherwise.

B. Implementation details

The long-range, k 6= 0 terms introduced in the previous subsection are in general complex number due to the
presence of the complex exponentials. Nonetheless, these can be transformed in purely real expressions exploiting
the Euler’s formula, i.e. exp[iφ] = cos(φ) + i sin(φ). Let us note first that the problematic long-range terms can be

grouped in two sets based on similarities in their structure. The first set consists of the terms Uqq
lr,∗, U

QQ
lr,∗ , U

qQ
lr,∗ and

Uµµ
lr,∗ . The only difference among these terms arise from the different “charges” (in some cases the point charge qi,

in others the integrated Gaussian charge Qα or the scalar product between the dipole moment and the wavevector
µj · h + µz

ju) and the specific definitions of the distances at the exponent appearing in their expressions. A similar

observation applies to the second set, composed by the terms Uqµ
lr,∗, U

Qµ
lr,∗ . We discuss these two sets separately. About

the former, exploiting the definition of the complex exponential, the parity of some of the trigonometrical functions
with respect to the summation and integration interval and the trigonometrical expression of a difference, we obtain

Uqq
lr,∗ =

1

LxLy

∫ ∞

−∞

du
∑

k 6=0

exp
[

−h2+u2

4α2

]

h2 + u2

[

[

Np
∑

i=1

qi cos(h · ri + uzi
)

]2

+
[

Np
∑

j=1

qj sin(h · rj + uzj
)

]2
]

(16a)

UqQ
lr,∗ =

1

LxLy

∫ ∞

−∞

du
∑

k 6=0

exp
[

−h2+u2

4α2

]

h2 + u2

[

[

Np
∑

i=1

qi cos(h · ri + uzi
)

]2

+
[

Ng
∑

α=1

Qα sin(h ·Rα + uZα

)

]2
]

(16b)

UQQ
lr,∗ =

1

LxLy

∫ ∞

−∞

du
∑

k 6=0

exp
[

−h2+u2

4α2

]

h2 + u2

[

[

Ng
∑

α=1

Qα cos(h ·Rα + uZα

)

]2

+
[

Ng
∑

β=1

Qβ sin(h ·Rβ + uZβ

)

]2
]

(16c)

Uµµ
lr,∗ =

1

LxLy

∫ ∞

−∞

du
∑

k 6=0

exp
[

−h2+u2

4α2

]

h2 + u2

[

[

Nd
∑

I=1

(µI · h+ µz
Iu) cos(h · rI + uzI

)

]2

+
[

Nd
∑

J=1

(µJ · h+ µz
Ju) sin(h · rJ + uzJ

)

]2
]

(16d)
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The same kind of procedure can be performed on the second set noting, in addition, that i exp[ix] = exp[i(x+ π
2 )] =

cos(x+ π
2 ) + i sin(x+ π

2 ) = i cos(x)− sin(x). In this way we obtain

Uqµ
lr,∗ =

1

LxLy

∫ ∞

−∞

du
∑

k 6=0

exp
[

−h2+u2

4α2

]

h2 + u2

[

[

Np
∑

i=1

qi sin(h · ri + uzi)
][

Nd
∑

J=1

(µJ · h+ µz
Ju) cos(h · rJ + uzJ)

]

+

−
[

Np
∑

i=1

qi cos(h · ri + uzi)
][

Nd
∑

J=1

(µJ · h+ µz
Ju) sin(h · rJ + uzJ)

]

]

(17a)

UQµ
lr,∗ =

1

LxLy

∫ ∞

−∞

du
∑

k 6=0

exp
[

−h2+u2

4α2

]

h2 + u2

[

[

Ng
∑

α=1

Qα sin(h ·Rα + uZα)
][

Nd
∑

J=1

(µJ · h+ µz
Ju) cos(h · rJ + uzJ)

]

+

−
[

Ng
∑

α=1

Qα cos(h ·Rα + uZα)
][

Nd
∑

J=1

(µJ · h+ µz
Ju) sin(h · rJ + uzJ)

]

]

(17b)

The expressions in Eqs. (16) and (17) are purely real
and can be handle with standard numerical libraries and
operators.

C. Additional degrees of freedom

In the interaction potential, the induced dipoles rep-
resent the instantaneous polarization of a molecule or
an ion, which fulfill the following expression at each
timestep:

µJ = αJEJ = −αJ∇JV (r) (18)

where αJ is the polarizability of atom J and EJ the elec-
tric field felt by the atom. The latter depends not only on
the charges of the system but also on the other induced
dipoles. In practice, instead of solving self-consistently
the set of equations 18, most of the implementations are
made by adding a polarization term to the energy, which
is given by

Upol =

Nd
∑

J=1

µ2
J

2αJ

(19)

In the absence of electrodes, the induced dipoles are then
computed by minimizing U1 = Uelec + Upol. However,
in MetalWalls we also have to account for the fact that
electrodes are set at constant potential. This condition
reads

