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ABSTRACT
The early to mid-Aptian was punctuated by episodic phases of organic-carbon burial in 

various oceanographic settings, which are possibly related to massive volcanism associated 
with the emplacement of the Ontong Java, Manihiki, and Hikurangi oceanic plateaus in the 
southwestern Pacific Ocean, inferred to have formed a single plateau called Ontong Java Nui. 
Sedimentary osmium (Os) isotopic compositions are one of the best proxies for determining 
the timing of voluminous submarine volcanic episodes. However, available Os isotopic records 
during the interval are limited to a narrow interval in the earliest Aptian, which is insufficient 
for the reconstruction of long-term hydrothermal activity. We document the early to mid-
Aptian Os isotopic record using pelagic Tethyan sediments deposited in the Poggio le Guaine 
(Umbria-Marche Basin, Italy) to precisely constrain the timing of massive volcanic episodes 
and to assess their impact on the marine environment. Our new Os isotopic data reveal three 
shifts to unradiogenic values, two of which correspond to black shale horizons in the lower to 
mid-Aptian, namely the Wezel (herein named) and Fallot Levels. These Os isotopic excursions 
are ascribed to massive inputs of unradiogenic Os to the ocean through hydrothermal activity. 
Combining the new Os isotopic record with published data from the lowermost Aptian organic-
rich interval in the Gorgo a Cerbara section of the Umbria-Marche Basin, it can be inferred 
that Ontong Java Nui volcanic eruptions persisted for ∼5 m.y. during the early to mid-Aptian.

INTRODUCTION
Oceanic anoxic events (OAEs) are major 

perturbations of the global carbon cycle, accom-
panied by the deposition of organic-rich sedi-
ments in various oceanographic settings. The 
early to mid-Aptian (Early Cretaceous) was 
marked by episodic burial of organic-rich sed-
iments in the Tethyan region (Coccioni et al., 
1987, 2012; Herrle et al., 2004), a gradual long-
term decrease in the diversity of planktonic for-

aminifera (Coccioni, 2020), and a decline in 
the size of calcareous nannoplankton (Bottini 
and Faucher, 2020). The Selli Level, recognized 
not only in the Tethyan region but also in the 
Pacific Ocean, is one of the most studied Cre-
taceous organic-rich intervals and records the 
earliest Aptian OAE (OAE1a) (Coccioni et al., 
1987; Price, 2003). In the Tethyan region, sev-
eral minor organic-rich intervals occur above 
the Selli Level (Herrle et al., 2004; Coccioni 
et al., 2012). However, their significance in 
the geologic record is unclear because they are 

observed only in the Tethys at present and are 
poorly studied.

Radiometric ages of Ontong Java Plateau 
(OJP, southwestern Pacific Ocean) basalts 
(125–119 Ma; Mahoney et al., 1993; Tejada 
et al., 2002) roughly correspond to the deposi-
tional ages of the Selli Level (ca. 121–120 Ma; 
Malinverno et al., 2012), and massive volcanic 
episodes associated with the plateau emplace-
ment have been ascribed as the trigger of the 
OAE1a and the associated marine biotic crises 
(e.g., Erba, 1994). Available geochemical data 
and radiometric ages of the Manihiki Plateau 
and the Hikurangi Plateau suggest that these pla-
teaus, as well as the OJP, were part of a larger 
oceanic plateau, known as Ontong Java Nui 
(OJN) (Taylor, 2006; Chandler et al., 2012).

