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Abstract

It is suggested that the efficiency of the MOND theory of Mordehai Milgrom might be unre-
lated to distance, but instead connected to flatness of galaxies and the fact that the large scale
distribution of matter is essentially two-dimensional. A simple continuous model of planar
circular galaxies relying on a two dimensional variant of Newton’s gravitational law shows
completely flat velocity curves without any need for dark matter outside the disk.
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1 Introduction

This paper concerns an alternative potential explanation for the so called galaxy rotation
problem which is usually associated to the hidden mass hypothesis (HMH).

While examining the Coma galaxy cluster in 1933, the astronomer Fritz Zwicky discovered
the existence of a gravitational anomaly. He estimated the global dynamical gravitational
mass of the galaxies within the cluster from the observed rotational velocities and obtained a
value much larger than expected from the total luminosity of the cluster. This was reproted in
the two basic papers [13, 14]. In [5], we pointed out the accumulation of circumstances which
led to an exageration of the discrepancy, but the discordance remains and presently many
specialists, following the HMH hypothesis made by Zwicky himself, are looking for unseen
“dark matter”, possibly of non-baryonic nature.

The HMH track became popular after the discovery of the so-called flat galactic rota-
tion curves by Vera Rubin (cf. [10, 11]), also called the galaxy rotation problem. Quoting
wikipedia: “Vera Rubin investigated the rotation curves of spiral galaxies, beginning with
Andromeda, by looking at their outermost material, and observed flat rotation curves: the
outermost components of the galaxy were moving as quickly as those close to the center. This
was an early indication that spiral galaxies might be surrounded by dark matter haloes. She
further uncovered the discrepancy between the predicted angular motion of galaxies based on
the visible light and the observed motion. Her research showed that spiral galaxies rotate
quickly enough that they should fly apart, if the gravity of their constituent stars was all that
was holding them together. Because they stay intact, a large amount of unseen mass must be
holding them together, a conundrum that became known as the galaxy rotation problem...”
In the recent years, observations seem to confirm the existence of a huge halo of classical dark
matter around the galaxy M 31 and even around the milky way. But the arguments used by
the experts to infer this important potential solution are quite indirect, so that it not absurd
to pursue alternative tracks towards an explanation of the galaxy rotation problem.

In 1983, in [9], M. Milgrom introduced an alternative way of solving the galaxy rotation
problem without assuming the existence of dark matter. He made the hypothesis that New-
ton’s law might not be correct for very remote objects and in this case the inverse square law
should be replaced by an inverse law. However, it is not easy to find a physical interpretation
of this divergence from Newton’s law. Then a modified-inertia MOND approach was proposed
as a change in Newton’s second law at small accelerations. This questions the fondations of
dynamics, as a matter of fact, even the classical Newton’s second law is difficult to understand
in a completely empty space, cf. [7] and also the works of T. Van Flandern, for instance [12] .

Recently, the author wondered what could be a 2 dimensional version of Newton’s law of
gravitation. This leads, as we shall see, to a new potential explanation of the flat velocity
curves far from the center of galaxies. Actually, the paradigm of the Fatio-Lesage theory
naturally leads to replace in 2D the inverse square law of Newton by an inverse law which in
a sense represents a variant of Milgrom’s MOND hypothesis, replacing the influence of large
distances by the quasi-flatness property of galaxies and more generally large structures. The
plan of this paper is as follows: In Section 2, we briefly recall the pushing gravity paradigm of



Fatio de Duillier - Lesage. In Section 3 we introduce a 2D variant of Newton’s theory which
is purely mathematical since all real objects are 3D. In Section 4, we present a toy model of
circular 2D galaxies in which the rotation curves are completely flat. Sections 5 and 6 are
devoted to some remarks and the conclusion.

2 The Fatio de Duillier - Lesage theory.

According to Wikipedia: “Le Sage’s theory of gravitation is a kinetic theory of gravity origi-
nally proposed by Nicolas Fatio de Duillier in 1690 and later by Georges-Louis Le Sage in 1748.
The theory proposed a mechanical explanation for Newton’s gravitational force in terms of
streams of tiny unseen particles (which Le Sage called ultra-mundane corpuscles) impacting all
material objects from all directions. According to this model, any two material bodies partially
shield each other from the impinging corpuscles, resulting in a net imbalance in the pressure
exerted by the impact of corpuscles on the bodies, tending to drive the bodies together.” In [5],
we describe this paradigm in a rather detailed manner and we recall the main usual objections
against the Lesage theory. On the other hand, we observe that the pushing gravity model
opens the door to a possible variability of the “gravitational constant” G at very large spatial
(or time) scale. And we point out that different local gravitational constants might fill the
gap in Zwicky’s estimate. For detailed modern developments about the Fatio-Lesage theory
of gravitation and closely related topics, we refer to [1, 2, 3, 4] and [12] .