V (r) = ΨΩ±
(20)

where r is a point in the regions Ω± occupied by the
positive or negative electrode and ΨΩ±

is the potential
set in the corresponding electrode. The condition can be
reformulated in terms of the Gaussian charges as

∂Uelec

∂Qα

= Ψα. (21)

with Ψα = ΨΩ±
depending on the electrode in which

α is located. In practice, in the absence of induced
dipoles, this problem is solved by minimizing U2 =

Uelec −
∑Ng

α=1 ΨαQα.
Now the two systems of additional degrees of freedom

are coupled: Since Uelec depends on both {µj}Nd

j=1 and

{Qα}Ng

α=1, the Gaussian charges values will depend on
the induced dipoles and vice versa. The total quantity

which is minimized is U = Uelec + Upol −
∑Ng

α=1 ΨαQα.

III. COMPUTATION OF INDUCED DIPOLES AND

ELECTRODE CHARGES: THE PRECONDITIONED

CONJUGATE GRADIENT

Induced dipoles and electrode charges are computed
in the Born-Oppenheimer approximation: Their value is
determined through a minimization procedure of the en-
ergy function with respect to the additional dynamical
variables modeling these quantities. Contrary to exist-
ing literature, in which either the induced dipoles or the
electrode charges were to be computed, in this paper the
Born-Oppenheimer condition has to be satisfied for the
set of additional dynamical variables which includes both
the induced dipoles µ and electrode charges Q. In other
words, given the interaction energy U(µ, Q|r,R) as a
function of µ and Q and which depends parametrically
on the electrolyte particles positions r and on the geom-
etry of the electrodes placed at positions R, the values
of the dipoles and the electrode charges are found, for a
given value of the parameters r and R, as the solution
of the equation

argmin
µ,Q

U(µ, Q|R, r) (22)

This optimization problem, which is now formulated in
the space of dimension 3Nd + Ng, can be very demand-
ing from a computational point of view and many dif-
ferent approaches have been proposed to tackle its solu-
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tion.15,28,39–41 For models such as those considered in this
paper, in which the dependence of the energy function on
the additional variables is quadratic, the conjugate gra-
dient method42,43 provides a good balance between ac-
curacy and efficiency and it is the preferred choice nowa-
days. However, as the minimization procedure usually
takes 90 % of the simulation time in a typical Born-
Oppenheimer simulation, methods and algorithms to im-
prove the convergence of the conjugate gradient proce-
dure (or even replace it by a less costly method28,40,44,45)
are still object of investigation.

For the minimization of quadratic functions of the form
U = 1

2xAx+ bx+ c — which corresponds to finding the
solution of the linear system of equations Ax + b = 0
— preconditioning the symmetric, positive-definite ma-
trix A has proven to be an effective tool for improving
the speed of convergence of the conjugate gradient algo-
rithm. Indeed, the convergence of the algorithm depends
mainly on the condition number of the matrix A (see
Ref. 43) defined as the ratio between its maximum and
minimum eigenvalues. The preconditioning procedure is
a technique in which the optimization problem is trans-
formed in an equivalent one, i.e. one that has the same
solution, but where a matrix with a lower condition num-
ber is involved. In practice, this is done by noting that
the solution of the equation Ax + b = 0 is the same of
P−1(Ax+ b) = 0 where the preconditioner P is a matrix
of the same dimensions of A. If the condition number of
the matrix P−1A is lower than that of A the algorithm
will be more efficient in solving the problem.

Unfortunately, a general strategy for finding a good
preconditioner does not exist and the choice of an ef-
fective matrix P is highly system dependent. A quite
common approach — even though sometimes ineffec-
tive — is to choose P = diagA, the so-called Jacobi
preconditioner.46 This choice has the double advantage
that, on the one hand, it is not necessary to store an
additional entire matrix, but just a vector and, on the
other, that the computation of P−1 is trivial. If effec-
tive, the Jacobi preconditioner is particularly well-suited
for minimization problems in high-dimensional spaces.
Other choices, sometimes more effective but at the same
time more demanding numerically and in terms of re-
quired memory, are for example based on approximate in-
verses, (incomplete) Cholesky factorizations and domain
decompositions.46

To investigate the effectiveness of the Jacobi precon-
ditioner for electrochemical problems we study the prop-
erties of the matrix associated to the system described
in Ref. 30. This system consists of constant potential
aluminium elctrodes in contact with a molten salt (pure
LiCl) in which the electrolyte ions are represented using a
polarizable force field. While being very simple, this sys-
tem , which can be effectively handled numerically, cap-
tures all the important features of electrochemical sys-
tems. A thorough study of the matrix requires its storage
and analysis, a process that usually requires an order N3

of operations, where N ×N (with N = 3Nd +Ng) is the

size of the A matrix. This is affordable for our chosen
system.
For electrochemical systems in which either the elec-

trode charges and the induced dipoles are considered as
dynamical variables, the solution vector x can be ordered
as

x = (µx
1 , µ

x
2 , . . . , µ

z
Nd−1, µ

z
Nd

, Q1, . . . , QNg
) (23)