Marine Os isotopic (187Os/188Os) records 
have been applied to identify episodic sub-
marine volcanic events (Turgeon and Creaser, 
2008; Tejada et al., 2009; Bottini et al., 2012; 
Du Vivier et al., 2014). Open-ocean 187Os/188Os 
is constant because of its long residence time 
(8–10 k.y.; Oxburgh, 2001) and reflects the 
balance between the Os input from the unra-
diogenic sources (e.g., hydrothermal activity, 
weathering of basaltic rocks, and cosmic dust) 
and radiogenic Os sourced from continen-
tal materials (Levasseur et al., 1999). Shifts 
to unradiogenic 187Os/188Os in sedimentary 
records can, therefore, reflect massive input *E-mail: matsumoto@aori.u-tokyo.ac.jp
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of mantle-derived Os to the ocean via basaltic 
plateau emplacement. Early Cretaceous marine 
Os isotopic records are, however, limited to 
a short interval from the latest Barremian to 
the earliest Aptian (Tejada et al., 2009; Bot-
tini et al., 2012), too short to trace the major 
OJN volcanic pulses ranging from early to 
mid-Aptian (Taylor, 2006). To assess the links 
between massive eruptions forming OJN and 
environmental perturbations in the early to mid-
Aptian, this study extends the marine Os iso-
topic record to the entire Aptian using pelagic 
sediments collected from the Poggio le Guaine 
section (43°32’29.06"N, 12°34’51.09"E) and 
core (43°32’42.72"N, 12°32’40.92"E) in the 
Umbria-Marche Basin (central Italy) of the 
western Tethys (Coccioni et al., 2012; Fig. 1; 
Fig. S1 in the Supplemental Material1).

RESULTS
The carbonate δ13C (δ13Ccarb) record of Poggio 

le Guaine core shows the highest values (4.7‰) 
just above the Selli Level, which is followed by a 
continuous decline to 3.1‰ toward the top of the 
studied interval in segment Ap10, at ∼13 m on 
the composite depth scale (Fig. 2; Fig. S2; Table 
S1). This trend is consistent with the δ13Ccarb 
records from the Gorgo a Cerbara section of 
the Umbria-Marche Basin and from the Vocon-
tian Basin (southeastern France) (Herrle et al., 
2004; Li et al., 2016). By integrating our new 
available δ13Ccarb data with those from the Poggio 

le Guaine and Gorgo a Cerbara sections (Coc-
cioni et al., 2014; Li et al., 2016; Savian et al., 
2016; Matsumoto et al., 2020), we constructed 
a composite δ13Ccarb record (Fig. 2) in which 21 
carbon isotopic segments (Ap1 to Al6) can be 
identified, following Menegatti et al. (1998) 
and Herrle et al. (2004). Os and Re concentra-
tions vary from 18 to 153 pg g−1 and from 3 to 
7100 pg g−1, respectively (Fig. S3; Table S2). 
Age-corrected 187Os/188Os (Osi) values above the 
Selli Level range from 0.27 to 0.55, with distinct 
excursions to unradiogenic values at the levels 
of two black shales at ∼3 m and ∼12 m (Fig. 2).

DISCUSSION
The black shale horizon at 12 m on the com-

posite depth scale near the boundary between 
the Ap9 and Ap10 carbon isotopic segments and 
within the Globigerinelloides algerianus plank-
tonic foraminiferal zone can be correlated to the 
Fallot Level in the Serre Chaitieu section of the 
Vocontian Basin (Herrle et al., 2004). The black 
shale horizon located at ∼3 m on the composite 
depth scale falls in the Ap7 carbon isotopic seg-
ment and the Leupoldina cabri planktonic fora-
miniferal zone, which cannot be correlated to any 
named early Aptian black shales. Thus, we pro-
pose to name this undescribed black shale hori-
zon as the “Wezel Level” (see also the lithologi-
cal description in the Supplemental Material).

Upper Barremian Osi values from the 
Umbria-Marche Basin fluctuate around 0.7 and 
gradually decrease to 0.4 at ∼44 cm below the 
Selli Level (Fig. 2; Tejada et al., 2009). Upward, 
Osi values increase to 0.7 again before decreas-
ing sharply to 0.2 in the lower part of the Selli 
Level (Fig. 2; Tejada et al., 2009). Based on the 
correspondence between the sedimentary age of 
the Selli Level (ca. 120–121 Ma; Malinverno 
et al., 2012) and the radiometric age of the OJP 
(125–119 Ma; Mahoney et al., 1993; Tejada 