3 Newton’s law in 1D and 2D.

3.1 Starting point

In the previous preprint [6], the author tried to understand the simplest case of Lesage’s
pushing gravity, namely the mutual attraction of two nucleons. He found out that the theory,
contrary to what was claimed until now, can work even with purely elastic shocks, because
the gravitons transfer a part of their kinetic energy even in the elastic case. The argument
according to which rebounding gravitons can cancel the effect of incoming ones is also answered
by this “toy model” since rebounding gravitons have less kinetic energies than directly incoming
corpuscles.

3.2 A peculiar situation

After that study, the author tried to imagine how to recover Newton’s law of gravitation for
massive objects by summing the vector fields corresponding to atoms. But he readily realized
that starting from punctual corpuscules makes it impossible to take account of the distance!
Because in the calculations, the distance of the nucleons has no effect. Which means that in
1D, the inverse square factor just disappears.

3.3 What happens in 2D?

It is only when trying to picture out the situation for a teaching purpose that the author
realized something: the inverse square law in Newton’s formula is related to dimension 3. It
comes from the fact that the proportion of gravitons eclipsed by one body seen from a distant
point at distance d is proportional to the solid angle, varying like 1/d?. In one dimension, the



distance has no effect, and in 2D, the angle of vision is proportional to 1/d. Therefore in 2
dimensions, Newton’s law should become

mm/u
[Jull?
where u is the vector difference of positions between two quasi-punctual flat coplanar objects.

In other terms, in the case of small 2D masses confined in a plane the force is radial directed
towards the attracting object, with norm

F =

/

mm
Fll=k
1P =5
where d = ||u||. Here the gravitational potential becomes logarithmic, which may look coun-

terintuitive, but it was already the case for the MOND model. To conclude this Section, we
note that in this 2D variant of Newton’s theory, the acceleration field generated in the plane
by a quasi-punctual flat mass m located at point M is given, at any other point A of the plane,
by the formula

AM

m

AM?
Remark 3.1. It is natural to wonder whether formula really depends on Fatio-Lesage’s
paradigm. Actually what is involved here is geometry, and this seems to be rather inde-
pendent of the hypotheses made on the cause of gravity. Newton did not need that to write
his formula in 3D. Hence the formula in 2D might finally be more intrinsic than initially
imagined. As we shall see, it even gives rise to a 2D variant of the Gauss Theorem

F(4) = k (3.1)

4 A toy model of flat circular galaxies.

The main object of this section is to construct an entirely computable 2 dimensional simulation
for galactic dynamics. Of course, real galaxies are neither flat nor circular, but an explicit
model may help to understand what is going on for real galaxies. In order to do that, we
consider, for some R > 0, a rotationally symmetric distributed mass density with support in
the disk centered at the origin with radius R:

w(z) = p(l2)), 2 € C, 2| < R

To make the calculations, we shall use polar coordinates and consider in D = B(O, R) the
generic point
z:sele, 0<s<R.

4.1 The acceleration field produced by the mass density at a generic point

Due to rotational symmetry, the acceleration at the generic point re’ is given by e@y(r)
where, as a consequence of (3.1),

w)

() = _k/D sp(s)(r — se

|7 — seif |2

dsdf. (4.2)

We shall prove that this integral is absolutely convergent and give its value. To this end
the preliminary calculation of some simple integrals is necessary.



4.2 Some integrals

We shall need to evaluate, for any a € (0, 1), the integrals

J:J(a):/oﬁ @

1— acosb
and - 046
cos
K= K(a) = R rR
(@) /0 1—acosf

For the first integral the change of variable ¢ = tan 2 5 gives after standard manipulations

J_2/°° dt 2 /OO a2 /OO dr
T 1l—a+(Q+a)2 1-afy, 1+p822 B(l-a))y 1+72

with 8 = (%)1/2 and 7 = Bt. We conclude that

T do T
e = 4.3
I(e) /0 1—acost /1—a2 (43)

On the other hand we have

T ok — /1—acos€6_7r

1—acosf
whence J
K(a) = (O‘()l_” (4.4)

4.3 Preliminary estimates

First of all we check that formula (4.2) defines an absolutely convergent integral under a
reasonable assumption on u. This will allow us to use Fubini’s theorem. So we want to prove
that

/ _snls)ap < oo (4.5)
D

|7 — setf|

As a preliminary step we compute

/2” o /2” do 1 /% do
r— seif2 r2 4+ 2 —2rscosf] 12+ s2 1 — acosf
0 0 0

2rs
r2 4 52’

with
a=ars)=

It is immediate to check that

9 4r2 g2 r?2 — g2 2
1 — 0 = 1 — frd
(r2 4+ s2)2 r2 + 52

which gives, by the previous section

/27r d9_1/2” o o
o |r—se®2  r24s2 J; 1 —acosf |r?— s2
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Then we obtain first

/2” suls) o 2 ms(s)
0

r—se®|" = |r2 — 521/
For any r fixed the RHS is integrable with respect to r on (0, R) , so that already
sp(s) 2 [T sp(s)
/pdsd9§2/7r/ ds < 00
p |r— se’| o |(r+s)(r—s)t/?

as soon as i is bounded. But integrability still clearly holds true if for instance
p(s) <C(A+s77) (4.6)

for some A < 2, This allows rather strong local singularities at the center.