With this choice, the matrix A is represented,in block
form, as

A =

(∇2
µµU ∇2

µQU
∇2

QµU ∇2
QQU

)

(24)

where U is the interaction energy given in Eq. (8). The
diagonal of this matrix, which represents the Jacobi pre-
conditioner will then be given by

P = diagA

= (∇2
µx
1
µx
1

U, . . . ,∇2
µz
Nd

µz
Nd

U,∇2
Q1Q1

U, . . . ,∇2
QNgQNg

U)

(25)
The analytic expression for P can be obtained starting
from the Ewald decompositions given in the previous sec-
tion. Assuming nearest-image convention, we then have

∇2
µ
ξ
J
µ
ξ
J

U =
2

LxLy

∑

k 6=0

∫ ∞

−∞

du
exp

[

−h2+u2

4α2

]

h2 + u2
(κξ)2

+ δξz
4
√
π

LxLy

α− 4α3

3
√
π
+

1

αJ

(26a)

∇2
QαQα

U =
2

LxLy

∑

k 6=0

∫ ∞

−∞

du
exp

[

−h2+u2

4α2

]

h2 + u2

− 2

α

√
π

LxLy

+
2√
π

(

ηα√
2
− α

)

(26b)

for i = 1, . . . , Nd, ξ ∈ {x, y, z} and α = 1, . . . , Ng. In
the previous equation we have also defined the vector

κ = (2π kx

Lx
, 2π

ky

Ly
, u) and we remark the difference be-

tween the Ewald smearing parameter α, the polarizabil-
ity αj of the electrolyte polarizable atom j (defined in
EQ. (18)) and the index α of the Gaussian-distributed
charge as in Qα and ηα. Also, δ

ξz is the Kronecker delta.
In Eq. (26), it is possible to recognize in both expres-
sions the two terms arising from the long-range part of
the Ewald decomposition (k = 0 and k 6= 0) and the
term arising from the self-interaction term. In the ex-
pression relative to the induced dipoles, Eq. (26a), also
the contribution due to the so-called “self-polarization”
term is present.
In what follows, we show results for a 10 ps simula-

tion of the system of aluminum electrodes and polariz-
able LiCl.30 The polarizability of the lithium ion is set

to αLi = 0.13 Å
3
, while the one of chloride is set to

αCl = 2.96 Å
3
as reported in previous work.47 Along the
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simulation, we sample the configuration of the electrolyte
every 100 fs and we compute the condition number with
(P−1A matrix) and without (A matrix) preconditioning.
Results are shown in Figure 1. Note how the Jacobi pre-

0
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FIG. 1. Study of the condition number of the A matrix in
Eq. (24) for the LiCl-Al system described in Ref. 30 with
polarizable electrolyte (see text for further details). Configu-
rations are sampled every 100 fs from a run of 10 ps of total
length. The black solid line represents the condition number
of the standard (not preconditioned) problem, while the red
line provides the same quantity for the preconditioned prob-
lem, where Eqs. (26) have been used to compute the Jacobi
preconditioner.

conditioner reduces the condition number of the problem
by one order of magnitude. It is also interesting to check
the behavior of the conjugate gradient algorithm for the
configurations for which we computed the condition num-
ber of the matrix. Figure 2 shows the number of itera-
tions needed for convergence of the algorithm for these
configurations, again without and with preconditioning.
As expected, Figures 1 and 2 confirm that to a lower con-
dition number of the matrix corresponds a lower number
of iterations of the conjugate gradient algorithm to reach
convergence.

For larger systems such as the one discussed in Sec-
tion V, where the study of the condition number is un-
feasible due to the high dimensions of the matrix, the
effectiveness of the Jacobi preconditioner can still be in-
vestigated by looking at the number of iterations to reach
convergence. In Figure 3 we present this indicator for
the LiCl-Al system, demonstrating that the Jacobi pre-
conditioner reduces the number of iterations needed for
convergence of the algorithm by roughly 50%.
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FIG. 2. Number of iterations needed to reach convergence of
the conjugate gradient algorithm for the same system and the
same configurations as in Fig. 1.
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FIG. 3. Number of iterations needed to reach convergence
of the conjugate gradient algorithm for the system described
in Section V. Configurations are sampled every 10 fs on a
1 ps run. The black line represents the minimization proce-
dure without preconditioning, while the red line represents
preconditioned minimization where Jacobi preconditioner is
computed via Eq. (26).

IV. VALIDATION ON SIMPLE SYSTEMS

A. Single dipole between single atom electrodes

A difficulty to validate the implementation of the ex-
pressions provided in Section II is that no other molecular
dynamics code can be used to provide reference results.
However, most of the terms were already derived and val-
idated for 2D (Uqq, U qQ and UQQ) or 3D (U qq, UqQ, Uqµ,
UQQ and Uµµ) PBCs. The main validation test therefore
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concerns the UQµ term for which no results are available.
To this end, we take advantage from the equivalence be-
tween an explicit dipoles and a set of two charges in the
following.