et al., 2002), these two Os isotopic declines 
likely mark massive volcanic episodes during 
OJP emplacement (Tejada et al., 2009). Osi val-
ues increase to 0.5 above the Selli Level (∼2.4 m 
in Fig. 2), which may represent an interruption 
in submarine volcanic activity. However, Osi 
values drop to 0.27 around the Wezel Level 
(Fig. 2), recover back to 0.5, and show a small 
shift to unradiogenic values of 0.40 ∼1 m above 
the Wezel Level. A similar shift to unradiogenic 
Osi values of 0.36 is observed around the Fallot 
Level equivalent.

We estimated the unradiogenic Os input 
required to explain Osi variations using a box 
model, assuming constant continental weather-
ing (cf. Tejada et al., 2009; Fig. S4; Table S3; 
and the box model calculation in the Supplemen-
tal Material). The three Os isotopic excursions, 
at the Wezel Level, 1 m above the Wezel Level, 
and at the Fallot Level equivalent, would have 
required at least ∼3100, ∼850, and ∼1150 t/k.y. 
increases in the unradiogenic Os input, respec-
tively (Fig. 3). These values are 7.5, 2.1, and 
2.6 times higher than the steady hydrothermal 
Os input associated with oceanic plate produc-
tion of the uppermost Barremian (Fig. 3). To 
explain these negative Os isotopic shifts solely 
by a decrease in the flux of continental Os, a 
reduction of ∼60%–80% of continental-derived 
Os would be required. Given that continental 
weathering rates rose during the early Aptian 
(e.g., Blättler et al., 2011), this possibility is 
unlikely. The sedimentary ages of the early to 
mid-Aptian Os isotopic excursions (ca. 121–
116.3 Ma; Malinverno et  al., 2012) roughly 
correspond to the radiometric ages of the OJP 
(125–119 Ma; Mahoney et al., 1993; Tejada 
et al., 2002) and the Manihiki Plateau (126–
117.9 Ma; Ingle et al., 2007; Timm et al., 2011), 
so the most probable source of unradiogenic Os 
is the hydrothermal activity associated with the 

1Supplemental Material. Description of lithology 
and methods, Figure S1 (sampling site), Figure S2 
(cross plots of δ13Ccarb and δ18Ocarb), Figure S3 (Re-
Os data), Figure S4 (age-depth model), Table S1 
(raw δ13Ccarb and δ18Ocarb data), Table S2 (raw Re-Os 
data), and Table S3 (age model). Please visit https://
doi.org/10.1130/XXXXX to access the supplemental 
material, and contact editing@geosociety.org with any 
questions.

Figure 1.  Paleogeography 
at 120 Ma based on Chan-
dler et al. (2012), showing 
location of the studied 
Poggio le Guaine section 
(Umbria-Marche Basin, 
Italy).
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emplacement of these plateaus. The weathering 
of young basaltic plateau could be another can-
didate for the unradiogenic Os source. However, 
most of OJN was emplaced under submarine 
conditions, and subaerial weathering is consid-
ered to be unlikely to cause the large unradio-
genic Osi shift (e.g., Shipboard Scientific Party, 
2001), despite evidence of subaerial eruption on 
OJN (Thordarson, 2004).

The most probable trigger for the black shale 
deposition is global warming promoted by the 
massive release of volcanic gases associated 
with the emplacement of OJN. Global warming 
could have enhanced the continental weather-

ing supplying nutrients into the ocean and, in 
turn, stimulated the primary productivity that 
ultimately led to the local marine anoxia and 
the subsequent deposition of the Wezel and Fal-
lot Levels. These levels are currently reported 
only in Tethyan regions, possibly because the 
depositional environment may have been sus-
ceptible to nutrient supply from riverine input 
and upwelling. The sedimentary thickness of 
the organic-rich interval and δ13Ccarb excursion at 
the Wezel (∼20 cm and at most −1‰) and Fal-
lot Levels (∼6 cm and none) are smaller than at 
the Selli Level (∼2 m and −2‰). The negative 
δ13C excursion during OAE1a is ascribed to the 