4.4 Exact formula for the acceleration field produced by the mass density
at a generic point
We shall prove the following

Theorem 4.1. Under condition (4.6), the value of the acceleration produced by the rotationally
invariant mass density u(z) = u(|z|) at the point y = re’¥ € D is given by the formula

2kme! [T 2kmy [
1) == [Csuts)ds =25 [ sutsyas
r 0 r 0

Proof. Forgetting for the moment the constant k and p, we compute

2
rsdf 2rs 2rs
1(8) /0' |7" _ Sez@|2 r2 + 52 (fr2 + 82)

I(s) /2” 52 df /27r cos 0s2 do) 252 K( 2rs )
s) = —_— = o =
2 o |r—se?|? o |r—se?2 2427 p2 4 g2

252 r? + s? 2rs ] 2rs
X J — = |J(—) —
r? 4+ 52 2rs [ (T2+82) W} r [ (r2+s2) W}
where we used that by symmetry of the mass distribution, I has to be real. By subtraction

we find

TSs 2rs s 2rs s s(r? — s? 2rs
hi=l2= o + [7“2 + 82 ;]J(ﬂ + 32) - rEr2 + 32§J(r2 + 32)

Since

J( 2rs ) = m(r? + s?)

r2 + 52 72 — s2|
we finally obtain .
T8 74— 5
A =)

. . . . TS . . .
this expression is equal to 0 if 7 < s, and to 2— if s < r. This means that the symmetric

r
mass distribution outside the disk of radius r will have no global gravitational effect at the
boundary. By integrating on (0, R) in s after multiplication by ku(s), we find easily

2km [T 2kmy [
V() =——— [ su(s)ds=— Q/SMWB
T Jo r 0
The case of general y follows immediately. O



4.5 A circular galactic motion and the associate velocity curves

Theorem 4.2. Under condition (4.6), the function defined for all t and all y = re™ € D by
the formula
y(t, re) = ret@tw(n)t)

s a solution of
y" =(y)

Proof. We immediately find y" = —w?y and this implies the result. O

As a conclusion, we were able to exhibit a rotating continuum medium with essentially
arbitrary rotation invariant mass density, which can be considered as a model of circular
galaxy. The “ particles”, which we could identify with stars or groups of stars, follow circular
orbits, and in the case of a constant density, the angular rotation density does not depend on
r. We rotation curve here is absolutely flat.

5 Some remarks

Remark 5.1. If u(r) = po, we have w(r) = v/ 2kmpg More generally if u(s) > po for all s, we

find
Vr e (0,R), w(r)>+/2kmug

Remark 5.2. If we knew in advance that the acceleration does not depend on the part of the
symmetric distribution exterior to the disk of radius r, we might have derived the formula from
a 2D version of Gauss’s theorem, by applying formally Green’s formula to the gradient and
the Laplacian of a weighted integral involving a logarithmic potential. But this does not seem
completely obvious to justify rigorously.

Remark 5.3. It is worth noting that the usual (3D) formulation of Newton’s law cannot be
used for a uniformly distributed mass in o flat disc. As a matter of fact, the integral

ie)
G/V_Sgw'w2 dsdf (5.7)

18 not absolutely convergent even when i is a constant. More precisely ,

WE@R%/%M_

p |r— se?|2

as a consequence of the formula

/27r do B T
o |r—sei?|2 T |r2 — 52|

It does not seem likely that we can give any reasonable meaning to the integral defined by (5.7).



Remark 5.4. On the other hand, if we replace the completely flat disc D by the thin 3D
domain D, = D x (—¢,€) on introducing the vertical coordinate z € (—¢,€) , it is not difficult
to check that the vector integral

su(s)(r — se 2
r.(r)= -G /D H/(ﬁ z(sei072>"3/gd3d9 (5.8)

becomes normally convergent for any bounded function p. More precisely we have

s
VTE(O,R),/ |\(r—sei9,z)|]2d8d9<oo

€

Lo(r)

€
likely that it will not converge to y(r), because this would give a value for the constant k
in a purely mathematical framework, relating it to the universal gravitational G without any
reference to the origin of gravitation, and this would be too much of a miracle.

It would be interesting to see whether tends to a limit as € — 0. In any case, it seems

6 Conclusion.

The situation of the matter in galaxies seems to be close to a 2D setting. It might be the same
for galaxy clusters, contrary to the assumption made by Zwicky at a time when serious studies
about accretion disks did not start. Large structures, for a reason which is not clarified yet,
tend also to organize in laminar structures, as shown by the discoveries of Lapparent & alt
[8]. This might be the reason why the MOND model has some success not only in predicting
the velocity curve in galaxies near the boundary, but also to solve Zwicky’s paradox. The
above toy model may help explaining the flat velocity curves observed on real galaxies, but it
is a very simplified situation, even for dimension 2. Moreover, passing to the limit when the
thickness tends to zero seems to be a non-obvious mathematical challenge, requiring rather
sophisticated methods. The result will most probably indicate that for very thin domains,
using the usual 3D Newton’s law becomes irrelevant.
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