In a first step, two systems composed of two single-
atom electrodes placed in a box of dimension Lx = Ly

= 26.46 Å and Lz = 52.92 Å were setup. In both cases,

the first electrode is located at coordinates (Lx

2 ;
Ly

2 ; 0),

while the second one is at (Lx

2 ;
Ly

2 ; Lz). These elec-
trodes atoms have a Gaussian charge distribution width
η = 0.4 Å−1, and the electrodes are held at a constant
potential difference of 1V. In the first system, which is
referred to as a “point dipole system” in the following,
a single atom is located in between the electrodes at co-

ordinates (Lx

2 ;
Ly

2 ; z). This atom carries no charge but
can be polarized, its polarizability being set to a value of
0.15 Å3. The energy and the force acting on this atom are
computed for different z coordinates. The second system
mimics the first one, by introducing two central atoms
dµ = 0.53 Å apart. They carry opposite charges, thus
forming an explicit dipole which is placed in between the
two electrodes. This system is thus called a “two-charges
system”. The charges on the atoms are taken from the
value of the dipole moment µ obtained from the point
dipole system at a similar z position. Charges +qµ and

−qµ are assigned to the atoms of coordinates of (Lx

2 ;
Ly

2 ; z − dµ

2 ) and (Lx

2 ;
Ly

2 ; z +
dµ

2 ), respectively. These
atoms are not interacting with each other, so that from
a physical point of view, the two systems are identical,
but in the first setup the interaction potential only con-
tains UQQ and UQµ terms, while the second one contains
UQQ and UqQ. The latter were already validated in nu-
merous studies, so this allows us to directly test the new
implementation.

For the Ewald summation, the cut-off distance for real
space interactions is set to rcut = 12.70 Å. The rela-
tive error below which real-space and reciprocal-space
terms are not included in the summation are set to 10−12.
Electroneutrality of the systems is enforced when com-
puting the partial charges on the electrodes as described
in Ref. 41. To compute energies and forces, the pre-
conditioned conjugate gradient described in the previ-
ous section is used. The iterative process stops when:
|residual| < tolerance ×

√
Natoms, where tolerance is

set at 10−12. 151 calculations are performed with the
z coordinate varying from 2.96 Å to 49.96 Å, with a step
length of 0.31 Å to sample a large variation of the induced
dipole moment.

Figure 4 shows the evolution of the energy (top) and
of the force along z (bottom) for the point dipole system
(black curve) and the two-charges system (orange dots).
In the latter case, the force is obtained by summing the
individual forces acting on each atom. The results for the
two systems agree very well, with relative errors lower
than 10−5 for the energies and lower than 2.5×10−2 for
the forces. Additional tests were performed with varying
values for the cut-off distance for the real space interac-

8
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U e
le

c (
E h

) 

1e 7a)

Point dipole system
Two-charges system

10 20 30 40 50
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4
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2
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F z
 (E

h/a
0)

1e 7b)

FIG. 4. Comparison of the energy and the force obtained
for the point dipole and the two-charges system between sin-
gle atom electrodes with an applied potential difference of
1 V. Energy (a) and force acting along the z direction on
the atom(s) of interest (b) of the point dipole system (black
curve) and of the two-charges system (orange dots). The rel-
ative error remains always lower than 10−5 and 2.5 ×10−2 for
the energy and the force, respectively.

tions, showing similar level of agreement.

B. Single dipole between 100 atoms electrodes

In order to compare more precisely the charge distri-
bution on the electrodes, another couple of systems were
built in which the electrodes are made of a single plane
of 100 atoms placed on a square lattice with a cell pa-
rameter of 2.94 Å. There again, the point dipole and the
two-charges systems were set up for comparison. The
parameters (electrode atoms Gaussian width, applied po-
tential, Ewald real space cut-off, convergence of the con-
jugate gradient) were set similarly as for the single atom
electrode tests. Figure 5 shows the charges on the elec-
trode atoms for the two systems. Here also, a very good
agreement is obtained, with a relative error lower than
10−8, which confirms the validity of the expression de-
rived for UQµ and its implementation in MetalWalls.
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FIG. 5. Comparison of the charge on each atom of the elec-
trodes obtained for the point dipole and the two-charges sys-
tem between 100 atoms electrodes with an applied potential
difference of 1 V. Electrode atoms are labeled by their index,
with atoms 1 to 100 belonging to the first electrode and atoms
101 to 200 belonging to the second one. The maximum of the
relative error obtained is lower than 10−8.