thermogenic methane released from sill intru-
sion into marine organic-rich sediments (Adloff 
et al., 2020). Considering the smaller unradio-
genic Os shifts at the Wezel and Fallot Levels 
(Fig. 3), the perturbations of the carbon cycle at 
these horizons may have been limited compared 
to that at the Selli Level. At each of the Wezel 
Level and the Fallot Level equivalent, the initial 
decline in Osi occurs ∼60 cm below the onset of 
deposition of black shale horizons, which corre-
sponds to ∼200 k.y. (Fig. 3; Table S1). A shorter 
time lag (∼59 k.y.) between unradiogenic Osi 
shift and the onset of positive δ13Ccarb excur-
sion (i.e., the potential organic-carbon burial) 

Figure 2.  Late Barremian 
to early Albian 187Os/188Os 
(Osi) and carbonate δ13C 
(δ13Ccarb) records in the 
Poggio le Guaine (PLG) 
section and core and the 
Gorgo a Cerbara section of 
the Umbria–Marche Basin 
(Italy) Chronostratigra-
phy is after Coccioni et al. 
(2014), Coccioni (2020), 
and Matsumoto et  al. 
(2020). Litho-, bio-, and 
magnetostratigraphy cor-
respond to those of the 
PLG record, after Coccioni 
et al. (2012, 2014), Savian 
et  al. (2016), Matsumoto 
et al. (2020), and this study. 
Biostratigraphy is slightly 
modified based on Coc-
cioni (2020). Colors used 
in the lithological column 
are the schematic colors 
of the sedimentary rocks 
based on Coccioni et al. 
(2012). Osi is from Tejada 
et al. (2009), Matsumoto 
et al. (2020), and this study. 
Gray horizontal bars in 
the Osi plot represent 
the intervals of oceanic 
anoxia. δ13Ccarb is after Coc-
cioni et al. (2014), Li et al. 
(2016), Savian et al. (2016), 
Matsumoto et al. (2020), 
and this study. Gray and 
black lines in δ13Ccarb 
plots represent the raw 
and smoothed curves of 
δ13Ccarb at the PLG record, 
respectively (Coccioni 
et  al., 2014). Number of 
planktonic foraminiferal 
species at the Gorgo a 
Cerbara section is after 
Coccioni (2020). Variation 
of Biscutum constans size 
in the Cismon (southern 
Alps, Italy) and Piobbico 
(central Italy) cores is from 
Bottini and Faucher (2020). 
Ma.—Maiolica; BAR—Bar-
remian; foram.—foraminiferal; 
nanno.—nannofossil; 
OAE—Oceanic Anoxic 
Event.
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is observed during OAE2 (Jones et al., 2020). 
The time lag could represent the required time 
from the onset of the volcanic outgassing to the 
outbreak of oceanic anoxia. Smaller Os isotopic 
shifts than at OAE2 around the Wezel and Fal-
lot Levels imply decreased volcanic eruptions 
that may have led to tempered environmen-
tal perturbations and longer time lags. Above 
the Fallot Level equivalent, Osi shows stable 
values of ∼0.55 to the end of Aptian (Matsu-
moto et al., 2020), lower than the latest Barre-
mian pre-OAE1a values (∼0.7) (Tejada et al., 
2009), though estimated Barremian values have 
large variations (0.4–0.9) (Bottini et al., 2012). 
Because the oceanic crustal production rate dur-
ing the Aptian is considered higher than that 
of the Barremian (Eldhom and Coffin, 2000), 
the intensified hydrothermal activity associated 
with plate production may have contributed to 

the low steady Osi values. Another possibility is 
that small-magnitude but continuous volcanism 
after the main volcanic pulse at OJN released 
unradiogenic Os into the ocean. Indeed, the 
basaltic rocks at the northeastern plateau mar-
gin (Rapuhia Scarp) on the Hikurangi Plateau 
show younger ages (118–96 Ma; Hoernle et al., 
2010) than the peak ages of the OJP and Mani-
hiki Plateau, which may support this possibility.