V. VALIDATION ON A REALISTIC CAPACITOR

A. Simulation setup

Once the model has been validated for static calcu-
lations on model systems, it is also important to test
the software on realistic cases. We have therefore cho-
sen an already well-characterized system, composed of
an ionic liquid between two graphite electrodes. This
choice was made because, for such a system, it is pos-
sible to account in a mean-field way for polarization
effects without including induced dipoles, by using re-
duced charges for all the ionic liquid atoms.21 Such an
approach was shown to yield correct structural prop-
erties, which provides us with a reference to compare
with our polarizable force field simulations (other prop-
erties, in particular dynamic ones, may vary much more
than the structural ones). We study an ionic liquid con-
sisting of 322 ion pairs of 1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). The
two electrodes are at a distance of 10.9 nm and made
of three parallel graphene sheets separated by 0.335 nm.
The total dimensions of the box are Lx = 3.408 nm,
Ly = 3.689 nm and Lz = 11.38 nm. Periodic boundary
conditions have been applied in the x and y direction. A
typical snapshot of the system is shown in Figure 6.

The CL&P48,49 force-field is used for the non-
polarizable simulation, with atomic charges scaled by a
factor 0.8, as suggested in previous studies of the bulk
liquid.50–52 The polarizable simulations use an upgrade
of the force-field (CL&Pol),23,53,54 in which all atoms
are polarizable except the hydrogen atoms. Note how-
ever that in the initial parameterization by Goloviznina
et al., the polarization effects were handled using Drude
oscillators.55 The corresponding parameters were there-
fore replaced by a polarizability in order to be used in

our induced dipoles scheme. Atomic polarizabilities were
taken from Schröder56 following the CL&Pol methodol-
ogy. In addition, short-range effects are handled a bit dif-
ferently since we do not use Thole functions57 for damp-
ing dipole-dipole interactions at short range. Instead,
we use the conventional OPLS58 rule for intramolecular
charge-dipole and dipole-dipole interactions, i.e. they are
set to 0 for nearest and second-nearest neighbors, while
they are scaled by a factor 0.5 for atoms separated by
two bonds. Concerning the intermolecular interactions,
the charge-dipole interactions are damped at short-range
using Tang-Toennies functions59

gij(rij) = 1− cijD exp(−bijDrij)

4
∑

k=0

(bijDrij)k

k!
(27)

where bijD sets the range of the damping effect and cijD
the strength of the ion response.22 All atom pairs ij have
the same damping functions parameters, bijD = 1.06 Å−1

and cijD = 0.53 Å. Simulations of the bulk liquid were
performed in order to check that the so-modified polar-
izable force field yielded similar density, structural and
diffusion properties as the original parameterization by
Goloviznina et al.23,53 The Lennard Jones parameters
for the electrodes atoms are set to ǫ = 0.23 kJ/mol and
σ = 3.37 Å as in previous works60. The Lennard-Jones
interactions are cut at 14.8 Å. The cut-off distance for
real space interactions in the Ewald summation is set at
rcut = 17 Å. The relative error below which real-space
term and reciprocal-space are not included in the sum-
mation is set to 10−5.

The initial configuration was constructed using the
PACKMOL software.61 In order to obtain the correct liq-
uid density, the electrodes were allowed to move in the z
direction for few nanoseconds, by applying a pressure of
0 bar on both sides (free piston). When the electrode
positions are stabilized, a bulk density of 1576 kg/m3

is reached, which is close to the experimental value of
1526 kg/m3 at 293.5 K.62 Starting from this setup, a
long simulation was performed using the non-polarizable
interaction potential, from which three starting points
were extracted. Three independent production trajecto-
ries were then performed using both the polarizable and
non-polarizable potentials. These simulations were car-
ried out for 20 ns, with a timestep of 2 fs and a temper-
ature of 398K. The latter value was chosen in order to
accelerate the dynamics of the system and to converge the
structure of the liquid within shorter simulations, since
the objective of this work is to validate the code and not
to do a specific study of the system. The two electrodes
potential were fixed to 0V. The systems were simulated
in the NVT ensemble, using a Nosé-Hoover thermostat
chain of length 5 with a relaxation time of 500 fs. In the
following, the results were obtained by averaging over the
three simulations for both polarizable or non-polarizable
force-field.
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FIG. 6. Studied system composed of graphite electrodes separated by an ionic liquid (EMIM-TFSI). Green: C, blue: N, yellow:
S, red: O, pink: F and white: H.

B. Results
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FIG. 7. Density profile for simulations including or not the
polarization effects. Dotted lines show the position of the elec-
trodes. The top panel shows the total density profiles, while
the bottom panels show the density of anions and cations at
the interfaces.