Marine strontium isotopic ratios (87Sr/86Sr) 
represent the balance between radiogenic Sr 
input from continents and unradiogenic Sr 
input through hydrothermal activity. Although 
87Sr/86Sr varies like Osi, the residence time of Sr 
is much longer (∼2.5 m.y.; Hodell et al., 1990) 
than that of Os (8–10 k.y.; Oxburgh, 2001), 
which makes the change in marine 87Sr/86Sr 
more gradual than that of Osi. The global marine 
87Sr/86Sr curve shows a marked decline toward 

unradiogenic values during the early Aptian 
(Fig. 3; Bralower et al., 1997), which supports 
enhanced hydrothermal activity induced by the 
submarine volcanic episodes. Although their 
timing is concordant, the increase in the input 
of unradiogenic Os is more drastic (2.6–16 times 
higher) compared to that of Sr (∼15% increase) 
owing to their different geochemical behaviors.

The Osi fluctuations continued for ∼5 m.y. 
during the early to mid-Aptian, which could 
reflect a long-term submarine volcanic eruption 
at OJN. The Os isotopic fluctuations during 
the early to mid-Aptian correspond to stepwise 
declines in the planktonic foraminiferal diver-
sity, the demise of nannoconids, and a decrease 
in the shell size of nannofossils at least in the 
Umbria-Marche Basin (Fig. 2; Erba, 1994; Bot-
tini and Faucher, 2020; Coccioni, 2020). Because 
calcareous organisms are strongly influenced 
by ocean acidification (Erba et al., 2010; Bot-
tini and Faucher, 2020; Matsumoto et al., 2020), 
the biotic changes have been ascribed to at least 
local lowering of pH caused by the massive vol-
canic outgassing. After the three major Os isoto-
pic declines, an increase in the heavily calcified 
planktonic foraminiferal species (Coccioni et al., 
2014) and a blooming of nannoconids (Nannoco-
nus truitti acme, Fig. 2; Coccioni et al., 2014) are 
reported, suggesting a weakening of the acidified 
conditions caused by volcanic activity at OJN. 
These pieces of evidence imply that the volca-
nic episodes at OJN could have had an impact 
on marine ecosystems at least locally from the 
latest Barremian to the mid-Aptian, potentially 
through marine anoxia and acidification.

CONCLUSIONS
Our new Os isotopic record from the Poggio 

le Guaine in the Umbria-Marche Basin provides 
evidence of several Os isotopic shifts to unradio-
genic values around two black shale horizons, 
namely the Wezel Level and the Fallot Level 
equivalent in the lower to mid-Aptian. Consid-
ering the lack of large-scale subaerial exposure 
on OJN, the Os isotopic variations are attributed 
to massive inputs of unradiogenic Os through 
hydrothermal activity. Integrating our Os isoto-
pic data with published data from the late Bar-
remian to early Aptian of the Gorgo a Cerbara 
section, we infer that intensive hydrothermal 
activity continued for ∼5 m.y. during the early 
to mid-Aptian and was associated with the depo-
sition of three major organic-rich intervals in 
the Tethyan region (Selli Level, Wezel Level, 
and Fallot Level equivalent). Considering the 
consistency of radiometric ages of OJN with the 
sedimentary ages of the Os isotopic shifts, the 
most probable cause for these volcanic signals 
is submarine volcanic eruptions at OJN.
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(D) inputs from Ontong Java Nui volcanism. Solid lines in A and B represent the estimated Osi 
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is based on Tejada et al. (2009), Matsumoto et al. (2020), and this study. Gray horizontal bars in 
A represent the intervals of oceanic anoxia. 87Sr/86Sr data are from Bralower et al. (1997). Time 
scale is after Coccioni (2020) and Matsumoto et al. (2020) (Fig. S4 and Table S3 [see footnote 
1]). BAR.—Barremian; OJN—Ontong Java Nui.
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