Figure 7 shows the number density profiles along the z
direction for both force fields. For each ion type, the den-
sity is obtained by summing the averaged density of all
atoms of the molecule, and normalized by the number of
atoms of the ion. The top panel shows the total number
of ions, and the bottom panels correspond to the EMIM+

and TFSI− ions zoomed in at the interfaces. Electrode

positions are shown as blue light vertical lines. Our re-
sults agree with the ones obtained in previous works,
mainly with non-polarizable interaction potentials,63–68

except for one study.69 The structure is characterized by
a strong ordering at the interface, with the formation of
several layers in the vicinity of the electrode. We can con-
clude from these comparisons that our simulations with
the polarizable force field yield the correct structure of
the system. This indirect validation on a realistic sys-
tem and the validations shown in the previous sections
demonstrate the accuracy of the implementation of the
polarization effects in conjunction with Gaussian charges
in MetalWalls.
Despite yielding the same structure, it is likely that

the different charge distributions in the two models will
result in different electrostatic potentials at the interface.
The latter can be computed as

Ψ(z) = Ψq(z) + Ψµ(z) (28)

where Ψq is the potential due to the charge distribution
(from the electrolyte or electrode atoms) ρq and Ψµ is
the one due to the z-component of the induced dipole
moments distribution ρµ at a given position z,

Ψq(z) = Ψq(z0)−
1

ǫ0

∫ z

z0

dz′
∫ z

−∞

dz′′ρq(z
′′)

Ψµ(z) = Ψµ(z0) +
1

ǫ0

∫ z

z0

dz′ρµ(z
′)

(29)

where ǫ0 is the vacuum permittivity. The profiles are ob-
tained by taking the reference point (z0) inside the left
electrode, so that Ψ(z0) = 0. The variations of ρq, ρµ,
and Ψ are shown for the non-polarizable and the polar-
izable models on Figure 8. The two charge distributions
are of course very similar since the structure of the system
does not differ much with the interaction potential. The
main difference is the amplitude of the oscillations, which
is reduced for the non-polarizable case due to the use of
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FIG. 8. Comparison of the charge and dipole densities (top)
and electrical potential density (bottom) with and without
polarizability, along the z direction. Atoms have large dipoles
at the interfaces, but the average dipole value vanishes in the
bulk. The bulk potential increases from 0.16V to 0.52V when
adding the polarizability.

scaled charges. The dipole density also displays some
peaks, the most intense corresponding to the layer of liq-
uid closest to the electrodes in which a net polarization is
observed. Interestingly, the positions of the peaks do not
coincide with the ones obtained for the charge density
and the oscillations seem to extend towards a longer dis-
tance away from the electrode, despite the shorter range
of interactions involving dipoles. This is probably a con-
sequence of the layered structure, which results in local
polarization inside the layers.
A consequence of polarization effects is thus that the

potential profiles differ markedly between the two cases.
Although the peaks appear at the same positions, they
have very different intensities. Consequently, the two
models have different potentials of zero charge (PZC).
This quantity can in principle be measured experimen-
tally; it is defined as the potential difference between
the bulk and the electrodes when the latter carry no net
charge:29

∆ΨPZC = Ψelectrode −Ψbulk (30)

In constant potential simulations, the PZC is readily ob-
tained from the bulk potential on the profiles shown on
Figure 8. We obtain a value of -0.16 V for the non-
polarizable case and -0.52 V for the polarizable case, re-
spectively. Our results show that this quantity mostly
reflects the charge density distribution of the model, and

not the structure of the liquid. It should therefore not
be used to test the ability of a potential to predict the
double-layer structure of a system with respect to exper-
iments.

1 0 1
Q (e )

0.0

0.5

1.0

1.5

P(
Q)

Non polarizable
Polarizable

FIG. 9. Probabilities of the total charges on the electrodes
for the non-polarizable and the polarizable models.

A much more robust test is to compute the capaci-
tance of the system from the fluctuations of the total
charge of the electrode according to Ref 41. Note that
the contribution to the capacitance of the empty capaci-
tor (i.e., in the absence of liquid between the electrodes)
is also taken into account. Figure 9 shows the probabil-
ity to have a given total charge on the electrode for the
two models. The distributions are very similar, which
results in similar capacitances of 2.35 ± 0.79µF/cm2 for
the non-polarizable case, and 2.03 ± 0.42µF/cm2 for the
polarizable case. The fact that the same structure of the
liquid yields similar results is a further (indirect) proof
that the charges induced on the electrodes are correctly
determined.

VI. ADSORPTION OF REDOX-FUNCTIONALIZED

SPECIES ON GRAPHITE ELECTRODES

In this last section, we focus on an example for which
polarization effects can only be represented via a suit-
able interaction potential. We simulate biredox ionic liq-
uids, a new class of systems in which redox-active moi-
eties are grafted to both the cationic and the anionic
species.70 Such systems have shown very promising re-
sults when employed in supercapacitors since they allow
to markedly increase the amount of electricity stored in
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FIG. 10. Snapshots of the simulation showing the adsorp-
tion of the functionalized ionic liquid anion (left) and cation
(right).

the devices with respect to conventional electrolytes such
as ionic liquids.71,72 However, their electricity storage
mechanisms, in particular the interplay between capac-
itive and faradaic processes at the electrodes interfaces,
remain to be solved.73 Molecular dynamics can provide
a microscopic view of the double-layer in such systems,
but no accurate force field was previously available in the
literature. Recently, we have developed a polarizable in-
teraction potential for the redox active groups TEMPO
and anthraquinone (AQ) based on electronic structure
calculations,35 which opens the way towards the simula-
tion of biredox ionic liquids.
Here we simulate a system made of 10 biredox ionic

liquid pairs, namely AQ-TFSI− and TEMPO-EMIM+,
mixed with 50 BMIM+TFSI− ion pairs and 1624 acetoni-
trile molecules. The composition of the system was cho-
sen according to previous experimental studies.71 Each
simulation was performed for 3.3 ns under a constant
potential difference of either 0, 1 or 2 V in the NVT
ensemble (T = 298 K). Two dimensional (2D) periodic
boundary conditions were used, with box dimensions
Lx = 34.0 Åand Ly = 36.0 Å, respectively. The elec-

trodes separation has been fixed to 154.2 Å for which
the density of the system in the middle of the box corre-
sponds to the bulk value as in the previous section.
Although an extensive study of the system is out of

the scope of the present work, we illustrate the soft-
ware abilities by studying the adsorption mechanisms of
redox-active molecules on the graphite electrodes, which
impacts for example the kinetics of electron transfer.
Firstly, we observe from the trajectory that the affin-
ity of the ions for the electrode is similar for non-grafted
and grafted species (within the statistical accuracy of the
simulation, which is rather limited by the small number
of ions in the simulation cells). However, as illustrated
on the typical snapshots shown on Figure 10, the grafted
ions tend to interact more strongly with the carbon sur-
face through their redox-active moiety, leaving the ionic
part of the molecule slightly behind the first plane. We
can therefore expect a facilitated tunneling of the elec-
trons when such liquids are used in supercapacitor de-
vices.
In order to get a more quantitative analysis, we study
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FIG. 11. Top: Angle between the normal to the plane of
the imidazolium ring and the normal to the negative elec-
trode at different potential difference for TEMPO-EMIM+

and BMIM+. Bottom : Angle between the vector connecting
the two sulfur atoms and the projection of the normal to the
plane of the positive electrode at different potential difference
for AQ-TFSI− and TFSI−. The error bars correspond to the
standard deviation.

the orientation of the species at the interface. For each
ion, we define a structural coordinate to analyze its ori-
entation at the electrode. For the cation we choose the
normal to the plane of the imidazolium ring and for the
anion the vector between the two sulfur atoms. Then,
we look at the angle between either the normal to the
electrode plane and the normal to the plane of the im-
idazolium ring or the projection of the normal to the
electrode plane and the vector connecting the two sul-
fur atoms. The averaged results over the trajectory are
shown in Figure 11, for the different potential difference.
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We can see that the redox functionalization of the ionic
liquid changes the orientation at the electrode. In both
cases, while the bare ions lie parallel to the surface, they
become perpendicular in the biredox species. This ef-
fect reflects again the stronger affinity between graphite
and redox moieties, which forces the ionic part of the
molecules to adapt and change their orientation. Such
an effect was not expected since the charged species are
stabilized by the image charges in the metallic electrodes.
The planar shape of the anthraquinone provides a lead
for its affinity with graphite, since it may allow a more ef-
ficient packing, however it is not the case of the TEMPO
group. Another possibility is that the polar C=O func-
tion of anthraquinone and N=O function of the TEMPO
display a large interaction with the fluctuating charge of
the metal. However, this would require costly additional
simulations, and we leave this for future work.

VII. CONCLUSION

The simulation of electrochemical systems requires to
account precisely for polarization effects at the elec-
trode/electrolyte interface. By combining two sets of ad-
ditional degrees of freedom, the induced dipoles in the
liquid and the partial charges inside the electrode, Met-
alWalls now allows to use state-of-the-art force fields in
such simulations. In this work, we have derived the equa-
tions enabling the simulation of systems including point
charges, Gaussian charges and induced dipoles. Due to
the long range nature of these interactions, it is necessary
to use the Ewald summation method, which consists in
the splitting the interaction potential in two sums, one
in the real space and the other in reciprocal space. The
expressions are provided for 2D periodic boundary con-
ditions, which corresponds to the common setup for sim-
ulating electrochemical systems. The additional degrees
of freedom are computed through a conjugate gradient
minimization procedure, whose computational cost can
be decreased through the use of simple preconditioning
techniques. Note that another common approach, which
consists in using 3D PBCs with an additional (large) vac-
uum region and adding a correction term for the slab
geometry is also implemented in MetalWalls. Although
this allows to reduce the computational time, as noted
in a recent work this setup should be used with caution
when used for simulating constant potential electrodes.19

We have then validated the implementation of the for-
mulae for 2D PBC. This cannot be done through a simple
comparison with other codes since the above features are
not yet included elsewhere. We therefore focused first on
a simple system consisting of a single dipole between elec-
trodes, for which the dipole can be replaced by a couple
of explicit charges, providing reference results. We then
compare the results obtained on lengthy simulations of
a realistic system, the EMIM-TFSI ionic liquid in con-
tact with graphite electrodes. This system was chosen
because it is possible to account effectively for the po-

larization of the electrolyte using rescaled charges. The
simulations yield similar structure for the interfacial liq-
uid and the capacitance as expected.

The capabilities of MetalWalls were then demonstrated
by simulating a system for which no non-polarizable force
field exists. It consists in a pair of redox-functionalized
ions dissolved in a conventional electrolyte, again in con-
tact with graphite electrodes. The structural analysis
showed that the redox moieties impact the adsorption
of molecules at the surface of the electrode, providing
a basis for the understanding of the properties of these
electrolytes in future works.

Although this work only focused on simple electrode
geometries, the methods presented here are general and
can be applied to any electrode geometry. MetalWalls
can therefore be used to simulated complex systems, such
as slit nanopores, carbide-derived carbons, etc. It is par-
allelized using MPI for conventional CPU-based high per-
formance computers and OpenACC for GPU, so that
typical system sizes of 10,000 to 50,000 atoms can be
simulated routinely. MetalWalls is therefore a valuable
tool for the characterization of the structure of the elec-
trolyte in many electrochemical devices, such as superca-
pacitors,60 batteries,74 electrocatalyzers,75 etc. The next
challenge will be to develop the adequate force fields for
such systems. There are currently many developments
aiming at accounting for the different metallicities of
the electrode materials,36,76,77 but there is no systematic
recipe for choosing the corresponding parameters. Ap-
proaches based on high-level ab initio calculations will
certainly provide an important input towards this direc-
tion.78,79

SUPPLEMENTARY MATERIAL

The supplementary material contains the complete
derivation of 2D-PBC Ewald decomposition for energy
and forces of Gaussian charges-point dipoles term and
the Ewald decomposition for the forces.
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DATA AVAILABILITY

The MetalWalls code is openly available in the repos-
itory https://gitlab.com/ampere2/metalwalls.
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M. Salanne, “Solvation of anthraquinone and tempo redox-active
species in acetonitrile using a polarizable force field,” J. Chem.
Phys. 155, 074504 (2021).

36A. Serva, L. Scalfi, B. Rotenberg, and M. Salanne, “Effect of the
metallicity on the capacitance of gold-aqueous sodium choloride
interfaces,” J. Chem. Phys. 155, 044703 (2021).

37A. Aguado, L. Bernasconi, and P. A. Madden, “Interionic po-
tentials from ab initio molecular dynamics: The alkaline earth
oxides CaO, SrO, and BaO,” J. Chem. Phys. 118, 5704–5717
(2003).

38M. Neumann, “Dipole moment fluctuation formulas in computer
simulations of polar systems,” Mol. Phys. 50, 841–858 (1983).

39M. Sprik and M. L. Klein, “A polarizable model for water using
distributed charge sites,” J. Chem. Phys. 89, 7556–7560 (1988).

40J. Kolafa, “Time-reversible always stable predictor-corrector
method for molecular dynamics of polarizable molecules,” J.
Comput. Chem. 25, 335–342 (2004).

41L. Scalfi, D. T. Limmer, A. Coretti, S. Bonella, P. A. Mad-
den, M. Salanne, and B. Rotenberg, “Charge fluctuations from
molecular simulations in the constant-potential ensemble,” Phys.
Chem. Chem. Phys. 22, 10480–10489 (2020).

42W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling, Numerical recipes in C: The art of scientific computing

(Cambridge University Press, Cambridge Cambridgeshire New

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I:1
0.1

06
3/5

.01
01

77
7



Accepted to J. Chem. Phys. 10.1063/5.0101777

17

York, 1992).
43J. Nocedal and S. J. Wright, Numerical optimization (Springer,
New York, 2006).

44T. D. Kühne, M. Krack, F. R. Mohamed, and M. Parrinello,
“Efficient and accurate Car–Parrinello-like approach to Born–
Oppenheimer molecular dynamics,” Phys. Rev. Lett. 98, 066401
(2007).

45F. Aviat, A. Levitt, B. Stamm, Y. Maday, P. Ren, J. W. Ponder,
L. Lagardère, and J.-P. Piquemal, “Truncated conjugate gra-
dient: An optimal strategy for the analytical evaluation of the
many-body polarization energy and forces in molecular simula-
tions,” J. Chem. Theory Comput. 13, 180–190 (2017).

46G. Golub and C. Van Loan, Matrix Computations, Johns Hop-
kins Studies in the Mathematical Sciences (Johns Hopkins Uni-
versity Press, 2013).

47Y. Ishii, S. Kasai, M. Salanne, and N. Ohtori, “Transport coef-
ficients and the stokes–einstein relation in molten alkali halides
with polarisable ion model,” Mol. Phys. 113, 2442–2450 (2015).

48J. N. C. Lopes and A. A. H. Pádua, “Molecular force field for
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